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Abstract— In many practical problems, the primary con-
trolled variable is not available for feedback and is needed to be
controlled indirectly using secondary measurements. We derive
bounds on the H2 and H∞ optimal achievable performance for
systems under indirect control, which have all scalar signals.
These bounds are useful for gaining insights into the factors
posing limitations on the achievable performance. As compared
to direct control, the unstable poles can severely limit the control
quality for indirect control. The limiting effect of the unstable
poles can be reduced using an additional feedforward controller,
when the disturbance is measurable.

I. INTRODUCTION

During the past two decades, a number of algorithms

have been proposed for optimal controller design. Before

the controller is designed, it is beneficial for an engineer

to ascertain whether the process is controllable or in other

words, whether it is possible to satisfy the desired perfor-

mance objectives. Clearly, it is impossible to meet arbitrary

performance objectives, as Skogestad and Postlethwaite [1]

have remarked, “even the best control system cannot make

a Ferrari out of a Volkswagen.”

The controller design always involves trade-offs between

various competing objectives. Then, the controllability anal-

ysis is useful for finding where the effect of the limiting

factors can be accommodated easily through appropriate

modification of performance requirements. In some cases,

the controllability analysis can also suggest process design

changes leading to easier operation of the plant; see e.g.
pH-control process in [1], [2]. Through some real-life ap-

plication examples, Stein [3] highlighted the importance of

understanding what a controller can or cannot do over purely

numerical control design algorithms.

A key step in controllability analysis is to assess whether

there exists a stabilizing controller that makes the various

sensitivity functions along the closed-loop system sufficiently

small. When the existence of such a controller is established,

it is ensured that the effect of the disturbances on the

various signals can be minimized. For this purpose, Chen [4]

provides the achievable values for the weighted sensitivity

and complementary sensitivity functions. Kariwala et al. [5]

obtained the minimal achievable value of the closed-loop

transfer matrix from the disturbances to the control signals or

inputs. For an overview of the available results on controlla-

bility analysis and fundamental performance limitations, the

reader is referred to [1], [6] and [7].

Though useful, the applicability of the available bounds

on various closed-loop sensitivity functions is limited to the

cases, where the performance is measured in terms of the

sensed outputs or control signals. In many practical problems

of interest, the primary controlled variables are not measured

or are not suitable for feedback due to various reasons, e.g.
infrequent availability. For example, in process industries, it

is required that the effect of disturbances on the composition

variables be minimized. These composition variables are

often not measured on-line and are controlled indirectly

using secondary measurements, e.g. tray temperatures for

distillation columns. Freudenberg et al. [8] provide some

other practical examples, where indirect control is necessary.

In this paper, we consider the fundamentals performance

limitations of systems under indirect control. Note that

disturbance rejection using indirect control is the same as

the generalized control problem. The fundamental limitations

of feedback control in the generalized control framework

has been studied earlier by Freudenberg et al. [8], who

obtained many useful results including the Bode and Poisson

type integral relationships. Here, we focus on finding the

achievable bounds on the closed-loop transfer function from

the disturbances to the primary controlled variables (d and

z, respectively in Figure 1) in the H2 and H∞ control

frameworks. These bounds characterize the effects of un-

stable poles and zeros on the quality of disturbance rejection

and complement the results in [8]. We also show that as

compared to direct control, the unstable poles can severely

limit the achievable performance for indirect control. The

limiting effect of the unstable poles can be reduced by using

a feedforward controller in additional to the feedback con-

troller (two degrees of freedom), whenever the disturbance

is measurable. As an offset, the proposed bounds unify the

available bounds on various closed-loop sensitivity functions.

We only consider cases where all signals in the system

are scalar, however, the results can be easily extended to

multivariable systems through additional consideration of

directions of unstable poles and zeros.

II. PROBLEM FORMULATION

For a given matrix A ∈ Cm×n, AH denotes the complex

conjugate transpose, σ̄(A) denotes the maximum singular

value and for A ∈ Cm×m, ρ(A) is the spectral radius. We call

a square matrix A a positive definite matrix (denoted as A �
0) if all the eigenvalues of its hermitian part (A + AH) are

positive. Positive semi-definite matrices are defined similarly

and are denoted as A � 0. For a transfer function G(s), z is

called a zero of G(s), if G(z) = 0. Similarly, p is called a
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Fig. 1. Closed-loop system under indirect control

pole of G(s), if G−1(p) = 0. G(s) is considered stable, if it

does not have any pole in the right half of the complex plane

including imaginary axis. The H∞ norm of stable G(s) is

‖G(s)‖∞ = sup
Re(s)>0

|G(s)| = sup
ω∈R

|G(jω)|

The H2 norm of stable and strictly proper G(s) is

‖G(s)‖2
2 =

1
2π

∫ ∞

−∞
|G(jω)|2dω

Let (A,B,C, 0) be the state space realization of G(s).
Then, ‖G(s)‖2

2 = CXCH , where X is the controllability

gramian that solves the following Lyapunov equation (see,

for example [1])

AHX + XA + BBH = 0

In the following discussion, we drop the argument s for

notational simplicity, i.e. G(s) is represented as G. G(i)

denotes the ith derivative of G with respect to the complex

variable s, i.e. G(i) = diG
dsi and G(0) = G.

With these preliminaries, consider the closed-loop system

shown in Figure 1, where z is the primary controlled variable,

and y is the secondary variable (measurement) available for

indirect control. The model is

z = Gu + Gdd

y = Gyu + Gdyd

and u = −Ky. Define the sensitivity function Sy = (I +
GyK)−1. Then,

z = (Gd − GKSyGdy)︸ ︷︷ ︸
Tzd

d

Define the transfer function from [d u]T to [z y]T

G̃ =
[

Gd G
Gdy Gy

]
(1)

Then, Tzd in (1) can also be obtained as a lower linear

fractional transformation of G̃ in (1) with K.

In the remaining discussion in this paper, we aim at

gaining insight into the limitations on the minimal achievable

value of ‖Tzd‖i, i = 2,∞ due to unstable poles and zeros of

the system. In general, one may instead want to characterize

the achievable value of ‖WpTzd‖i, where Wp is a frequency

dependent weight. The results presented here can easily be

extended to handle this case through appropriate choices of

Gd and G.

Assumption 1: We make the following assumptions

throughout this paper:

(a) The system is stabilizable, which requires that all

unstable poles of G̃ are also poles of Gy .

(b) All signals in the system are scalar.

(c) Gd is stable.

We note that in some cases, the assumption of stable

Gd can be limiting, for example, when the disturbances

enter through the input channels such that Gd = G, but

it simplifies the analysis considerably. To analyze the effect

of unstable or right half plane (RHP) poles and zeros on the

achievable performance, we need the following notation:

αi - RHP zeros of G, i.e. G(αi) = 0, i = 1, · · · , nα.

βi - RHP zeros of Gdy , i.e. Gdy(βi) = 0, i = 1, · · · , nβ .

γi - RHP poles of Gy that are also RHP poles of G,

i.e. G−1
y (γi) = G−1

2 (γi) = 0; G−1
dy (γi) �= 0, i =

1, · · · , nγ .

δi - RHP poles of Gy that are also RHP poles of Gdy, i.e.
G−1

y (δi) = G−1
dy (δi) = 0; G−1(δi) �= 0, i = 1, · · · , nδ .

εi - Additional RHP poles of Gy , i.e. G−1
y (εi) = 0;

G−1(εi) �= 0 and G−1
dy (εi) �= 0, i = 1, · · · , nε.

In general, Gy can have RHP poles that are also RHP

poles of both G and Gdy. For the system to be stabilizable,

Gy must have these poles with multiplicity of at least 2.

Then, this case can be treated by appropriately partitioning

these poles among γi, δi and εi. For future reference, we

also define the Blaschke product Bγ as,

Bγ =
nγ∏
i=1

(s − γi)
(s + γ̄i)

and, Bδ and Bε are defined similarly. Here, Gs represents

the stable version of G defined as Gs = BγG.

III. INTERPOLATION CONSTRAINTS

In this section, we derive some interpolation constraints,

when the system is controlled indirectly. These constraints

subsequently limit the achievable performance of the system.

We recall that similar constraints for the sensitivity and com-

plementary sensitivity functions were derived by Zames [9].

Proposition 1: For internal stability, Tzd must satisfy the

following interpolation constraints:

Tzd(αi) = Gd(αi) (2)

Tzd(βi) = Gd(βi) (3)

Tzd(γi) = Gd(γi) − GsG
−1
y,s1Gdy(γi) (4)

Tzd(δi) = Gd(δi) − GG−1
y,s2Gdy,s(δi) (5)

Tzd(εi) = Gd(εi) (6)
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where Gs = BγG,Gy,s1 = BγGy, Gy,s2 = BδGy and

Gdy,s = BδGdy.

Proof: The proofs of (2) and (3) follows from the

definition of Tzd. For (4), first note that Sy(γi) = 0 and

thus GyKSy(γi) = 1 − Sy(γi) = 1. Since Gy = B−1
γ Gy,s1,

B−1
γ Gs︸ ︷︷ ︸

G

KSy(γi) = GsG
−1
y,s1(γi)

and Tzd(γi) = Gd(γi) − GsG
−1
y,s1Gdy(γi). The proof of (5)

is similar and thus omitted. For (6), note that Sy(εi) = 0 and

thus GKSyGdy(εi) = 0, which implies (6).

The interpolation constraints (2)-(6) were earlier derived

by Freudenberg et al. [8] using an alternate approach. Each

of (2)-(6) implies limitations on the achievable value of

‖Tzd‖∞. For example, using maximum modulus principle,

‖Tzd‖∞ ≥ max
i

|Gd(αi)| (7)

Thus, whenever G or Gdy have RHP zeros, ‖Tzd‖∞
cannot be reduced arbitrarily, unless |Gd(αi)| = 0, i.e. if

Gd also contains the RHP-zero. When we have interpolation

constraints other than (2), similar lower bounds on ‖Tzd‖∞
can be derived. In this case, however, the bound can be loose,

as only one constraint is considered at a time. We derive

results that consider the effects of the different interpolation

constraints together later in this paper.

Note that (4)-(6) can be collectively stated as

Tzd(p) = lim
s→p

det(G̃)
Gy

(8)

where is p an unstable pole of G̃ in (1). Then, similar to (7),

it follows that whenever Gy has RHP poles, ‖Tzd‖∞ > 0,

unless G̃ has a transmission zero at the same location as the

RHP poles of Gy. We point out that when G̃ has transmission

zeros at the same location as the RHP poles of Gy , though

these constraints may not pose limitations individually, they

can be limiting when combined with other constraints.

Remark 1: RHP zeros of Gy alone do not pose any

fundamental limitation on Tzd, however, with RHP poles,

they can be limiting, as one may expect. This is clear from

(4), where Gy,s is small and thus G−1
y,s is large, when RHP

zeros of Gy nearly cancel the RHP poles.

It may seem from (6) that the limitations due to the

unstable poles of Gy , which are not shared with G or Gdy ,

is the same as RHP zeros of G and Gdy. This is clearly not

true as when Gd(αi) = 0, a zero controller K = 0 provides

Tzd = 0. On the other hand, whenever the system has

unstable poles, K = 0 is not stabilizing and thus ‖Tzd‖i > 0,

i = 2,∞. Next, we show that these poles also pose a

constraint on the derivative of Tzd.

Proposition 2: For internal stability, T
(1)
zd must satisfy the

following interpolation constraints:

T
(1)
zd (εi) = G

(1)
d (εi)

−
⎛
⎝ 1

2Re(εi)

nε∏
i=1,i �=j

εi − εj

εi + ε̄j

⎞
⎠GG−1

y,sGdy(εi) (9)

where Gy,s = BεG.

Proof: Note that Tzd can be alternatively be written as,

Tzd = Gd − BεGG−1
y,s(I − Sy)Gdy

and thus

T
(1)
zd = G

(1)
d − B(1)

ε GG−1
y,s(I − Sy)Gdy

− Bε

(
GG−1

y,s(I − Sy)Gdy

)(1)
(10)

It can be easily verified that

B(1)
ε =

nε∑
i=1

⎛
⎝ 2Re(εi)

(s + ε̄i)2

nε∏
i=1,i �=j

s − εj

s + ε̄j

⎞
⎠

Note that (GG−1
y,s(I − Sy)Gdy)(1)(εi) is finite. The result

follows by substituting for B(1)
ε in (10) and evaluating the

resulting expression at εi.

Proposition 1 indicates that the limitations due to RHP

poles of Gy that are not shared with G or Gdy is more severe

than those that are shared. For these poles, ‖Tzd‖∞ > 0,

even when G̃ has a transmission zero at the same location.

We point out that T
(i)
zd , i ≥ 2 is dependent on the controller.

To illustrate the limitation due to the derivative con-

straint (9), we consider that Gd = 0, G = Gdy = 1, which

implies that Tzd = KSy . Havre and Skogestad [10] have

shown that ‖KSy‖∞ ≥ |G−1
y,s(εi)|, where Gy,s = BεGy . The

interpolation constraint (6) only requires that KSy(εi) = 0.

For simplicity, consider that Gy has a single real unstable

pole at ε. Then, the derivative constraint (9) requires that

(KSy)i(ε) = (1/2ε)G−1
y,s(ε). All rational stable functions

that satisfy KSy(ε) = 0 can be represented as

H =
(s − ε)
(s + ε)

q

where q is a rational stable function. After some simple

manipulations, it can be shown the derivative constraint

implies that q(ε) = G−1
y,s(ε), which requires that ‖KSy‖∞ ≥

|G−1
y,s(ε)|.

IV. ACHIEVABLE H∞ PERFORMANCE

In this section, we use the Nevanlinna-Pick interpolation

theory [11] to derive the achievable bound on ‖Tzd‖∞. This

well-known approach was used extensively for obtaining ear-

lier solutions of the H∞ control problem; see e.g. [12]. It has

earlier been used in [4], [13] for quantification of achievable

bounds of sensitivity and complementary sensitivity func-

tions. We begin the discussion by recalling the necessary and

sufficient condition that guarantees the existence of rational

analytic functions satisfying the interpolation constraints,

f (i)(sk)
i!

= wk,i; k = 1 · · ·n, i = 1, · · · ,mk (11)

where sk are distinct points in open RHP and Re(f(jω)) > 0
for all ω ∈ R.

Lemma 1: There exists a rational analytic function f(s)
with ‖f(s)‖∞ ≤ 1 that satisfies (11), if and only if the

corresponding Pick matrix defined as

P = E − WEWH
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is positive semi-definite, P � 0 [11]. Here

W = diag(Wk); Wk =

⎡
⎢⎢⎢⎣

wk,0 0 · · · 0
wk,1 wk,0 · · · 0

...
. . . · · · 0

wk,mk
· · · · · · wk,0

⎤
⎥⎥⎥⎦

and E is the positive definite solution to the following

Lyapunov equation,

AE + EAH = bbT

where

A = diag(Ak); Ak =

⎡
⎢⎢⎢⎣

sk

1 sk

. . .
. . .

1 sk

⎤
⎥⎥⎥⎦

where Ak is a mk × mk dimensional matrix and b =
[b1 · · · bn]T . Here, bj is an mk dimensional row vector with

bj = [1 0 · · · 0].
To derive the bound on ‖Tzd‖∞, as a shorthand notation,

we denote

v = [α β γ δ]

where v is nv = (nα + nβ + nγ + nδ) dimensional vector.

Define

Y =
[

X Z
ZH Q

]
(12)

where

X = [Xij ] ; Xij =

⎡
⎣ 1

(εi+ε̄j)
−1

(εi+ε̄j)2−1
(εi+ε̄j)2

2
(εi+ε̄j)3

⎤
⎦

Z = [Zik] ; Zik =

⎡
⎣ 1

(εi+v̄k)
−1

(εi+v̄k)2

⎤
⎦

Q =
[

1
vk + v̄�

]
where X,Z and Q are 2nε × 2nε, 2nε × nv and nv × nv

dimensional matrices, respectively. Further, define

F =
[

diag(Ri) 0
0 diag(Tzd(v))

]
(13)

where

Ri =
[

Tzd(εi) 0
T 1

zd(εi) Tzd(εi)

]
; i = 1, · · · , nε

Here, Tzd(v) is given by (2)-(5), Tzd(ε) by (6) and T 1
zd(ε)

by (9). The next proposition characterizes the achievable

value of ‖Tzd‖∞.

Proposition 3: Assume that the unstable poles of G̃ and

the unstable zeros of G and Gdy do not lie on the imaginary

axis including infinity. If these unstable poles and zeros are

non-repeated,

inf
K

‖Tzd‖∞ = σ̄(Y −0.5FY 0.5) (14)

where Y and F are defined by (12) and (13), respectively.

Proof: Define H = (1/γ) · Tzd. It follows that for

internal stability, H must satisfy the following interpolation

constraints,

H(vi) =
1
γ

Tzd(vi); H(εj) =
1
γ

Tzd(εj); H1(εj) =
1
γ

T 1
zd(εj) (15)

where i = 1, · · ·nv and j = 1, · · · , nε. Let

A =
[

diag(Ci) 0
0 diag(v)

]
where

Ci =
[

εi 0
1 εi

]
; i = 1, · · · , nε

After some lengthy but simple algebraic manipulations, it

can be verified that Y in (12) solves the following Lyapunov

equation

AY + Y AH = bbT

where b is defined similar to Lemma 1. Based on Lemma 1,

there exists analytic H with ‖H‖∞ ≤ 1 that satisfies

constraints (15), if and only if

Y − 1
γ2

FY FH � 0 (16)

Since Y � 0, Y can be written as, Y = Y 0.5(Y 0.5)H and

(16) is equivalent to

I − 1
γ2

Y −0.5FY FH(Y −0.5)H � 0

which implies

γ2 ≥ ρ
(
Y −0.5FY 0.5(Y −0.5FY 0.5)H

)
γ ≥ σ̄(Y −0.5FY 0.5)

Since σ̄(Y −0.5FY 0.5) is the least achievable value of γ,

the equality follows.

The equality in Proposition 3 implies that there exists

(possibly improper) controller such that the bound given by

(14) is achieved. Proposition 3 effectively unifies the avail-

able achievable bounds on the sensitivity and complementary

functions and also KS.

Based on Proposition 3, it follows that it is possible to have

‖Tzd‖∞ = 0 (perfect disturbance rejection), if and only if

1) G and Gdy have no RHP zeros or Gd evaluated at

these RHP zeros is zero and

2) G and Gdy have no RHP poles or these RHP poles are

also transmission zeros of G̃ and

3) Gy has no RHP poles by itself (not shared with G or

Gdy).

We notice that the notation leading to Proposition 3 is very

messy. The following Corollary provides a lower bound on

‖Tzd‖∞, which is simpler to interpret and is more insightful.

Corollary 1: Under the same conditions as Proposition 3,

inf
K

‖Tzd‖∞ ≥ σ̄(Q−0.5
1 F1Q

0.5
1 ) (17)
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where

Q1 =
[

Q 0
0 Qε

]
; Qε =

[
1

εi + ε̄j

]
(18)

F1 =
[

diag(Tzd(v)) 0
0 diag(Tzd(ε))

]

Corollary 1 can be shown to be true by ignoring the

derivative constraints and following the same procedure as

in the proof of Proposition 3. Corollary 1 also follows from

(14) directly, as the maximum singular value of a submatrix

is always lower than that of the matrix itself. The bound (17)

is tight when the the set ε is empty.

Chen [4] provides the achievable bound for the case, when

the system is controlled “directly”, i.e. y = z (G = Gy

and Gd = Gdy). For direct control, the closed-loop transfer

function from d to z is (I + GK)−1Gd = SGd. Clearly,

SGd(αi) = Gd(αi) and SGd(γi) = 0. Based on these

interpolation constraints and comparison of (17) with the

results in [4], we note that there are no additional limitations

on the achievable performance due to the RHP zeros of G (at

least for stable systems), however, the RHP poles of G can

be very limiting. This justifies the widespread use of indirect

control strategy in process industries, which are usually

stable. Note that for indirect control, the RHP zeros of Gdy

can still pose limitations. For indirect control, the most severe

additional limitation arises due to the RHP poles of Gy that

are not shared with G. This is expected as additional control

effort is required for stabilization. These observations are

further illustrated using the following numerical example.

Example 1: To compare the fundamental performance

limitations of direct and indirect control, we consider the

following simple system,

G =
(s − 1)
(s + p1)

Gy =
1

(s + p1)(s + p2)
Gd =

1
s + 1

(19)

and Gdy = 1. When, p1, p2 > 0, Gd(1) = 0.5, which is

the achievable value for ‖Tzd‖∞ and also ‖SGd‖∞. For the

case, when p1 < 0 and p2 > 0, indirect control can be very

limiting. For example, for p1 = −2 and p2 = 3, Corollary

1 implies that the achievable value of ‖Tzd‖∞ is 15.348,

where as the corresponding value for direct control is only

1.5. Thus, the unstable pole of G poses 10 fold limitation

on the control quality in indirect control as compared to

direct control for this example. Further, when p2 = −3, the

limitations become more severe, as the achievable value of

‖Tzd‖∞ is 51.95.

V. ACHIEVABLE H2 PERFORMANCE

We extend the results of the previous section to cases,

where the achievable value of ‖Tzd‖2 is of interest. Usu-

ally, the interpolation constraints are used for analyzing the

achievable H∞ optimal performance; see e.g. [4], [10]. The

results in this section show that similar limitations exist on

the achievable H2 optimal performance, as one may expect.

The next proposition illustrates the effect of RHP poles and

zeros on the achievable value of ‖Tzd‖2.

Proposition 4: Under the same conditions as Proposi-

tion 3,

inf
K

‖Tzd‖2
2 ≥ [Tzd(v) Tzd(ε)] Q−T

1 [Tzd(v) Tzd(ε)]
H

(20)

where Q1 is given by (18).

Proof: To prove (20), we first parameterize the set of ra-

tional stable systems that satisfy interpolation constraints (2)-

(6) followed by the use of model matching theory. For ease

of notation, define t = [v ε] and

Bt =
nv+nε∏

i=1

(s − ti)
(s + t̄i)

; Bj
t =

nv+nε∏
i=1,i �=j

(s − ti)
(s + t̄i)

(21)

Then, one possible parametrization of all rational stable

functions that satisfy the interpolation constraints (2)-(6) is,

H =
nv+nε∑

i=1

Bi
t[Bi

t(ti)]
−1Tzd(ti) + Btq

= Bt

(
nv+nε∑

i=1

(s + t̄i)
(s − ti)

[Bi
t(ti)]

−1Tzd(ti) + q

)

where q is a rational stable transfer function and is free to

choose. Since Bt is all pass

‖H‖2
2 =

∥∥∥∥∥
nv+nε∑

i=1

(s + t̄i)
(s − ti)

[Bi
t(ti)]

−1Tzd(ti) + q

∥∥∥∥∥
2

2

Defining L =
∑nv+nε

i=1
2Re(ti)
(s−ti)

[Bi
t(ti)]

−1Tzd(ti),

‖H‖2
2 =

∥∥∥∥∥L +
nv+nε∑

i=1

[Bj
i (ti)]

−1Tzd(ti) + q

∥∥∥∥∥
2

2

(22)

Since L ∈ RH⊥
2 , the contribution of the second term in

(22) can be negated by appropriate choice of q and

inf
q
‖H‖2

2 = ‖LH‖2
2

A state-space realization of L is given as L ↔ (A,B, C,D),
where

A = diag(ti); B =
[
2Re(ti)[Bi

t(ti)]
−1Tzd(ti)

]T

C = 1nv+nε ; D = 0

where 1nv+nε is an (nv +nε) dimensional vector of 1’s. The

observability gramian for LH with the above realization is

given as, X = diag(Bi)Q1diag(Bi)H [5] and thus ‖LH‖2
2 =

BQ1B
H . By expanding the expression for ‖LH‖2

2,

‖LH‖2
2 = Tzd(t) · diag(2Re(ti)Bi

t(ti)) · Q1 ·
diag(2Re(ti)Bi

t(ti))
H · Tzd(t)H

The result follows by noting that diag(2Re(ti)Bi
t(ti)) · Q1 ·

diag(2Re(ti)Bi
t(ti))

H = Q−T
1 [5].

In Proposition 4, we have neglected the effect of deriva-

tive constraints (9), as this makes the resulting expressions

complex and it is difficult to gain any insight. Then (20)

provides a lower bound on the achievable value of ‖Tzd‖2,

which is tight for the case where the set ε is empty. Further,
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the lower bound on ‖Tzd‖∞ can be alternatively derived

using the approach taken in the proof of Proposition 4,

i.e. parametrization of all rational stable functions satisfying

the interpolation constraints (2)-(6) followed by use of the

Nehari extension theorem [12].

The limitations on the achievable value of ‖Tzd‖2 due to

unstable poles and zeros is similar as ‖Tzd‖∞. For the system

in (19), when p1, p2 > 0 or Gy is stable, the achievable

performance for the direct and indirect are the same and

infK ‖Tzd‖2 = 0.707. When p1 = −2, p2 = 3 such that G
shares the unstable pole of Gy , the achievable H2 optimal

performance for direct control is 2.123. On the other hand,

infK ‖Tzd‖2 is much larger for indirect control, where based

on Proposition 4, we find that infK ‖Tzd‖2 = 30.008. This

observation emphasizes that for stable systems, there is no

additional fundamental limitation in using indirect control.

VI. FEEDBACK + FEEDFORWARD CONTROL

We note from Example 1 that the performance of unstable

systems under indirect control can be severely limited as

compared to direct control. In this section, we show that

some of these limitations can be overcome, when the distur-

bances are measurable. For example, in distillation columns,

one of primary disturbance variables is feed flow rate,

which can be used to improve the quality of control using

feedforward control. We consider that the the disturbance is

measurable after being filtered through M , which shares its

unstable poles with Gy . Then, the control law is given as,

u = −K1y + K2Md (23)

where K1 is the feedback and K2 is the feedforward con-

troller. Using (23), the closed-loop transfer function from d
to z is

T̃zd = Tzd + GSyK2M (24)

Comparing T̃zd with Tzd, we observe that:

1) The interpolation constraint (2) due to the RHP zeros

of G also applies to T̃zd. However, T̃zd(βi) depends

on K2, unless M also has RHP zeros at βi.

2) T̃zd(γi) and T̃zd(δj) also depend on K2.

3) The RHP poles of Gy that are not shared with G
and Gdy pose interpolation constraints similar to (6),

however T̃ 1
zd(εi) depends on K2.

In summary, the feedforward controller always overcomes

the limitations due to the unstable poles of G and Gdy and

also partially due to the RHP poles of Gy that are not shared

with G and Gdy. In the context of direct control, similar

conclusions have been drawn by Havre and Skogestad [10].

In the absence of the derivative constraint, tight bounds on

the achievable value of ‖T̃zd‖i can be derived, similar to

Corollary 1 for i = ∞ and Proposition 4 for i = 2.

Example 2: We revisit Example 1, where the unstable

poles of G and Gy posed severe limitations on the achievable

value of ‖T̃zd‖∞, as compared to direct control, with (M =
1). When the disturbance can be measured, the poles of

G do not pose any limitations. Thus infK ‖T̃zd‖∞ = 0.5
for p1 = −2, p2 = 3, which is the same as achievable

for the stable system (p1, p2 > 0) without feedforward

control. Similarly, when p2 = −3 the lack of the derivative

constraint for feedback + feedforward control, drastically

reduces the achievable value of ‖T̃zd‖∞ from 51.95 to 0.683.

For comparison, we determine that for direct feedback +

feedforward control, the achievable value of H∞ optimal

control is 0.5 for all cases.

VII. CONCLUSIONS

We studied the achievable performance for systems under

indirect control, where all the signals in the system are

scalar. It is shown that in addition to the regular interpolation

constraints, the derivative of closed-loop transfer function is

also fixed at the unstable poles not observable in the primary

controlled variable. We proposed bounds on the achievable

performance, which is tight in the H∞ control framework,

and also in the H2 control framework, except when some of

the unstable poles are observable only in the transfer function

from the input to the secondary controlled variable.

A surprising result is that for stable systems, RHP-zeros

of G do not pose any additional limitations on the achievable

performance, as compared to direct control. For unstable

systems, however, systems under indirect control can have

severe limitations. When the disturbance is measurable, an

additional feedforward controller can overcome the limiting

effect of unstable poles observable in the primary controlled

variable.
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