
Stochastic Control Bounds on Sensor Network Performance

David A. Castañón

Abstract— Consider a network of sensors, each of which has
limited sensing resources, which is tasked with collecting noisy
classification information on objects. The amount of resources
required a given sensor to measure an object depends on
the specific sensor-object geometry. Sensors exchange collected
information to estimate object identities and coordinate which
measurements to collect. This paper describes a computable
lower bound on the classification error that can be achieved by a
causal adaptive sensing schedule. This bound is based on solving
a partially observed stochastic control problem. Expanding the
admissible control space of this problem leads to a relaxed
problem with simpler decision structure for which the bounds
can be computed. The bound computations are illustrated for
examples involving 100 unknown objects, and compared with
the Monte Carlo performance of specific scheduling algorithms.
These comparisons illustrate the tightness of the bounds.

I. INTRODUCTION

There are many recent applications for networks of sen-
sors, each of which has a given amount of resources, such
as available power or duty cycle. Often, each sensor has
multiple sensing modes that it can use to collect different
types of information; the amount of resources required to
collect a measurement by a sensor depends on the specific
sensor-object geometry and the mode used. The network is
tasked with using its available resources to obtain infor-
mation on a given number of objects. In order to achieve
the best information possible, it is important to coordinate
the allocation and scheduling of the different sensors and
sensor modes across objects. Sensors exchange collected
information to determine the current state of information on
objects. The adaptive sensing problem consists of selecting
and scheduling the sensor modes which are applied to objects
of interest based on the collected past information.

This paper develops a model for a class of adaptive sensing
problems involving the objective of classifying a known
number of objects of unknown types at known locations,
given a fixed number of sensor with finite resources and finite
modes. We assume that sensor performance parameters are
time-invariant. This class of problems arises in several ap-
plications, from object classification using multiple airborne
platforms, dynamic search, and fault inspection and isolation
in manufacturing systems. In these applications, individual
measurements provide noisy estimates of object type whose
quality depends on the specific mode used by the sensor. This
noisy information can be used to prioritize which objects to
look at next, from which sensor, and to assign appropriate
sensor modes to the objects.

This work was supported in part by grants NSF DMI-0330171 and
DARPA F33615-02-C-1197

Dept. Electrical & Computer Eng., Boston University, Boston, MA
dac@bu.edu

Because of the uncertain nature of the underlying object
types and the adaptive nature of the desired schedules,
adaptive sensing problems can be formulated as partially
observed Markov decision problems (POMDP) [1], [2], [9].
As such, this class of problems can be solved using stochastic
dynamic programming [3]. For large numbers of objects, the
required state space is very high-dimensional, consisting of
the conditional probability distributions of all of the objects.
This leads to intractable computational problems, even with
the fastest POMDP algorithms.

Sensing problems have been formulated previously as
dynamic optimization problems with partial information [6],
[14]. These formulations restrict the sensors to a single
sensor with a single mode. Because of the complexity of
these problems, most practical algorithms are heuristic algo-
rithms based on information-theoretic metrics [5]. To date,
there has been no effective approach that can characterize
the achievable adaptive sensing performance performance to
determine whether such heuristic algorithms are performing
well.

In this paper, we consider sensing problems involving
multiple distributed sensors with multiple modes per sensor.
This model is an extension of the model discussed in [7]. We
show that the resulting POMDP models admit a lower bound
on classification error performance based on modifying the
constraint structure to expand the space of admissible strate-
gies. The resulting problem becomes a dynamic optimization
problem subject to expected value constraints, a class of
problems recently studied by in [20]. We develop a hierar-
chical algorithm that solves this problem efficiently through
decomposition into single object POMDPs. The hierarchical
algorithm avoids the exponential growth of the dimensions
of the resulting state space in the POMDP problem as a
function of the number of objects.

The paper includes several examples where the lower
bound performance is computed, and compared with the
Monte Carlo performance achieved by suboptimal SM al-
gorithms. In particular, we compute bounds for a special
problem for which the optimal sensing strategy is known,
and compare the bounds to the optimal performance to show
how tight the bounds are.

II. PROBLEM FORMULATION

Assume that there are N objects of interest in the problem,
with known locations. Each object can belong to one and
only one of K different classes, and the object identity does
not change over time. Let xi ∈ X ≡ {1, . . . , K} denote the
true class of object i. We define the complete (but unknown)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB03.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 4939

system state as:

xT =
(
x1 x2 · · · xN

)
(1)

Since the identities do not change over time, the complete
system state is constant over time. We assume that xi are
independent random variables with values in the finite space
X . Associated with each object i is a prior probability vector
πi(0) which describes the probability distribution of the
random variable xi. That is,

πij(0) = Prob{xi = j} (2)

To obtain information about the state of each object,
selected objects are examined with different modes from
different sensors. In order to simplify the notation in the
exposition, we consider the case of a single sensor with
multiple modes m ∈ {1, . . . , M}. Using a sensor mode m
on object i produces an observable ym in a finite set Ym,
with a conditional probability distribution that depends only
on the object i, its type xi and the mode m, denoted by
p(ym|i, xi, m). We assume that the observation outcomes of
these sensing actions are conditionally independent of each
other given the object types.

Obtaining a measurement of object i with mode m requires
sensor resources Rim > 0 (e.g. power), which depend on the
object location, sensor location and specific mode selected.
The sensor has a finite amount of sensor resources R. The
objective is to classify, with minimal error cost, the objects
after the sensor resource R is exhausted.

Without loss of generality, we restrict our attention to
sensing policies that execute only one action at a time.
Such strategies are optimal in that they provide maximal
information for adaptation, and will achieve minimal error
cost under the assumption of time invariant performance. Let
u(k) = (i(k), m(k)) denote the k + 1-th action (starting at
k = 0) taken by the sensor, consisting of measuring object
i(k) with mode m(k). Let U denote the set of possible sensor
actions, and let ym(k)(k) denote the measured value resulting
from action u(k) ∈ U . The past information available to
adaptively select u(k) is I(k) = {u(0), ym(0)(0), . . . , u(k −
1), ym(k−1)(k − 1)}. The sensing problem decisions are
selected adaptively until a final random stopping instance
T , selected based on the information I(T). At the end of
this stopping instance, the information I(T) is used to select
a final classification decision vi ∈ X for each object, based
on I(T), to minimize the expected classification cost.

An admissible adaptive sensing policy is a set of measur-
able feedback policies {γ(0), . . . , γ(T)} and stopping time
T such that

γ(k) : I(k) → U, k < T

T : I(T) → {stop, continue}
γ(T) : I(T) → XN (3)

Let Γ denote the set of all admissible sensing policies. Since
the observation space is finite and the decision space is also
finite, Γ is a countable space.

Denote by c(v, x) the cost of selecting classification deci-
sion v when the true object type is x. The adaptive sensing
problem is to minimize the expected total classification cost

J(γ) = Eγ{
N∑

i=1

c(vi, xi)} (4)

over adaptive sensing policies γ ∈ Γ satisfying the resource
utilization constraint

T−1∑
k=0

R(u(k)) ≤ R (5)

with the notation R(u(k)) ≡ Ri(k)m(k).
The constraint in (5) is a sample path constraint; for every

realization of the information sets I(k), the adaptive policy
γ must not exceed the total sensor resources available. Finite
observation sets and decision spaces imply that there is only
a finite number of possible admissible sensing policies that
satisfy the constraint (5).

The above problem is a class of finite-state, finite-
observation POMDP studied in [1], [2], [9], with the special
structure that the underlying state dynamics are constant, and
decisions are constrained by the sample path constraints of
(5). Such problem scan be transformed into fully-observed
MDPs in terms of a sufficient statistic: the conditional
probability distribution of the state x given information I(k),
denoted as P (x|I(k)) ∈ SN . The recursive evolution of
this information state in response to an action u(k) =
(i(k), m(k)) can be described by Bayes’ rule as

P (x|I(k + 1)) = P (x|I(k), u(k), ym(k)(k))

=
P (ym(k)(k)|xi(k) , m(k))P (x|I(k))

P (ym(k)(k))|I(k), u(k))
(6)

with the initial condition

P (x|I(0)) =
N∏

i=1

πi(0) (7)

Under the previous independence assumptions, the following
lemma establishes a convenient representation:

Lemma 2.1: Under the adaptive sensing problem assump-
tions, the conditional probability P (x|I(k)) can be factored
as

P (x|I(k)) =
N∏

i=1

P (xi|I(k)) (8)

where the evolution of P (xi|I(k)) under sensing action
u(k) = (i(k), m(k)) and observation ym(k)(k) is given by

P (xi|I(k + 1)) ={
P (xi|I(k)) if i(k) �= i

P (ym(k)(k)|xi(k),m(k))P (xi|I(k))∑
K
j=1 P (ym(k)(k)|xi=j,I(k))P (xi=j|I(k))

otherwise
(9)

The proof of this lemma is straightforward by induction.
Define πi(k) = P (xi|I(k)) to be the conditional proba-

bility distribution of xi given information I(k), with com-
ponents πij(k) = P (xi = j|I(k)). Lemma 2.1 estab-
lishes that the conditional probability distribution of the

4940

entire state, P (x|I(k)), can be computed as the product
of πi(k), i = 1, . . . , N . Define the information vector �π =(
πT

1 . . . πT
N

)T
For a given observation ym using mode m

on object index i, define the observation probability matrix
as the K × K diagonal matrix

Bi(ym) = diag{P (ym|xi = 1, m), . . . , P (ym|xi = K, m)}
The information vector evolves in response to a measurement
ym obtained from a sensing action (i, m) according to an
operator T , where

T (�π, u = (i′, m), ym) =

⎛
⎜⎝

T1(π1, u = (i′, m), ym)
...

Tn(πN , u = (i′, m), ym)

⎞
⎟⎠

Ti(πi, u = (i′, m), ym) =

{
πi if i �= i′

Bi(ym)πi

�eT Bi(ym)πi
if i = i′

where �e is a K-dimensional vector of all ones.
The adaptive sensing problem described above can be

solved by stochastic dynamic programming [3]. The resource
constraint in (5) can be incorporated into the dynamics to
obtain a dynamic programming recursion, as in [20]. The
value function V (�π, C) is the optimal solution of (3)-(5)
when the initial information is �π and the available sensor
resource level is R = C satisfies the following Bellman’s
equation:

V (�π, R) = min
[N∑
i′=1

min
vi′∈X

∑
j=1,...,K

c(vi′ , j)πi′j ,

min
(i,m)∈U(R)

Eym{V (T (�π, (i, m), ym), R − Rim)}] (10)

where U(R) ⊂ U is the set of feasible sensor actions (i, m)
such that Rim ≤ R, and

Eym{V (T (�π, (i, m), ym), R − Rim)} =∑
ym∈Ym

P (ym|I(k), (i, m))V (T (�π, u, ym), R − Rim)

=
∑

ym∈Ym

eT Bi(ym)πiV (T (�π, (i, m), ym), R − Rim) (11)

This recursion starts from the following boundary conditions:
Let Rmin = mini,m Rim. Then, the set of admissible modes
U(R) is empty for R < Rmin. Thus,

V (�π, R) =
N∑

i=1

min
vi∈X

∑
j=1,...,K

c(vi, j)πij if R < Rmin

(12)

Eqs. (10)-(12) can be used recursively to compute the optimal
value for all information states and nonnegative levels.

The initialization of the recursion decouples into N inde-
pendent optimizations. However, the recursion (10) does not
preserve this decomposability. The coupling arises primarily
because of the resource use constraints in (5); the decision
of which object to view and which mode to use depends on
the information vector of all the objects and the available

resources. Thus, the dynamic programming induction must
be carried out for the entire state �π(t), which becomes a
formidable problem even for small numbers of objects.

III. RELAXED FORMULATION AND BOUNDS

We relax the sample path sensor resource use constraints
(5) and use an averaged version of the same constraints, as

E{
T∑

k=1

R(u(k))} ≤ R (13)

This replaces a large set of constraints by a single aggregate
constraint. Sensing policies that satisfy (5) will also satisfy
(13). Let J∗ and J∗

A denote the optimal classification cost in
(3)-(4) with constraints (5) and (13), respectively.

Lemma 3.1: J∗ ≥ J∗
A

Let λ ≥ 0 denote a Lagrange multiplier for (13). For any
admissible policies in Γ, consider the objective

J(λ, γ) = Eγ{
N∑

i=1

c(vi, xi)} + λ[Eγ{
T−1∑
k=0

R(u(k))} − R]

(14)
Consider minimizing (14) for fixed λ ≥ 0. Denote by J∗(λ)
the optimal value of (14) over all adaptive sensing policies
γ ∈ Γ. Then,

Lemma 3.2: For all values of λ ≥ 0, J∗ ≥ J∗
A ≥ J∗(λ).

In particular, J∗ ≥ supλ≥0 J∗(λ).
Lemma 3.2 is a consequence of weak duality in nonlinear

programming [4]. Since the number of adaptive sensing poli-
cies that satisfy (14) is finite, computation of J∗

A is an integer
programming problem, and computation of supλ≥0 J∗(λ) is
its dual problem.

The key issue is computing the lower bounds J∗(λ)
efficiently. Rewrite (14) for γ ∈ Γ as

J(λ, γ) = Eγ{
N∑

i=1

[c(vi, xi) + λ

T−1∑
k=0

R(u(k))δi(k)−i]} − λR

(15)
where the indicator function δi = 1 if i = 0, and 0 otherwise.
This suggests that optimization of J(λ, γ) may be separable
across individual objects i.

Partition the information I(k) into disjoint sets Ii(k),
where Ii(k) are the sensing actions and measurement actions
applied to object i:

Ii(k) = {(u(j), y(j))|j < k, i(j) = i} (16)

Note that the conditional probability vector πi only changes
on measurements included in Ii(k). We wish to restrict the
set of adaptive sensing policies to a subset where the decision
to apply a sensor action for object i depends only on the
information previously collected for object i. We refer to this
subset of policies as adaptive local sensing policies, defined
as:

Definition 3.1: An adaptive local sensing policy is an
adaptive sensing policy γ and stopping times Ti, i =
1, . . . , N , with the properties that, for each sensing action
instance k,

4941

1) If u(k) = (i(k), m(k)), then i(k) = k mod N + 1.
2) The selected sensor mode m(k) depends only on the

information Ii(k).
3) For each object i, there is a stopping time Ti which

depends only on Ii(Ti) such that, for all k ≥ Ti, if i =
k mod N + 1, no sensing action is taken. If k < Ti

and i = k mod N + 1, then u(k) = (i, m) for some
mode m in {1, . . . , M}.

4) At time Ti, the local decision vi for object i is selected
as a function of Ii(Ti).

Adaptive local sensing policies use a fixed round-robin
schedule for selecting which objects to measure, and the
choice of sensing mode, stopping time and final classifica-
tion on each object depends only on the prior information
collected on that object. The effective stopping time of an
adaptive local sensing policy is the earliest time at which
every object has a final classification decision. Adaptive local
sensing policies are a subset of adaptive sensing policies.

Let ΓL denote the set of adaptive local sensing policies.
Given sensor resources R, there are a finite number of feasi-
ble adaptive local sensing policies. Thus, ΓL is a countable
discrete set. For the purposes of bound computation, we will
include mixed policies:

Definition 3.2: A mixed local sensing policy is a proba-
bility distribution q(γ) over ΓL such that local SM policy γ
is selected for use with probability q(γ). The set of mixed
local sensing policies is denoted by Q(ΓL).

Consider the problem of minimizing the relaxed cost (15)
over local sensing policies ΓL. Since ΓL ⊂ Γ, we have

min
γ∈Γ

J(λ, γ) ≤ min
γ∈ΓL

J(λ, γ) (17)

Furthermore, since (15) is an unconstrained objective, the
minimum in mixed local sensing policies is achieved by a
pure local sensing policy, so

min
γ∈Γ

J(λ, γ) ≤ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (18)

The importance of mixed local sensing policies is highlighted
in the theorem below, proven in [21]:

Theorem 3.1: For any admissible adaptive sensing policy
γ ∈ Γ, there exists a mixed local sensing policy q ∈ Q(ΓL)
such that the expected classification costs in (4) and the
expected total resource use in (13) are equal under both
policies γ and q.
This result implies the following inequality:

min
γ∈Γ

J(λ, γ) ≥ min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) (19)

Combining (18) and (19) yields the following:

min
γ∈Γ

J(λ, γ) = min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)J(λ, γ) = min
γ∈ΓL

J(λ, γ)

(20)
Eq. (20) implies that lower bounds for the achievable

classification performance can be computed by optimizing
over local sensing policies only. For each local policy γ ∈
ΓL, let γi denote the policy that is used for instances k when

actions are taken for object i, and let ΓLi be the set of such
admissible local policies for object i. Thus, γi selects actions
for object i based on past observations Ii(k), and selects a
stopping time Ti and a final classification vi at that stopping
time. The importance of local sensing policies is that the
optimization in (20) decouples over objects as

min
γ∈ΓL

J(λ, γ) =
∑

i

min
γi∈ΓLi

Ji(λ, γi) − λR (21)

Ji(λ, γi) = Eγi{c(vi, xi) + λ
T−1∑
k=0

R(u(k))δi(k)−i} (22)

This implies that computation of the bounds can be achieved
with N independent optimization problems for each value of
λ. Furthermore, Lemma 3.2 yields

J∗ ≥ sup
λ≥0

min
γ∈ΓL

J(λ, γ) (23)

Note that the right hand side of (23) is the dual of the
following linear programming problem:

min
q∈Q(ΓL)

∑
γ∈ΓL

q(γ)EγJ(γ) (24)

subject to ∑
γ∈ΓL

q(γ)Eγ [
∑

k=0T−1

R(u(k))] ≤ R (25)

q(γ) ≥ 0 ∀ γ ∈ ΓL;
∑

γ∈ΓL

q(γ) = 1 (26)

which is a linear program over the choice of probability
distributions q ∈ Q(ΓL), subject to two constraints, which
implies that the optimal mixed local sensing policy q will
have support only on two pure local sensing policies.

IV. BOUND ALGORITHMS

There are two potential approaches to compute a lower
bound: a dual approach, based on Lagrangian relaxation
[13], that optimizes (23) over the choice of dual variable λ,
and a primal approach based on solving the linear program
(24)-(26). The dual approach is straightforward, and uses
techniques from nondifferentiable optimization [16] to search
the space of possible λ. The primal approach optimizes over
a very large space of of mixture probabilities q. However,
this mixture has very sparse support, which makes it ideal
for column generation algorithms [15].

A fundamental step in either approach is the computation
of the optimal local sensing policies given λ for each object
i:

min
γi

Eγi [c(vi, xi) + λ

Ti−1∑
k≥0:i=kmodN+1

R(u(k))] (27)

This problem is a single object POMDP, with sufficient
statistic given by the marginal probability distribution πi(k).
One can reduce the action instants to a new counter k′

indexing only the action opportunities for object i, to obtain

min
γi∈ΓLi

Eγi [c(vi, xi) + λ

T ′
i−1∑
k′

Rim(k′)] (28)

4942

The resulting POMDP problems are small enough to solve
using existing algorithms such as those overviewed in [2],
[9], [11], [12].

Solution of the N decoupled problems (28) yields a
local policy γ ∈ ΓL, for which the expected classifi-
cation cost Eγ [

∑N
i=1 c(vi, xi)] and expected resource use

Eγ [
∑T−1

k=0 R(u(k))] are computed from the solution. This
provides the starting point for the use of column generation
[15] for solution of (24)-(26), similar to the approaches
used for MDPs and POMDPs in [18], [19], [8]. Solving
the linear program in (24)-(26) restricted to mixtures of
the d = 1, . . . , D initial policies yields an upper bound
JUB to the optimal cost, and an optimal dual price λD

for the resource constraint (26). The constraint generation
algorithm uses this optimal dual price value in (28) to
generate a new candidate local policy γD+1,by solving N
independent POMDP problems with this value of λ. The
combined solution of the N subproblems also provides a
lower bound JLB on the optimal performance, as described
in Lemma 3.2. The key result in the constraint generation
algorithm is stated as follows [15]:

Lemma 4.1: Consider the pure local policy generated by
the solution of (28). If JLB = JUB , the optimal solution
over all mixtures of local policies is a mixture of the local
policies indexed by d = 1, . . . , D. Otherwise, the pure local
policy γD+1 can be used as part of a mixed policy which
provides a cost lower than JUB .

V. EXTENSION TO MULTIPLE SENSORS

The development of the previous sections carries through
with little modification when multiple sensors are used. The
key difference is that there is a separate resource constraint
for each sensor. Thus, there will be a vector of sensor
resources Rs, where s is a sensor index, thus resulting in a
vector of averaged constraints (13). The Lagrange multipliers
λ will thus be vectors instead of scalars. Nevertheless, all of
the lemmas and theorems can be extended to the multisensor
case with minor modifications.

The main assumption that was used in the single sensor
formulation was that only one sensor action would be per-
formed simultaneously. This assumption is still used for the
multiple sensor problem to derive the lower bound, although
the results in the previous section indicate that optimal local
sensing strategies that achieve the lower bound may use
simultaneous sensing by multiple sensors.

VI. EXAMPLES

For our first example, we consider a case where the
optimal strategies are known [22]. There are 100 unknown
objects with one of two types, with equal priors for each
object and one sensor with a single mode. Measurement
outcomes are binary-valued, identifying one of the two types,
with a symmetric probability of error Pe. The objective is to
minimize the expected number of classification errors after
N measurements. The optimal strategy derived in [22] is to
assign the next measurement to the object with conditional
probability with greatest entropy.

Table I shows the results of 1000 Monte Carlo simula-
tions of the optimal strategy, compared with the predicted
performance of the lower bound, in terms of expected
number of classification errors for 3 different conditions
of symmetric single measurement Pe and four levels of
number of measurements N . As the table indicates, the
bound predictions are very tight for this case. The gap
between bound and optimal strategy increases slightly with
the number of measurements N because the likelihood of
errors decreases, and the bound strategy allows the use of
more resources than available in unlikely cases.

Pe = 0.25 Pe = 0.2 Pe = 0.15
N Bound Opt. Bound Opt. Bound Opt.

100 25 25.03 20 20.02 15 15.067
200 18.182 18.185 12.727 12.765 7.888 7.988
300 11.364 11.432 5.749 6.038 2.518 2.593
400 7.833 7.905 3.468 3.543 0.927 0.987

TABLE I

COMPARISON OF EXPECTED NUMBER OF ERRORS BY LOWER BOUND

AND MONTE CARLO OF OPTIMAL STRATEGY

For the second set of experiments, we consider another
100 object scenario where objects can be of three different
types (K = 3): cars, trucks and military vehicles (MV).
There is a single sensor, with two modes: a low resolution
mode 1 that takes 1 second per image (Ri1 = 1), and a
high resolution mode 2 that requires 5 seconds per image,
(Ri2 = 5). Low resolution imagery is useful in separating
cars from trucks and MVs, but separating trucks from MVs
requires high resolution imagery. Apriori, each object has a
probability of 0.1 as a military vehicle, 0.2 truck and 0.7 car.
Imagery generated by the sensor is processed into a binary
decision as to whether the object is MV or not. Hence yij ∈
{0, 1}, where 1 indicates that the decision is MV.

low-resolution high-resolution
Type y = 0 y = 1 y = 0 y = 1

Car 0.9 0.1 0.95 0.05
Truck 0.1 0.9 0.85 0.15
MV 0.1 0.9 0.8 0.2

TABLE II

MEASUREMENT LIKELIHOODS FOR DIFFERENT MODES

The objective of the problem is to determine as accurately
as possible which objects are military vehicles (type 1). Thus,
the classification costs are given by c(vi, xi) as a 3×3 matrix
where vi is the row index:

(c(vi, xi)) =

⎛
⎝ 0 MD MD

FA 0 0
FA 0 0

⎞
⎠ (29)

where FA = 1 and MD will vary in the experiments. The
conditional probability distributions p(y|x, m) are given in
Table II. R seconds of sensor time can be used before all
objects need to be classified. This number will also be varied
from 300 seconds to 700 seconds.

We compare the bound with the performance of two adap-
tive SM algorithms: a variation of Kastella’s discrimination

4943

gain (DG) algorithm [5], which selects the best sensor mode
and target on the basis of maximizing the expected entropy
reduction in the distribution of object type per unit sensor
resource applied, and a dynamic scheduling algorithm (ADP)
based on Lagrangian relaxation and POMDP approximations
described in [7]. Each algorithm was simulated for 100
independent Monte Carlo runs using the same measurement
outcomes to evaluate its average performance for three dif-
ferent levels of sensor resources: 300, 500 and 700 seconds.
Table III includes the results for 300 and 700 seconds for 5
levels of missed detection (MD) costs. The bound is close
to the more complex ADP algorithm, and far from the DG
algorithm as MD increases.

700 Seconds 300 Seconds
MD Bound ADP DG Bound ADP DG

1 1.6 1.58 1.91 4.61 9.7 9.17
5 4.5 4.46 6.75 15.66 17.03 18.62

10 6.5 6.49 9.87 19.56 21.18 20.71
20 8 8.25 14.87 21.67 22.38 22.11
40 10 10.01 23.05 24.18 24.53 24.91

TABLE III

PERFORMANCE OF SCHEDULING ALGORITHMS VS. BOUND

Figure 1 shows the results for the two algorithms and the
lower bound for 500 seconds of sensing. The results show
that the ADP policy approaches the bound in performance.

0

5

10

15

20

25

30

0 20 40 60 80

E
x
p
e
c
t
e
d

C
l
a
s
s
i
f
i
c
a
t
i
o
n

C
o
s
t

Missed Detection Cost

Lower Bound
ADP

DG

Fig. 1. Monte Carlo performance of algorithms and lower bound for 500
seconds of sensor resource.

VII. DISCUSSION

In this paper, we have presented a lower bound for the
achievable classification performance for a network of sen-
sors with finite sensing resources. The approach is based on
a POMDP approximation of the formulation of the adaptive
sensing problem that can be solved efficiently. We presented
experimental results that compared the lower bound with
the performance of two suboptimal adaptive sensing algo-
rithms available in the literature. The experimental results
established that the bound is tight in that the performance of
suboptimal algorithms is close to the predicted performance
of the bound for several conditions.

For sensor networks, the bound in this paper neglects the
cost of communications as compared to the cost of active

sensing. This is the case when sensors are in near vicinity
of each other, and sensing requires active emissions by the
sensors, so that the two-directional path loss is significant.
In situations where communications also consume significant
number of resources, the bound is optimistic, and would not
be a good prediction for sensor network performance.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon” Op. Res., V. 21,
p 1071-1088, 1973.

[2] G. E. Monahan, “A survey of partially observable Markov decision
processes: Theory, models and algorithms,” Mgmt. Sci., V. 28, p1-16,
Jan. 1982.

[3] D. P. Bertsekas, Dynamic Programming and Optimal Control, Vols.
I-II, Athena Scientific, Belmont, MA 1995.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont,
MA, 1999.

[5] K. Kastella, “Discrimination Gain to Optimize Detection and Classifi-
cation,”IEEE Trans. on Systems, Man and Cybernetics, Part A, V. 27,
No. 1, Jan. 1977.

[6] D. A. Castañón, “Optimal search strategies for dynamic hypothesis
testing,” IEEE Trans. Sys., Man & Cybernetics, v. 25, 1995.

[7] D. A. Castañón, “Approximate Dynamic Programming for Sensor
Management,” Proc. 36th IEEE Conference on Decision and Control,
San Diego, CA, December 1997.

[8] D. A. Castañón and J. M Wohletz, “Model Predictive Control for
Unreliable Dynamic Task Assignment,” Proc. 2002 Conf. Decision
and Control, Las Vegas, NV, Dec. 2002.

[9] W. S. Lovejoy, “A survey of algorithmic methods for partially observ-
able Markov decision processes,” Annals of Operations Research, v.
28, 1991.

[10] M. L. Littman, A. R. Cassandra and L. Pack-Kaelbling, “Efficient dy-
namic programming updates in partially observable Markov decision
processes,” working paper, Brown University, Dec. 1995.

[11] A. R. Cassandra, Exact and Approximate Algorithms for Markov
Decision Processes, Ph. D. Diss., Brown Univ., Providence, RI 1998.

[12] A. R. Cassandra, M. L. Littman and N. L. Zhang, “Incremental
Pruning: A Simple, Fast Exact Method for Partially Observed Markov
Decision Processes,” Proc. 13th Conf. Uncertainty in Artificial Intel-
ligence, Providence, RI 1997.

[13] A. M. Geoffrion, “Lagrangian relaxation for integer programming,”
Math. Prog. Studies, v. 2, 1974.

[14] V. Krishnamurthy and R. J. Evans, “Hidden Markov Model Multiarm
Bandits: A Methodology for Beam Scheduling in Multitarget Track-
ing,” IEEE Trans. Signal Processing, V. 49, N. 12, Dec. 2001.

[15] P. C. Gilmore and R. E. Gomory, “A Linear Programming Approach
to the Cutting Stock Problem” Operations Research, V. 9, 1961.

[16] V. M. Demyanov and L. V. Vasilev, Nondifferentiable Optimization,
Optim. Software, New York 1985.

[17] S. J. Benkoski, M. G. Monticino, and J. R. Weisinger, “A Survey of
the Search Theory Literature,” Naval Research Logistics, Vol. 38, No.
4, 1991, pp. 469-494.

[18] K. A. Yost, Solution of Large-Scale Allocation Problems with Par-
tially Observed Outcomes, Ph. D. Thesis, Naval Postgraduate School,
Monterey, CA, Sept. 1998.

[19] K. A. Yost and A. R. Washburn, “The LP/POMDP Marriage: Opti-
mization with Imperfect Information,” Naval Research Logistics, Vol
47, No. 8, 607-619, 2000.

[20] R. Chen and G. L. Blankenship, “Dynamic Programming Equations for
Discounted Constrained Stochastic Control, ” IEEE Trans. Automatic
Control,” v.49, no. 5, May 2004.

[21] D. A. Castañón, “A Lower Bound on Adaptive Sensor Management
Performance for Classification,” CISE Report 2005-3, Boston Univer-
sity, January 2005.

[22] M. Schneider, “An Optimal Policy for Sensor Management with
Symmetric Sensor Measurements,” ALPHATECH paper, August 2004.

4944

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

