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Abstract

In this work we study multidimensional (nD) linear differ-
ential behaviours with a distinguished independent variable,
called ”time”. We define in a natural way causality and
stability of input/output structures with respect to this distin-
guished direction. We make an extension of some results in
the theory of partial differential equations, demonstrating that
causality is equivalent to a property of the transfer matrix.
We also quote results which in effect characterize time-
autonomy for the general systems case. Stability is likewise
characterized by a property of the transfer matrix.

I. INTRODUCTION

In this paper we are concerned with questions of causal-
ity and stability for systems defined by partial differential
equations. We consider these problems in the framework
of multidimensional or nD behaviours. To date, the theory
of multidimensional or nD behaviours has almost entirely
considered the independent variables on an equal footing.
However, in an apparent majority of applications, particularly
in the case of systems given by partial differential equations,
one of the independent variables, “time”, is distinguished
and plays a special role. Recent work [1], [2], [3] attempts
to develop nD behavioural theory in this less symmetrical
and more applicable situation.

This consideration is particularly significant when we dis-
cuss a concept such as stability, which is naturally associated
with the passage of “time”. Stability of course may be
divided into two concepts: stability with respect to initial
conditions (i.e. stability of an autonomous behaviour), and
input/output stability. The current work was motivated by
consideration of the first concept, but has led only to a
(partial) characterization of the second!

Space limitations only allow us to list the main references.
The notation {[n]} refers to the corresponding reference
number in [4].

II. BEHAVIOURS, CLASSICAL SPACES, AND POLE

STRUCTURE

We begin by briefly reviewing some concepts and results
from the theory of nD behaviours, see e.g. [5] for general
background on the continuous nD case. Here we consider
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solutions to behaviours in the classical spaces from the theory
of distributions, so begin by recalling these and associated
spaces. We denote the classical spaces by C∞ (smooth func-
tions), D′ (distributions), C∞

0 (compactly smooth functions),
E ′ (compactly supported distributions), S (rapidly decreasing
functions) and S ′ (tempered distributions). Here all functions
and functionals are taken to be complex-valued. Recall that
rapidly decreasing functions are those functions which decay
faster than any polynomial grows. Following {[4]} we define
also, for any of the classical spaces W, the spaces:

W+ := {w ∈ W | supp w ⊆ R
n
+} (1)

W− := {w ∈ W | supp w ⊆ R
n
−} (2)

W⊕ := W/W−, (3)

LW� := W/W+ (4)

Here R+ := R
n−1 × [0,+∞) and R− := R

n−1 × (−∞, 0].
The spaces S+ and S ′

⊕ will prove particularly important
here, where S ′

⊕ is in fact equal to the dual space of S+.
Denote by C[s] the polynomial ring in n indeterminates

s = s1, · · · , sn with complex coefficients. We associate with
any polynomial matrix R = R(s) ∈ C

g×q the differential
operator R(δ) := R(∂/∂x1, · · · , ∂/∂xn), x1, · · · , xn being
independent variables in the space R

n. This operator maps
Wq to Wg for any of the spaces W listed above (the action
on factors W⊕, W� being induced in the obvious way).

For any of the spaces W discussed above, and for a
polynomial matrix R ∈ C[s]g×q, denote as usual

kerW R = {w ∈ Wq | R(δ)w = 0} (5)

imW R = {w ∈ Wg | ∃ l ∈ Wq s.t. w = R(∂)l} (6)

In this situation, we say that R is a kernel representation
matrix of the behaviour B = kerR R. W is referred to as
the signal space; the signal space of a behaviour is taken to
be D′ unless otherwise specified.

For the operator R(∂) or behaviour kerD′ R, the as-
sociated system module or module of formal quantities is
defined as M := C[s]1×q/C[s]1×gR. In particular, the
behaviour B (for any signal space W) may be identified with
HomC[s](M,W), see e.g. [5].

Given a polynomial matrix R ∈ C[s]g×q, recall the
standard definition of a universal or minimal left annihilator
in such a case. Then the “Fundamental Principle” of Ehren-
preis/Palamodov states that imW R = ker L for W = D′ or
W = C∞. Equivalently, these two signal spaces (modules)
are injective. This property is a major component of a very
rich relationship between system modules M and behaviours
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B, introduced into behavioural theory in [5]. We will also use
standard facts and results concerning the associated primes
of M, see e.g. {[3]} for a detailed treatment.

Let B = kerD′ R with R ∈ C[s]g×q; denote by V(B) the
characteristic variety

V(B) := {ζ ∈ C
n | rank R(ζ) < q} (7)

which is well known to depend only on B and to be equal
to the variety of the ideal

ann M := {r ∈ C[s] | rx = 0 for all x ∈ M} (8)

The points of V(B) are precisely the frequencies ζ
for which B admits polynomial exponential trajectories
p(x)exp(〈ζ, x〉), p a polynomial function, see e.g. {[18]} [6]
for a discussion in the behavioural context.

The definition of time autonomy due to [1] is as follows.
Definition 1: A behaviour B is called time-autonomous if

any trajectory is determined by its restriction to the half-
space {x ∈ R

n | xn < 0.} The behaviour is autonomous if
the characteristic variety is not all of C

n.
Thus for a behaviour B with signal space D′, time-

autonomy is equivalent to the absence of non-zero solutions
in D′

+, so means that if a trajectory is zero in the “past”
(Rn

−) it must remain zero in the “future” (Rn
+).

Non-zero solutions over D′
+ or C∞

+ (or more generally
in a specified half-space) are null solutions. As one case,
results characterizing their existence for the distributional and
smooth systems cases can be found in {[16]}.

We now recall some results from [6] concerning the pole
structure of multidimensional behaviours. Recall first that a
(free) input/output structure (x, y) on a behaviour B with a
general signal space W is a partition of the system variables
into m input variables u and p output variables y with the
properties that (i) the projection of the behaviour onto the u
variables equals Wm (we say, the variables u are free over
W), and (ii) the zero-input behaviour is autonomous, i.e. has
no free variables.

For a given kernel representation, writing the system
equations in the form P (∂)y = Q(∂)u we equivalently have
that P has full column rank and the rank of (−Q,P ) is
equal to the rank of Q. When these conditions apply, there
is a unique rational function matrix G with PG = Q, called
the transfer matrix.

The controllable part Bc of B, defined as the (unique)
maximal controllable sub-behaviour of B, possesses the same
input/output structures as B, and admits the same transfer
matrix with respect to any such input/output structure. Note
also (see [6] (Theorem 5.3)) that the zero input behaviour
of the controllable part has a special structure. In particular,
if M′ denotes the system module associated to the zero-
input behaviour then the associated primes of M′ are all
principal, and the ideal ann M′ is generated by the least
common denominator of the transfer matrix. We call a
finitely generated module with the property that its associated
primes are all principal a principal module.

The pole variety, controllable pole variety, and uncon-
trollable pole variety of B (with a specified input/output

structure) are defined respectively as V(B0,y),V((Bc)0,y)
and V(B/Bc). The points of the uncontrollable variety have
an interpretation as input decoupling zeros, as discussed
in {[39]}, which also establishes relationships between these
sets.

III. STABILITY OF AUTONOMOUS BEHAVIOURS

In this section we consider an autonomous behaviour B
given by a kernel representation matrix R, which necessarily
has full column rank q. We assume furthermore that one of
the independent variables “time” (t) is distinguished; without
loss of generality we will always take this to be the last
variable listed in the coordinate system for R

n. Under what
conditions should B be referred to as a “stable” behaviour?

Stability in this context should mean that B contains no
physically reasonable trajectories which grow in time at
an unacceptably fast rate in some sense (e.g. which are
unbounded). We might call this “stability with respect to
the initial conditions”.

Consider the heat or diffusion equation in one spatial
variable:

∂2w

∂x2
=

∂w

∂t
(9)

This system was used recently in [2], [3] to motivate an
alternative signal space to C∞, D′; here we will consider it
in a similar spirt. We find that the characteristic variety of
the system (9) or of its behaviour B, is:

V(B) = {(η, ξ) ∈ C
2 | η2 = ξ}

and the behaviour contains trajectories of the form

exp(�(η)x + �(η2)t)exp(ι�(η)x + ι�(η2)t)

for all η ∈ C. Hence B contains trajectories which are un-
bounded on the positive t-axis, corresponding to the choices
�(η2) > 0, and so is unstable in the sense introduced in
e.g. {[20]}. However, note that if �(η2) > 0 then �(η) 	= 0,
i.e. any solution which is unbounded on the +t axis is also
unbounded (indeed, exponentially growing) on the x-axis.
In other words, the only way to get unbounded temporal
behaviour in this system is to start with exponentially grow-
ing initial spatial data! Indeed, we would prefer to consider
the heat equation as “stable”; with no external input of heat,
heat should diffuse in time and never blow up. In this paper,
we take the view that the initial data and trajectories which
are exponentially growing spatially are physically unrealistic.
With these considerations in mind we introduce the following
concept.

Definition 2: An autonomous behaviour B, or its char-
acteristic variety V = V(B), is said to satisfy (CV) (read
“Characteristic Variety (condition)”) if

V ∩ X+ = ∅, | X+ := ıRn−1 × C+ (CV )

where C+ denotes the closed right-half plane.
We say that B or V satisfies (WCV) (read, W = “Weak”) if
the same holds but for the open right-half plane C

+ instead
of C+. We also say that a polynomial or ideal satisfies (CV)

4555



or satisfies (WCV) if the corresponding condition is satisfied
by the variety of the polynomial/ideal.

For later use we also define X− := ıRn−1 × C− where
C− denotes the closed left-half plane.

We note that a behaviour satisfies (CV) if, and only if,
it contains no polynomial exponential trajectories which are
bounded at t = 0 (corresponding to the spatial frequency
components being imaginary) but which do not decay along
the positive t−axis (corresponding to the temporal frequency
components being in C+.) This observation applies equally
well to both complex-and real-valued trajectories. We there-
fore think of points of X+ as unstable frequencies. Similarly,
a behaviour satisfies (WCV) if and only if it contains no
polynomial exponential trajectories which are bounded at
t = 0 but grow faster than a polynomial in the +t−direction.
Note that the behaviour defined by the heat equation certainly
satisfies (WCV), as if η is imaginary then �(η2) < 0 gives
rise to a trajectory which is exponentially decaying in time.

As a working definition we consider an autonomous
behaviour to be stable when it satisfies (CV). This attempts to
capture the idea that a behaviour is unstable when it contains
trajectories which are well-behaved at t = 0 but do not decay
to 0 as t → +∞. In the case of hyperbolic systems, note
that condition (WCV) implies the Gårding condition, which
is necessary for hyperbolicity of an autonomous system given
by a single polynomial. Here is the condition:

{�(ξ) | ∃η ∈ ıRn−1, ξ, η ∈ V} ⊆ R is bounded above (10)

We now discuss hyperbolicity, giving the definition for the
systems case which is more complex than the better known
definition for a single polynomial. The following definition is
identical to one of the equivalent definitions given in {[16]},
adjusted only in respect of the fact that our systems are
defined via P (∂)w = 0, whereas {[16]} uses the more
standard P ((1/ı)∂)w = 0. Also we have specialized the
definition to hyperbolicity in a fixed direction.

Definition 3: A system P (∂)w = 0, operator P (∂),
associated system module M, or behaviour B, is called
hyperbolic (in the direction t) if for every associated prime
I of M, we can find a constant 0 < c < 1 such that (where
�(η, ξ) denotes the real part vector of the complex n + 1
tuple (η, ξ))

�(ξ) ≤ c|�(η, ξ)| + c−1 for every (η, ξ) ∈ V(I) (11)
The following result (adapted from {[16]}) links the to the

more familiar one for a single polynomial.
Theorem 1: Let P ∈ C[s]g×q, and let M be the sys-

tem module, i.e. M = C[s]1×q/C[s]1×gP. Suppose that
M is principal. Then P (∂) is hyperbolic if, and only if,
(0, · · · , 0, 1) is a non-characteristic direction for the system
P (∂)y = 0, and also the Gårding condition (11) holds for
the characteristic variety of the system.

We remark that hyperbolicity is equivalent to solvability of
the “non-characteristic” Cauchy problem in many different
formulations {[9]}, {[10]}, which is of great importance and
deserves investigation in the context of control systems the-
ory. Essentially, hyperbolicity allows the unique continuation

of initial data in a large class on t = 0 to trajectories on
the half-space t ≥ 0. We will note in the next section its
connections to causality.

Note also that hyperbolic behaviours are in particular time-
autonomous (in the general case this is a consequence of
Theorem 4.2 in {[4]}). Next, we link the condition (WCV)
to hyperbolicity.

Lemma 1: Let P (∂) be a partial differential operator with
kernel B and system module M. Suppose that M is prin-
cipal, and that B satisfies (WCV) and is time-autonomous.
Then the system is hyperbolic, and therefore admits a solu-
tion to the non-characteristic Cauchy problem.

In the case where M is principal, the property (CV)
together with time-autonomy is of course a much stronger
property than hyperbolicity; for example in two dimensions
the kernel of the operator (∂/∂t − 1) is hyperbolic but
does not satisfy (WCV). The relationship between these
two properties will become clearer when we examine stable
input/output structures. This however will require us to
consider causality in the continuous space-time input/output
framework.

IV. CAUSAL INPUT/OUTPUT STRUCTURES

We are interested in this section with the question of when
a given input/output structure is causal. Following {[38]} for
the discrete case (in which the past and future are defined
with respect to a cone), we introduce the following definition
of causality.

Definition 4: Suppose that (u, y) is an input/output
structure on B and B0,y is time-autonomous. Then the
input/output structure is said to be causal (with respect to
C∞) if for any smooth input u with support in R

n
+, there

exists a smooth output y (necessarily unique) with support
in R

n
+, such that (u, y) ∈ B.

Hyperbolicity is intimately connected to causality, which
can be demonstrated by results in {[16]}.

The next lemma shows that under a simple assumption,
all the trajectories of B with support in D′

+ are contained in
the controllable part. We will then use this to demonstrate
that B and Bc have the same causal input/output structures.

Lemma 2: Let B be a behaviour in (D′)q. If B/Bc is time-
autonomous, then B ∩ (D′)q = Bc ∩ (D′

+)q.
Also we have the following result (Corollary 4.5 in [4]).
Lemma 3: Let B be a behaviour with controllable part Bc

and a given input/output structure (u, y) (which is necessarily
an input/output structure on Bc also). Then:

1) B0,y is time-autonomous if, and only if, both B/Bc

and (Bc)0,y are.
2) Under the equivalent conditions of claim 1, (u, y) is a

causal input/output structure on B if and only if it is
a causal input/output structure on Bc.

One consequence of this last result is that, when causality
of an input/output structure is defined (i.e. when the zero-
input behaviour is time-autonomous), whether or not it holds
is determined purely by the controllable part of the behaviour
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and therefore by the transfer matrix. This motivates the
following:

Definition 5: Call a transfer matrix G causal if its least
common denominator is hyperbolic, stable if this polynomial
obeys condition (CV), and weakly stable if this polynomial
obeys (WCV).

Notice that for n = 1, stability of G agrees with the
classical concept, and causality of G is automatic.

Suppose we are given a behaviour B with input/output
structure (u, y) and transfer matrix G. Due to Lemma 2.3
in [4], G is causal if and only if (Bc)0,y is hyperbolic.
Similarly, G is stable if, and only if, (Bc)0,y obeys (CV). The
following result (Theorem 4.7 in [4]) shows that causality of
G corresponds to causality of the corresponding input/output
structures, when the latter are defined.

Theorem 2: Suppose that B is a behaviour with an in-
put/output structure such that B0,y is time-autonomous. Then
the input/output structure is causal with respect to C∞ if,
and only if, the associated transfer matrix is causal. These
conditions imply that the input/output structure is causal with
respect to D′.

In particular, Theorem 2 establishes that causality of
a given input/output structure may be tested (when it is
defined) merely by looking at the least common denominator
d of the transfer matrix G. In fact, since the prior condition
of time-autonomy enforces that (Bc)0,y be time-autonomous
and therefore that (0, · · · , 0, 1) be non-characteristic for d,
we have that (u, y) is causal if, and only if, d satisfies the
Gårding condition. Unfortunately, it is not immediately clear
how the condition may be tested.

V. CONVOLUTION OPERATORS AND IDEAL CONVEXITY

Before we tackle the subject of stable input/output struc-
tures, we need to explore two areas of background material.
This first is convolution operators and Fourier transforms on
the classical and other related spaces, as developed in {[4]}.
This will lead us to a necessary and sufficient condition for
input/output stability of the system p(∂)y = u. The second
area is “ideal-convexity” of a region in complex space, which
is a necessary property for the extension of certain results
from polynomials to ideals (and thereby general systems).

A. Convolution operators on S,S ′

The following material is largely taken from {[4]}

(Secs. 1.1–1.2]). For s ∈ N and l ∈ R, let C(s)
(l) denote the

space of s−times continuously differentiable functions f on
R

n with finite Hölder norm

|f |
(s)
(l) := sup

x∈Rn,α∈Nn,|α|≤s

(1 + x2)l/2|∂αf(x)| (12)

Here |α| denotes the total of the components of α and
δα is a shorthand for the operator p(∂), where p =
(sα1

1 sα2

2 , · · · , sαn

n ). The following elementary lemma is not
in {[4]} (Lemma 5.1 in [4]) but will prove useful:

Lemma 4: If f, g ∈ C
(s)
l/2 for some s, l, then fg ∈ C

(s)
l .

Recall that S is defined as the intersection of all the spaces
C

(s)
(l) . Also of interest is the set

L :=
⋂

s

⋃

l

C
(s)
(l) , (13)

which is the set of all smooth functions, each derivative of
which grows no faster than some power of x (which power
may depend on the derivative), and

O :=
⋃

l

⋂

s

C
(s)
(l) , (14)

the set of all smooth functions, each derivative of which
grows no faster than some power of x which is independent
of the derivative. (“M” is used rather than “L” in {[4]}). O
may be thought of as the set of (at most) slowly growing
smooth functions; its dual space is denoted by O′ and may
be thought of as the space of rapidly decreasing distributions.
Clearly S ⊆ O ⊆ L ⊆ C∞.

Still following {[4]}, we now introduce the spaces C
(s)
(l)+

of all functions in C
(s)
(l) with support in R

n
+, and define

S+, S ′
+, S ′

⊕ etc as before ((1)–(4)). O+ and O′
+ are defined

analogously. We have that S ′
⊕ is the dual space of S+ and

S ′
+ is dual to S⊕.
Now for any Banach space B of functions (ν, σ) ∈

R
(n−1)+1 with norm φ �→ |φ|B , denote by B+ the space

of functions f of (ν, ξ) ∈ R
n−1 × C, ξ = σ + ıρ, with the

following properties:

1) For each ρ ≤ 0, the functions fρ = f(·, · + ıρ) are in
B, and the map (−∞, 0] �→ B, ρ �→ fρ is continuous.

2) For each ν ∈ R
n−1, the functions fν = f(ν, ·) are

functions holomorphic in C−.
3) The norm supρ<0 |fρ|B is finite.

A space B− may be defined analogously, by changing the
sign of ρ in conditions 1 and 3, and changing C− for C+

in condition 2. Note that if f(s) ∈ B+ then F (−s) ∈ B−

and vice versa, provided that B is preserved by the same
operation.

Now we define

S+ :=
⋂

s,l

C
(s)+
(l) , (15)

L+ :=
⋂

s

⋃

l

C
(s)+
(l) (16)

Spaces S− and L− may be defined analogously, and again
if f(s) ∈ L+ then f(−s) ∈ L− and vice versa.

The interest in these spaces comes from the following
collection of points, from {[4]} (except where proof is given
in [4]):

Lemma 5: 1) L+ is closed under multiplication.
2) S+ is closed under multiplication by elements of L+,

and this multiplication rule is associative.
3) F(S+) = S+ and F(O′

+) = L+.
4) Let p be a polynomial. The equation

p(∂)y = u
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is uniquely solvable for y ∈ S ′
+ for any u ∈ S ′

+, if,
and only if, p has no roots in X+ = R

n−1 × C+.
5) The equation

p(∂)y = u

is uniquely solvable for y ∈ S ′
+ for any u ∈ S ′

+ if,
and only if, p has no roots in R

n−1 × C+.
6) Any polynomial p is in L+, and the function 1/p(ıζ)

of ζ is in L+ if, and only if, p has no roots in X+.

Clearly all the claims of Lemma 5 can be “time-reversed”
to give corresponding results for L−,S−,X− etc.

Claims 4 and 5 of Lemma 5 are our first input/output
stability results. Claim 4, for example, states that if the input
is both spatially and temporally rapidly decreasing (the first
condition being a reasonable prior assumption on physical
signals and the second meaning that it is “stable”), and
has zero past, then there exists a causal response with the
same properties, if, and only if, a certain condition (in fact
(CV)) holds on p. Moreover, by time-autonomy (which can
be assumed a-priori), there cannot be any different causal
system response, i.e. all causal responses are stable. Our main
goal in what follows will be to generalize this result to the
general system case.

B. Ideal Convexity

In order to generalize the results in the previous section
to systems, we will need certain properties of polynomials
with respect to the set X+ to extend to ideals.

Definition 6: We call a set S ⊆ C
n codimension

k−convex, k = 1, · · · , n, if for any codimension k prime
ideal J we have

V(J) ∩ S = ∅ ⇒ ∃ f ∈ J : V(f) ∩ S = ∅ (17)

We say that S is ideal-convex if property (17) holds for any
(not necessarily prime) ideal J.

The first of these properties was introduced in {[32]}, in
which it is shown that the closed unit polydisc is codimension
k−convex for all k. Codimension 1-convexity is trivial, since
any prime ideal of codimension 1 in C[s] is principal (it
must contain an irreducible polynomial and so must be
equal to the codimension 1 prime ideal generated by that
polynomial). It was also observed in {[32]} that if S is
codimension k−convex for k = 1, · · · , n, then S is ideal
convex; this essentially due to claim 2 of the following
simple but important result.

Theorem 3: Let S ⊆ C
n ‘be one of the sets:

ıRn,X+,X−. We‘have:

1) S is codimension n−convex.
2) If the minimal prime divisors of an ideal satisfy (17),

then the ideal itself also does.
3) For n = 2, S is ideal-convex.
An important open question is whether the sets S in the

preceding theorem are actually ideal-convex for all n. We
will see below that this question has major implications for
input/output stability.

VI. STABLE INPUT/OUTPUT STRUCTURES

Having finally done all the necessary groundwork, we can
now consider input/output stability. We consider this only for
input/output structures which are a priori causal (with respect
to C∞ or D′ according to the type of stability required); thus,
in particular, we assume that B0,y is time-autonomous.

Definition 7: Let B be a behaviour with associated in-
put/output structure (u, y), where B0,y is time-autonomous
and the input/output structure is causal. Call this i/o structure
stable (with respect to S (resp. S ′)) if for any u ∈ (S+)m

(resp. u ∈ (S+)m) and y ∈ (C∞
+ )p (resp. y ∈ (D′

+)p)
for which (u, y) ∈ B, we must have y ∈ (S+)p (resp.
y ∈ (S ′

+)p).
Thus, roughly speaking, an input/output structure is stable

if any causal output response to a stable input is itself
stable. Since it is reasonable to assume a priori that our
input/output structure is causal, the existence of a y ∈ (C∞

+ )p

corresponding to a u ∈ (S+)m is guaranteed. Moreover, if
B0,y is a priori time-autonomous this y is unique, and so
in this case the input/output structure is stable with respect
to S (resp. S ′) if, and only if, the variables u are free over
the signal space S (resp. S ′). Fortunately, using methods
analogous to those in the proof of Theorem 6.4 in [4], we
can now characterize freeness of variables over S+ using the
structure theory developed in the last section. The results for
S+ are, however, restricted to the special cases when n ≤ 2
or P is a single polynomial (i.e. there is a single system
equation), due to the difficulty of proving ideal-convexity
for n > 2, whereas those for S ′

+ give sufficient conditions
for freeness only.

Now we have the following result (Theorem 7.2 in [4]).
Theorem 4: Let

B := {(u, y) ∈ (D′)m+p | P (∂)y = Q(∂)u}

be a behaviour with given input/output structure, and transfer
matrix G. Suppose that either P is a single polynomial or
n ≤ 2. Then the following are equivalent.

1) The variables u are free over S+ in B.
2) kerS′

⊕
P ∗ ⊆ kerS′

⊕
Q∗.

3) There exists a polynomial r with no roots in X+, and
a polynomial matrix L, such that G = 1

r L.
4) B has no controllable poles in X+.
5) G(ıζ) ∈ (L+)p+m.
Remark 1: A topic for future research is to seek fur-

ther characterizations for a principal module, other than
computing its associated primes. This could well lead to
generalizations of Theorems 6.4 in [4] and 4 here with less
restrictive assumptions.

Let us consider the case of single polynomials in the
equivalent conditions 2 ≡ 3 ≡ 5 in Theorem 4; take q and
p 	= 0 rather than their adjoints for ease of notation. We
have that kerS′

⊕
p ⊆ kerS′

⊕
q if, and only if, p/gcd(p, q) has

no roots in X−, if, and only if, (q/p)(ıζ) ∈ L−. From this
we may define an action of L− on S ′

⊕ : given any u ∈ S ′
⊕

we can choose an arbitrary v ∈ S ′
⊕ with u = p(∂)v; this is

possible as S ′
⊕ is a divisible C[s]−module due to divisibility
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of S ′. Now y := q(∂)v ∈ S⊕′ is uniquely determined by
u, due to the condition kerS′

⊕
p ⊆ kerS′

⊕
q, and we have

p(∂)y = q(∂)u. We now give a generalization of claim 5
of Lemma 5, (stated as Corollary 7.3 in [4]) which gives
sufficient conditions for freeness of variables over S ′

+. We
suspect that these conditions are also necessary.

Lemma 6: Let

B := {(u, y) ∈ (D′)m+p | P (∂)y = Q(∂)u}

be a behaviour with given input/output structure, and transfer
matrix G, and suppose‘that the denominators of G have no
roots in R

n−1 × C+. Then the variables u are free over S ′
+

in B.
Note that the conditions of Corollary 6 are particularly met

when the equivalent conditions of Theorem 4 are satisfied.
One consequence of this corollary is that, when G is as
specified, given any input u which is a Dirac delta in one
component and zero in the others (and so in (S ′

+)m), there
is a corresponding causal output in (S ′

+)p. If we assume
time-autonomy of B0,y, then these causal outputs are unique,
and we may collect them into a matrix called the impulse
response matrix Himp. When G is further stable, the input-
to-output map over S+, which exists due to Theorem 4,
is then given by applying Himp as a convolution operator.
However, as shown in the proof 5 ⇒ 1 of Theorem 4, it
can also be given by Fourier transformation, multiplication
by G(ıζ), and inverse Fourier transformation. Thus Himp is
indeed the inverse Fourier transform of the transfer matrix
G. Moreover, by Lemma 5 we have L+ = F(O′

+), so we
have Himp ∈ (O′

+)p×m.
Our next result shows that, as for causality, when stability

with respect to S of an input/output structure is defined,
it is characterized purely in terms of the transfer matrix.
This result is however restricted to the cases n ≤ 2 or P is
a single polynomial. For the case of stability with respect
to S ′, no such restriction is needed, but only a sufficient
condition is obtained.

Theorem 5: Let B be a behaviour with a given in-
put/output structure (u, y) such that B0,y is time-autonomous,
and associated transfer matrix G. If G is weakly stable, then
(u, y) is causal with respect to D′ and stable with respect to
S ′. Moreover, suppose that either n ≤ 2 or B0,y is defined by
a single polynomial. Then (u, y) is both causal with respect
to C∞, and stable with respect to S, if, and only if, G is
stable, or equivalently, if, and only if, G(ıζ) ∈ (L+)p×m.

Note that Theorem 5 effectively states that an input/output
structure is both causal and stable (with respect to C∞ and
S respectively) if, and only if, the zero-input behaviour
(Bc)0,y of the controllable part satisfies (CV ), i.e. if, and
only if, B has no controllable unstable poles. It is pleas-
ing that input/output stability is determined by the poles
of the system, as in the 1D case, and that the condition
for input/output stability is precisely that which has been
proposed for stability of the autonomous behaviour (Bc)0,y.
Also, observe that stability with respect to S is stronger than
stability with respect to S ′.

Whilst we have taken time-autonomy as a prior condition
for the definition of causal and therefore stable (with respect
to S, input/output structures, it is in fact a consequence of
these two properties. For if y ∈ B0,y has support in R

n
+,

then by stability (0 being a stable input!), y ∈ (S+)p ⊆ Sp.
If P is a kernel matrix representation matrix of B0,y, then
it has a non-zero highest order minor r, and now we find
that r(∂)y = 0, which as y ∈ S necessitates y = 0 (e.g. by
taking Fourier transforms). Thus B0,y is time-autonomous.

As is the case for causality, Theorem 5 in particular im-
plies that stability is determined by the properties of a single
polynomial d, the least common denominator of the transfer
matrix. To ascertain stability of the input/output structure
with respect to S, we need only test whether d obeys the
condition (CV), i.e. whether the roots of d intersect the set
X+. This test amounts to checking whether a set of real
algebraic equations and inequalities has a solution, and so
may be solved by quantifier elimination theory (e.g. {[1]}).
An important open question is whether a simpler algorithm
may be developed, making special use of the structure of
X+.

VII. CONCLUSIONS
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