
Optimal Dynamic Bit Assignment in Second-order Noise-free Quantized
Linear Control Systems

Qiang Ling and Michael D. Lemmon

Abstract—This paper introduces a dynamic bit assignment
policy (DBAP) for second-order quantized feedback control
systems without process or measurement noise. The proposed
DBAP is a constant bit rate policy based on a similar policy
analyzed in [1]. We prove that the new policy is optimal
for diagonalizable systems in the sense of minimizing the
summed square quantization error subject to a fixed number
of quantization bits.

I. INTRODUCTION

Consider the following discrete-time system,

x[k + 1] = Ax[k] + Bu[k] (1)

u[k] = Fxq[k]

where x[k] ∈ �2 is the system state at time k, xq[k] ∈
�2 is a quantized version of that state, u[k] ∈ �m is the

control at time k and A, B, and F are real-valued matrices of
appropriate dimension. With regard to the preceding system,

we make the following assumptions:

1) (A, B) is controllable and F is a stabilizing state

feedback gain matrix.

2) A is diagonalizable and for simplicity we assume A =
diag(λ1, λ2) where λi > 1 for i = 1, 2.

3) At every time step the system state, x[k] is quantized
into Q bits (fixed length coding) to generate the

quantized state, xq[k].

The policy used in generating the quantized state xq[k] is
called a quantization policy.
This paper asks and answers the following question; what
is the optimal “performance” achievable under a fixed
number of quantization bits?. In this paper the constant
bit rate policy is characterized by the number of bits bi[k]
assigned at time k to represent the ith component of the
state vector x[k]. We measure performance with respect to
the summed square quantization error over a finite horizon

of N steps,

PN = sup
x[0]∈xq[0]+U [0]

N∑
k=1

(|e1[k]|2 + |e2[k]|2) (2)

where U [0] ⊂ �n is a bounded set centered at the origin,

ei[k] is the ith component of the quantization error vector
e[k] = x[k] − xq [k] and the supremum is taken over all
possible initial states x[0]. This paper constructs a quantiza-
tion policy, named dynamic bit assignment policy (DBAP),
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which minimizes the performance measure PN subject to a

fixed number of quantization bits, Q. All proofs are in the
appendix.

II. BACKGROUND

We may categorize quantization policies as either being

memoryless or having memory. Memoryless policies map
each bit to a specific subset of the state space such that the

assignment is fixed for all time. The attraction of memoryless

policies is the simplicity of their coding/decoding schemes.

The main drawback of memoryless policies is that they

require an infinite number of quantization bits to ensure

asymptotic stability [2]. Elia and Mitter [3] derived the

lowest quantization density for asymptotic stability with an

infinite number of quantization bits. But with only a finite

number of quantization bits, the best we can guarantee is

ultimate boundedness of the state [4] [5] [6].

Quantization policies with memory (so-called dynamic
quantization policies) have been shown to achieve asymptotic
stability with a finite number of quantization bits [7]. These

policies generate a sequence, {P [k]}, of uncertainty sets.
It is presumed that x[k] lies inside the set P [k] at time k.
The next uncertainty set is generated by first partitioning

P [k] into M smaller rectangles which we denote as Pi[k]
for i = 1, . . . , M . If x[k] lies in the set Pj [k], then the index
j is transmitted to the decoder and this set is propagated
through the plant’s dynamics to obtain the next uncertainty

set P [k + 1]. If this sequence of uncertainty sets converges
to 0, then the system is asymptotically stable. Brockett and
Liberzon [7] established sufficient conditions for asymptotic

stability that were later tightened in [8].

The work in [7] was significantly extended by Tatikonda

in [9] [10]. This work established necessary and sufficient

conditions on general linear systems that characterize the

minimum number of quantization bits required for asymp-

totic stability under time-varying bit rates. Related work

was published in [11] for diagonalizable systems. Similar

bounds on the minimumm number of quantization bits were

also established in [12] for general linear systems in the

stochastic sense. The aforementioned quantization policies

presume time-varying bit rates, which are not desirable in

real networks due to power and bandwidth inefficiency [13].

A necessary and sufficient condition for asymptotic stability

under constant bit rates was established in [1].

The proofs in all of the aforecited works use constructive

methods to guarantee asymptotic convergence of the noise-

free quantized linear system. By constructive, we mean that

these proofs construct a specific dynamic quantization policy
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that achieves the specified quantization bound. These policies

vary considerably in their bit assignment policies. Let Q
denote the number of bits to be assigned and let bi[k] denote
the number of bits that a quantization policy uses to encode

the ith commponent of the state x[k]. There are a number
of bit assignment policies in the open literature that we refer

to as being either static, periodic, switching or dynamic.
Static bit assignment policies choose bi[k] = bi (i = 1, 2).
It is proven [9] [10] that limk→∞ Li[k] = 0 (Li[k] is an
upper bound of the quantization error ei[k]) if and only
if bi > log2(λi) (i = 1, 2) where λi are the unstable

eigenvalues of a noise-free system. A special static policy

with b1[k] = b2[k] = b is considered in [7] [8]. Periodic bit
assignment policies choose bi[k] such that bi[k] = bi[k+ lT ]
for all integers k and l where T is the period. The average bit
rate for such policies is defined as bi = 1

T

∑T−1
k=0 bi[k] and

in [10] it is shown that bi can approach log2(λi) arbitrarily
closely thereby ensuring that Li[k] converges exponentially
to 0. A periodic policy for output quantization is considered
in [14].

Switching bit assignment policies assign all Q bits to either
b1[k] or b2[k] depending upon P [k][1]. It is proven in [1] that
Li[k] converges exponentially to zero if and only if Q >∑2

i=1 log2(λi).
While all of the above bit assignment strategies ensure

asymptotic stability, these strategies are not equal. These

policies differ in their convergence rates and ultimately in the

performance they exhibit. This then brings us to the problem

considered in this paper; namely “What bit assignment policy
assures asymptotic stability while optimizing some specified
measure of the control system’s performance?”. The main
result in this paper shows that a variation on the dynamic bit

assignment policy used in [1] is indeed optimal in the sense

of minimizing the summed square quantization error.

III. DYNAMIC BIT ASSIGNMENT POLICY

This paper studies a quantized feedback control system,

which is shown in figure 1. The plant is a discrete-time linear
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Fig. 1. Quantized feedback control system

system whose state equations are shown in equation 1. The

state x[k] ∈ �n is quantized and encoded into a symbol

s[k] from a discrete set {0, 1, · · · , 2Q − 1}. Throughout
this paper, the terms “quantizer” and “encoder” are used

interchangeably. s[k] is transmitted to the decoder over a
communication network. We assume the network has one

step delay. So the symbol received by the decoder, s′[k], is
a one-step delayed version of s[k], i.e. s′[k] = s[k − 1]. The
decoder uses the received symbols to compute an estimate,

xq[k], of the plant’s true state, x[k]. The controller uses this
estimate, xq[k] to compute the control signal u[k].
The quantization method used in this paper originates in

the uncertainty set evolution method introduced in [7] and

[9]. This approach presumes that the encoder and decoder

agree that the state lies within the set

x[k] ∈ xq[k] + U [k], ∀k ≥ 0. (3)

In this paper we restrict our attention to a two dimensional

system so that the uncertainty set may be characterized as

U [k] = rect(L1[k], L2[k])

= [−L1[k], L1[k]] × [−L2[k], L2[k]].

In this equation L1[k] and L2[k] are non-negative and they
represent the half-length of the sides of the rectangular set

U [k]. We define the quantization error as e[k] = x[k] −
xq[k] = [e1[k], e2[k]]T . It is obvious that L1[k] and L2[k]
also represent the upper bounds of the quantization errors

e1[k] and e2[k]. Just prior to time k we know that e[k] ∈ U [k]
where we refer to U [k] as the uncertainty set at time k. We
then partition both sides of U [k]. The first side, L1[k], is
partitioned into 2b1[k] equal parts and the second side, L2[k],
is partitioned into 2b2[k] equal parts. We impose a constant

bit rate constraint on our bit assignment which requires that

b1[k] + b2[k] = Q (4)

for all k. After a new measurement of the state x[k] is made,
then the encoder knows that

x[k] ∈ xq

s[k][k] + Us[k][k]

where xq

s[k][k] is the center of the smaller subset and

Us[k][k] = rect

(
L1[k]

2b1[k]
,
L2[k]

2b2[k]

)

The index, s[k], for this smaller subset is transmitted across
the channel and the decoder reconstructs the state at time

k + 1 using the equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x[k + 1] ∈ xq[k + 1] + U [k + 1]
U [k + 1] = rect(L1[k + 1], L2[k + 1])
xq[k + 1] = Axq

s[k][k] + Bu[k]

u[k] = Fxq[k]

L1[k + 1] = λ1

2b1[k] L1[k]

L2[k + 1] = λ2

2b2[k] L2[k]

(5)

The choice for bi[k] (i = 1, 2) represents a bit assignment
policy. With the requirement that b1[k] + b2[k] = Q, we’re
confining our attention to constant bit rate quantization

schemes. The motivation for doing this is that many com-

munication systems work best under a constant bit rate [13].

There may be many bit assignment policies that satisfy the

necessary and sufficient conditions for asymptotic stability

in [1]. We’re interested in constructing a bit assignment

policy that is optimal with respect to a specified measure
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of the feedback control system’s performance. In this paper

we choose the performance measure in equation 2 where

the supremum is taken over all x[0] ∈ xq[0] + U [0]. Note
that by definition, |ei[k]| ≤ Li[k] for i = 1, 2 and for any
x[0]. This inequality becomes equality for the specific x[0],
e.g. x[0] = xq[0] + [L1[0], L2[0]]T , that maximizes the sum∑N

k=1 e2
1[k]+e2

2[k], which means that PN in equation 2 may

be rewritten as

PN =

N∑
k=1

(L2
1[k] + L2

2[k]) (6)

For a given number of quantization bits, Q, the objective
is to find bi[k] (i = 1, 2) that minimize the PN given in

equation 6.

This paper proposes a variation on the switching dynamic

policy found in [1] that we call dynamic bit assignment policy
or DBAP. DBAP is a recursive algorithm that generates bi[k]
as follows.

Algorithm 3.1: Dynamic Bit Assignment Policy
1) Initialize b1[k] = 0 and b2[k] = 0,
and set L1 = λ1L1[k] and L2 = λ2L2[k].

2) For q = 1 to Q
I = argmaxi∈{1,2}Li.

bI [k] := bI [k] + 1 and LI = LI/2.
The following lemma provides a closed form characteri-

zation of b2[k] generated by DBAP. The other bit assigment
is b1[k] = Q − b2[k] under our constant bit rate constraint.
Lemma 3.1: Under DBAP,

b2[k] =

⎧⎪⎨
⎪⎩

0, 1
2Q+1 λ1L1[k] ≥ λ2L2[k]

Q, 1
2−Q−1 λ1L1[k] ≤ λ2L2[k][

1
2

(
Q − log2

(
λ1L1[k]
λ2L2[k]

))]
, otherwise

(7)

where [·] is defined as [x] = �x − 0.5�.
IV. OPTIMAL DYNAMIC BIT ASSIGNMENT

This section characterizes the bit assignment policy that

minimizes the performance index, PN , in equation 6. Our

optimization problem is formally stated as follows,

min{b1[k],b2[k]}N−1
k=0

∑N

k=1(L
2
1[k] + L2

2[k])

subject to b1[k] + b2[k] = Q,
(8)

where b1[k], b2[k] ∈ N . Let b = {b1[j], b2[j]}N−1
j=0 denote

the optimal solution to this problem. We will determine this

solution by first considering a sequence of simpler problems

and then show that the solutions to these simpler problems

also solve the original problem and furthermore that they are

generated by the proposed DBAP.

Consider the following sequence of minimization prob-

lems indexed by k for k = 1, . . . , N .

min{b1[j],b2[j]}k−1
j=0

(L2
1[k] + L2

2[k])

subject to b1[j] + b2[j] = Q,
(9)

where b1[j], b2[j] ∈ N . The solution to the kth subprob-

lem will be denoted as b
(k) = {b(k)

1 [j], b
(k)
2 [j]}k−1

j=0 . The

following lemma establishes the basic relationship between

subproblems 9 and the original problem 8. In the following

lemma, we say b
(k−1) ⊂ b

(k) if and only if b
(k−1)
i [j] =

b
(k)
i [j] for j < k − 1. Essentially this means that b(k−1) is

a prefix of b(k).

Lemma 4.1: If {b(k)}N
k=1 solves the sequence of subprob-

lems 9 such that b(k−1) ⊂ b
(k) for k = 2, . . . , N , then b

(N)

solves the original problem 8.

Rather than directly solving subproblem 9, we consider a

relaxed problem of the form

mins1[k],s2[k]

(
λk
1

2s1[k] L1[0]
)2

+
(

λk
2

2s2[k] L2[0]
)2

subject to s1[k] + s2[k] = kQ
(10)

where s1[k], s2[k] ∈ N . In these relaxed problems, we
interpret si[k] as the number of bits used to represent the
ith component of the state up to time k. In other words, we
let si[k] =

∑k−1
j=0 bi[j]. Let s

(k) = {s1[k], s2[k]} denote the
solution to the kth relaxed subproblem. Note that Li[k] =

λk
i

2si[k] Li[0] (i = 1, 2) by eq. 5. So subproblems 9 and 10 have
the same performance index. In subproblems 10, the constant

bit rate constraint (equation 4) implies that the summed

numbers of bits satisfy,

s1[k] + s2[k] = kQ (11)

So this problem relaxes problem 9 by only minimizing the

cost index with respect to the bit sum, rather than the

individual history of assigned bits. The following lemma

states the solution for problem 10.

Lemma 4.2: The solution to the kth problem in equation
10 is

s1[k] = kQ − s2[k] (12)

s2[k] =

⎧⎪⎪⎨
⎪⎪⎩

0,
λk
1

2kQ+1 L1[0] ≥ λk
2L2[0]

kQ,
λk
1

2−kQ−1 L1[0] ≤ λk
2L2[0][

1
2

(
kQ − log2

(
λk
1L1[0]

λk
2L2[0]

))]
, otherwise

(13)

It is important to note a similarity between equation 13

in lemma 4.2 and the characterization of the bit assignment

generated by DBAP in equation 7 in lemma 3.1. The follow-

ing theorem formalizes this relationship by asserting that the

sequence of summed bits, s(k), generated by DBAP indeed

solve the relaxed problem 10 while enforcing the additional

reqirements that b1[k] + b2[k] = Q and si[k] =
∑k−1

i=1 bi[k].
These additional constraints are precisely those that were

relaxed in going from problem 9 to 10, so DBAP also solves

the original sequence of subproblems in equation 9.

Lemma 4.3: Let bi[k] denote the bit sequence generated
by the proposed DBAP. If we let

si[k] =

k−1∑
j=0

bi[j], i = 1, 2

then s
(k) = {s1[k], s2[k]} also solves the kth relaxed

minimization problem in equation 10.

Based on Lemmas 4.1, 4.2 and 4.3, we establish the

optimality of our proposed DBAP for noise-free quantized

linear systems.
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Theorem 4.4: Dynamic bit assignment policy (DBAP)
generates a bit assignment sequence that solves optimization

8.

V. CONCLUSIONS

This paper studies the optimal bit assignment policy for

a second-order linear system over a finite horizon. It is an

extension of the study of scalar quantized system in [9]. The

2-dimension and diagonalizablity assumptions in this paper,

however, limit its generality. Further research to relax these

assumptions is under investigation.

VI. APPENDIX

This section uses the following notation to represent the

ratio of L1[k] and L2[k].

γ[k] =
L1[k]

L2[k]
(14)

A. Proof of Lemma 3.1

We prove this lemma by using mathematical induction on

Q. When Q = 1, Lemma 3.1 trivially holds.
Suppose Lemma 3.1 holds for Q = Q1. We try to prove

it also holds for Q = Q1 + 1. In order to emphasize the
dependence of b2[k] on Q1, L1[k] and L2[k], we denote b2[k]
as b2[k](Q1, L1[k], L2[k]).
Now we compute b2[k](Q1 + 1, L1[k], L2[k]). Based on

γ[k], there are 3 kinds of decisions on b2[k].
a) γ[k] ≥ λ2

λ1
2(Q1+1)+1: Following the procedure in

algorithm 3.1, we find out b2[k] = 0, which satisfies eq. 7,
i.e. Lemma 3.1 holds for that case.

b) γ[k] ≤ λ2

λ1
2−(Q1+1)−1: Following the procedure in

algorithm 3.1, we find out b2[k] = Q1 + 1, which satisfies
eq. 7, i.e. Lemma 3.1 holds for that case.

c) λ2

λ1
2−(Q1+1)−1 < γ[k] < λ2

λ1
2(Q1+1)+1: The case

can be further categorized into two sub-cases, λ1L1[k] ≥
λ2L2[k] and λ1L1[k] < λ2L2[k].
If λ1L1[k] ≥ λ2L2[k], the first bit will be assigned to

L1[k] by algorithm 3.1. So

b2[k] (Q1 + 1, L1[k], L2[k])

= b2[k]

(
Q1,

L1[k]

2
, L2[k]

)
(15)

By γ[k] < λ2

λ1
2(Q1+1)+1 and λ1L1[k] ≥ λ2L2[k], we get

2−Q1−1 < 2−1 <
λ1

L1[k]
2

λ2L2[k]
< 2Q1+1 (16)

By the assumption that Lemma 3.1 holds for Q = Q1, we

get

b2[k](Q1,
L1[k]

2
, L2[k])

=

[
1

2

(
Q1 − log2

(
λ1

L1[k]
2

λ2L2[k]

))]

=

[
1

2

(
(Q1 + 1) − log2

(
λ1L1[k]

λ2L2[k]

))]
(17)

Substituting eq. 17 into eq. 15 yields

b2[k](Q1 + 1, L1[k], L2[k])

=

[
1

2

(
(Q1 + 1) − log2

(
λ1L1[k]

λ2L2[k]

))]

The above expression on b2[k] agrees with eq. 7. So Lemma
3.1 holds for that sub-case.

If λ1L1[k] < λ2L2[k], the first bit will be assigned to
L2[k] by algorithm 3.1. So

b2[k] (Q1 + 1, L1[k], L2[k])

= 1 + b2[k]

(
Q1, L1[k],

L2[k]

2

)

We can compute b2[k]
(
Q1, L1[k], L2[k]

2

)
in a similar man-

ner to show that the achieved expression on b2[k](Q1 +
1, L1[k], L2[k]) satisfies eq. 7.
Because Lemma 3.1 holds for both sub-cases, it holds for

λ2

λ1
2−(Q1+1)−1 < γ[k] < λ2

λ1
2(Q1+1)+1.

Because Lemma 3.1 holds for all three cases on γ[k],
Lemma 3.1 holds for Q = Q1 + 1. Together with the
assumption that Lemma 3.1 holds for Q = Q1 and the fact

that Lemma holds for Q = 1, we know Lemma 3.1 holds
for all Q ≥ 1. ♦
B. Proof of Lemma 4.1

We use P ∗ and P (k)∗ to denote the optimal performance of
problem 8 and the kth subproblem in equation 9 respectively.
It is straightforward to see that

min
{b1[k],b2[k]}N−1

k=0

N∑
k=1

(L2
1[k] + L2

2[k])

≥
N∑

k=1

min
{b1[j],b2[j]}N−1

j=0

(L2
1[k] + L2

2[k]) (18)

=
N∑

k=1

min
{b1[j],b2[j]}k−1

j=0

(L2
1[k] + L2

2[k]) (19)

The equality in eq. 19 comes from the fact that L1[k] and
L2[k] are independent of {L1[j], L2[j]}N−1

j=k due to the causal

updating rule in eq. 5. Note that all min operations in the
above equations are performed under the constraint of b1[j]+
b2[j] = Q (j = 0, · · · , N − 1). Considering the definitions
of P ∗ and P (k)∗, eq. 18 and 19 can be rewritten into

P ∗ ≥
N∑

k=1

P (k)∗ (20)

As stated in Lemma 4.1, b(k−1) ⊂ b
(k) (k = 2, · · · , N ). So

the performance of the kth problem in eq. 9 under b(N) is

L2
1[k] + L2

2[k] = P (k)∗ (21)

Summing eq. 21 for k = 1, · · · , N yields
N∑

k=1

L2
1[k] + L2

2[k] =

N∑
k=1

P (k)∗ (22)
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Because b
(N) satisfies the constraint of problem 8, i.e.

b
(N)
1 [k]+b

(N)
2 [k] = Q (k = 0, · · · , N −1), b(N) is a feasible

solution to problem 8. By eq. 22, the performance of problem

8 under b(N) is
∑N

k=1 P (k)∗. By the optimality of P ∗, we
obtain

P ∗ ≤
N∑

k=1

P (k)∗ (23)

Combining eq. 20 and 23 yields

P ∗ =

N∑
k=1

P (k)∗ (24)

By the feasibility of b(N) and eq. 22 and 24, we know b
(N)

solves the original problem 8. ♦
C. Proof of Lemma 4.2

The performance index in problem 10 is the summation of

two terms,
(

λk
1

2s1[k] L1[0]
)2

(= L2
1[k]) and

(
λk
2

2s2[k] L2[0]
)2

(=

L2
2[k]). We know the product of the two terms is independent
of s1[k], s2[k] due to the constraint s1[k] + s2[k] = kQ.

L2
1[k]L2

2[k] =

(
λk

1λk
2

2kQ
L1[0]L2[0]

)2

(25)

This structure reminds us the following lemma.

Lemma 6.1: If x, y > 0 and xy = β, then

x + y = 2
√

βg(| log2(x/y)|) (26)

where g(α) = 0.5
(√

2α + 1√
2α

)
.

The proof of Lemma 6.1 is straightforward and omitted here.

By its definition, we know g(α) is strictly increasing for
α ≥ 0. Apply this lemma to L2

1[k] + L2
2[k] with eq. 25

considered, we get

L2
1[k] + L2

2[k] = 2Cg(2| log2(L1[k]/L2[k])|) (27)
where C =

λk
1λk

2

2kQ L1[0]L2[0]. In order to minimize L2
1[k] +

L2
2[k], we have to minimize | log2(L1[k]/L2[k])|, i.e. keeping

L1[k] and L2[k] as balanced as possible. By the expression

of Li[k] =
λk

i

2si[k] Li[0] (i = 1, 2), we know

log2(L1[k]/L2[k])

= log2

(
λk

1L1[0]

λk
2L2[0]

)
− (s1[k] − s2[k])

= log2

(
λk

1L1[0]

λk
2L2[0]

)
− kQ + 2s2[k]

The second equality shown above comes from the constraint

s1[k] + s2[k] = kQ. s2[k] is an integer between 0 and Qk.
The minimization of | log2(L1[k]/L2[k])| may be formally
expressed as

mins2[k]

∣∣∣log2

(
λk
1L1[0]

λk
2L2[0]

)
− kQ + 2s2[k])

∣∣∣
s.t. s2[k] ∈ {0, 1, · · · , kQ}

(28)

It is straightforward to show that the solution to optimization

28 is exactly eq. 13. By the strictly increasing property of

g(α) (α ≥ 0) and eq. 27, we know s2[k] in eq. 13, together
with s1[k] in eq. 12, solves problem 10. ♦

D. Proof of Lemma 4.3

{b1[k], b2[k]}N−1
k=0 is generated by DBAP and si[k] is

defined as

si[k] =

k−1∑
j=0

bi[j], i = 1, 2 (29)

We will prove Lemma 4.3 by showing that s2[k] defined
in eq. 29 satisfies eq. 13. This result will be established by

using mathematial induction on k.
When k = 1, s2[k] = b2[k − 1] by the definition of s2[k].
Eq. 13 (for s2[k]) and 7 (for b2[k − 1]) are really the same.
So Lemma 4.3 holds for k = 1.
Suppose s2[k − 1] satisfies eq. 13. We will prove s2[k]
also satisfies eq. 13.

By eq. 13, the decision on s2[k] is categorized into three

cases based on γ[0] = L1[0]
L2[0]
.

1) γ[0] ≥ λk
2

λk
1

2kQ+1: Under this situation, we get

λk−1
1

2(k−1)Q+1
L1[0] ≥ λk−1

2 L2[0]
2Qλ2

λ1

> λk−1
2 L2[0]

where the last inequality comes from 2Q > λ1λ2 and λ2 > 1.
By assumption, s[k − 1] satisfies eq. 13. So

s2[k − 1] = 0 (30)

Then we obtain

L1[k − 1] =
λk−1

1

2(k−1)Q
L1[0] (31)

L2[k − 1] = λk−1
2 L2[0] (32)

We can verify that λ1

2Q+1 L1[k − 1] ≥ λ2L2[k− 1]. Therefore
DBAP yields b2[k − 1] = 0 and

s2[k] = s2[k − 1] + b2[k − 1] = 0 (33)

The above result on s2[k] satisfies eq. 13.

2) γ[0] ≤ λk
2

λk
1

2−kQ−1: We can similarly prove s[k]

satisfies eq. 13 as we did for the case γ[0] ≥ λk
2

λk
1

2kQ+1.

3) λk
2

λk
1

2−kQ−1 < γ[0] <
λk
2

λk
1

2kQ+1: First we prove it is
impossible that

λ1

2Q+1
L1[k − 1] ≥ λ2L2[k − 1] (34)

Suppose eq. 34 holds. Substituting the expressions of L1[k−
1] (L1[k − 1] =

λ
k−1
1

2s1[k−1] L1[0]) and L2[k − 1] (L2[k − 1] =
λ

k−1
2

2s2[k−1] L2[0]) into eq. 34 yields

γ[0] =
L1[0]

L2[0]
≥ λk

2

λk
1

2Q+1+s1[k−1]−s2[k−1] (35)

Combining the requirement γ[0] <
λk
2

λk
1

2kQ+1 with the above

bound produces

Q + 1 + s1[k − 1] − s2[k − 1] < kQ + 1 (36)
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Considering s1[k − 1] + s2[k − 1] = (k − 1)Q, we get

s2[k − 1] > 0 (37)

i.e. side L2 gets at least one bit among the total of (k−1)Q
ones. Suppose side L2 gets the first bit at k = k1 (k1 ≤
k − 1). By algorithm 3.1, the decision on b1[j] and b2[j]
aims to balance L1[j + 1] and L2[j + 1], which guarantees
that

L1[j]

L2[j]
≤ 2, ∀j ≥ k1 (38)

The above equation certainly holds for j = k − 1, i.e.

L1[k − 1]

L2[k − 1]
≤ 2 (39)

Thus
λ1L1[k−1]
λ2L2[k−1] ≤ 2λ1

λ2
< 2Q+1, which contradicts eq. 34 !

So eq. 34 is impossible.
Second we can similarly prove it is also impossible that

λ1

2−Q−1
L1[k − 1] ≤ λ2L2[k − 1] (40)

Based on the impossibility of eq. 34 and 40 and the

decision rule in eq. 7, we get

b2[k − 1] =

[
1

2

(
Q − log2

(
λ1L1[k − 1]

λ2L2[k − 1]

))]
(41)

Substituting the expressions of L1[k − 1] and L2[k − 1] into
the above equation yields

b2[k − 1]

=

[
1

2

(
Q + s1[k − 1] − s2[k − 1] − log2

(
λk

1L1[0]

λk
2L2[0]

))]

By the identity s1[k − 1] = (k − 1)Q− s2[k − 1], the above
result can be simplified into

b2[k − 1]

=
[
0.5

(
kQ − log2

(
λk
1L1[0]

λk
2L2[0]

))]
− s2[k − 1]

Considering the definition of s2[k] in eq. 29, we obtain

s2[k] = s2[k − 1] + b2[k − 1]

=

[
1

2

(
kQ − log2

(
λk

1L1[0]

λk
2L2[0]

))]

Therefore s2[k] satisfies eq. 13.
In summary, s2[0] satisfies eq. 13. If s2[k−1] satisfies eq.
13, then s2[k] also satisfies equation 13. So by mathematical
induction method, we can guarantee that s2[k] satisfies eq.
13 for all k and the proof is complete. ♦
E. Proof of Theorem 4.4

Denote the optimal performance of problems 8, 9 and

10 as P ∗, P (k)∗ and P
(k)∗
s respectively. By the relaxation

relationship among them, P ∗, P (k)∗ and P
(k)∗
s satisfy the

following equations.

P ∗ ≥
N∑

k=1

P (k)∗ (42)

P (k)∗ ≥ P (k)∗
s (43)

Implementing DBAP, we obtain a bit assignment sequence

b = {b1[j], b2[j]}N−1
j=0 . By Lemma 4.3, we know the gener-

ated b
(k) = {b1[j], b2[j]}k−1

j=0 solves the kth problem in eq.

10, i.e. the optimal performance P
(k)∗
s is achieved by b

(k).

It is obvious that b(k) satisfies the constant bit rate constraint

in eq. 4. So b
(k) is also a feasible solution to the kth problem

in eq. 9. The two optimization problems in eq. 9 and 10 have

the same performance index. By the optimality assumption

of P (k)∗, we know P
(k)∗
s ≥ P (k)∗. Therefore the equality in

eq. 43 holds.

The DBAP algorithm guarantees that b satisfies b(k−1) ⊂
b

(k) for k = 2, · · · , N . By Lemma 4.1, we know the equality
in eq. 42 holds. Therefore the optimal performance P ∗ is
equal to

∑N

k=1 P
(k)∗
s which is exactly the performance under

DBAP and the proof is complete. ♦
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