
Distributed Averaging on Asynchronous Communication Networks

Mortada Mehyar, Demetri Spanos, John Pongsajapan, Steven H. Low, Richard M. Murray
California Institute of Technology

{morr, demetri, pongsaja, slow, murray}@caltech.edu

Abstract— Distributed algorithms for averaging have at-
tracted interest in the control and sensing literature. However,
previous works have not addressed some practical concerns
that will arise in actual implementations on packet-switched
communication networks such as the Internet. In this paper,
we present several implementable algorithms that are robust to
asynchronism and dynamic topology changes. The algorithms
do not require global coordination and can be proven to
converge under very general asynchronous timing assumptions.
Our results are verified by both simulation and experiments on
a real-world TCP/IP network.

I. INTRODUCTION

This article focuses on a distributed iterative procedure for
calculating averages over an asynchronous communication
network. This style of asynchronous computing has seen a
renewed interest in recent years as a consequence of new
developments in low-cost wireless communication and local
computation. While asynchronous iterative computing is not
new in itself (see the classic reference [1]), some new twists
arise when one attempts to implement such schemes on
unstructured, packet-switched, communication networks.

Much recent research has focused on various distributed
iterative algorithms. For a representative sample of devel-
opments in this area, we direct the reader to [2], [3], [4],
[5], and references therein. We also refer the reader to [6]
and [1] for a general and accessible overview of distributed
asynchronous computing.

Averaging serves as a useful prototype for asynchronous
iterative computations both because of its simplicity, and
its applicability to a wide range of problems. On a sensor
network, one may be interested in the average of physical
measurements over the whole network. In problems that
concern vehicle formation, the quantities being averaged can
be the coordinates of the vehicles, and the average can
represent the center of mass. A network of servers may
wish to collaboratively calculate the average process load, in
order to implement some load balancing scheme. A peer-to-
peer file-sharing network on the Internet can compute other
application-specific averages of interest.

In principle, one can choose to calculate averages by
flooding the whole network with all the values, or by using
structured message propagation over a known overlay net-
work (e.g. a spanning tree). These are both natural methods
for solving a distributed averaging problem, but the former
has very large messaging complexity, and the latter requires
a structured overlay network. Further, these require global
exchange of information. While it is not clear that this is
necessarily a problem in the applications we have discussed

above, it seems likely that a scheme involving only local
exchange may be desirable.

In many scenarios an exact average is not required, and
one may be willing to trade precision for simplicity. The
scalability, robustness, and fault-tolerance associated with
iterative schemes can be superior in many situations where
exact averaging is not essential. These schemes also resolve
the global exchange problem, as they only require commu-
nication of variables among local neighbors.

In this paper, we will present two practically imple-
mentable iterative algorithms, and show their convergence in
a general asynchronous environment. Our analysis is verified
by simulation and experiments on a real-world TCP/IP
network. In combination, these results show that the method
proposed is both analytically understandable, and practically
implementable.

II. BACKGROUND AND PROBLEM SETUP

Consider a network, modeled as a connected undirected
graph G = (V, E). We refer to the vertices (elements of V)
as nodes, and the edges (elements of E) as links. The nodes
are labeled i = 1, 2, . . . , n, and a link between nodes i and
j is denoted by ij.

Each node has some associated numerical value, say z i,
which we wish to average over the network. We will refer
to the vector z whose ith component is zi. Each node on the
network also maintains a dynamic variable xi, initially set
to the static value zi. We call xi the state of the node i.

When we wish to show the time dependence, we will use
the notation xi(t). We use the notation x to denote the vector
whose components are the xi terms. Intuitively each node’s
state xi(t) is its current estimate of the average value of the
network

∑n
i=1 zi/n. The goal of the averaging algorithms,

is to let all states xi(t) go to the average
∑n

i=1 zi/n, as
t → ∞.

The work in [7] proposes the following discrete-time
system as a mechanism for calculating averages in a network:

x(t + 1) = x(t) − γLx(t) (1)

where γ is a stepsize parameter, and L is the Laplacian
matrix associated with the undirected graph G.

The Laplacian matrix L is defined as

Lij =

⎧⎪⎨
⎪⎩

di if i = j

−1 if there is a link between i and j

0 otherwise

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThB14.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 7446

where di is the degree, or the number of neighbors node i
has. The algorithm (1) can be viewed as an iterative gradient
method for solving the following optimization problem:

min
x∈Rn

1
2x

T Lx

s.t.
∑

i xi =
∑

i zi .

Therefore it is not hard to show that this algorithm drives
all states xi to the average, provided the stepsize γ satisfies

0 < γ <
1

2dmax

where dmax is the maximum of all the node degrees di.
Other authors have also considered similar iterative mech-

anisms, including the work of [8] which examines the
possibility of topology optimization for maximizing the
convergence rate of the algorithm.

Unfortunately, all of these results share the drawback
of not being directly implementable on a packet-switched
network like the Internet. The main problem is the implicit
synchronization. Real-world networks constitute an inher-
ently asynchronous environment with dynamic network de-
lays; synchronization is impractical and undesirable. Another
problem with the algorithm (1) is that each node must use
exactly the same stepsize. Moreover, the allowable stepsize
bound depends on global properties of the network. This
information is not available locally and therefore global
coordination must be involved. In the following sections, we
will propose algorithms that do not require synchronization
or global coordination.

III. ALGORITHM A1

In this section we will introduce our first algorithm. We
denote it A1 in distinction to another algorithm we will show
later. At each node i there is a local stepsize parameter γi,
0 < γi < 1 upon which the node’s computation is based.
They do not need to be coordinated.

The fundamental “unit” of communication in our scheme
is a pairwise update between two nodes. We require two
(distinguishable) types of messages, identified in a header.
We refer to these two types as state messages and reply
messages. An update is initiated whenever a node sends out
a state message containing the current value of its state.

An overview of the message-passing scheme that will
enable the pairwise update is as follows:

MP1: At some time, node i initiates a state message con-
taining its current state value to some other node j. At
some later time, node j receives this message.

MP2: Node j implements a local computation based on the
value it receives. It records the result of this computa-
tion in a reply message, and sends this message back
to node i.

MP3: At some later time, node i receives j’s reply, and
implements a local computation based on the content
of the reply message.

In addition to the message-passing scheme, in order to
make sure that communications between different pairs of
nodes will not interfere, we require that the nodes implement
blocking. Whenever a node sends out a state message, it
does not reply to incoming state messages until it receives
a reply from the receiver. Instead, it sends back a negative
acknowledgement (NACK) indicating that it already has a
pairwise update in progress. It also does not initiate any other
updates while blocking.

Whenever a node receives a NACK, the update terminates
prematurely with no effect on either of the local variables,
and the node stops blocking. With the blocking mechanism
in place, a pairwise update is specified as follows:

PW1: Node j receives a state message from node i. If it is
blocking, it does nothing and sends a NACK to node
i.

PW2: Otherwise, it implements xj ← xj + γj(xi − xj).
PW3: Then, it generates a reply message containing the

numerical value γj(xi − xj), and sends it to i.
PW4: Node i receives the reply message, and implements

xi ← xi − γj(xi − xj).

Note that node i does not need to know γj ; all it needs
to know is how much change node j has made, which
is contained in the reply message. Also note that after an
update, node i has exactly compensated the action of node
j, in the sense that the sum of the states is conserved.

For the moment, we do not specify the timing or triggering
for this event; we will propose one possible scheme (imple-
mentation) in section V. We will merely make the following
assumption:

Eventual Update Assumption: for any link ij and any
time t, there exists a later time tl > t such that there is an
update on link ij at time tl.

This assumption is very similar to the totally asynchronous
timing model in [1]. It turns out that this very general
asynchronous timing assumption is sufficient to guarantee
convergence of the state values under algorithm A1.

IV. CONVERGENCE OF ALGORITHM A1

Because of the blocking behavior, updates that happen on
one link will never interfere with updates on another. This
generates a property that is very useful for analysis:

With blocking, although updates on different links
can span overlapping time intervals, the resulting
state values of the network will be as if the updates
were non-overlapping, and therefore sequential in
time.

Thus, aside from the timing details of when updates are
initiated, it is equivalent to consider a sequence of synchro-
nized updates enumerated in discrete time T = {0, 1, 2, ...},
and there is only one update at each time instant. We will
do so for the purposes of the analysis to follow.

We need to show that any algorithm satisfying the Even-
tual Update Assumption and implementing the interaction

7447

x
1
 = 0.7

x
2
 = 0.5

x
3
 = 0.2 x

4
 = 0.9

Fig. 1. An example network consisting of four nodes in a “star” topology.

(with blocking) described in section III must converge to the
average. Our proof will make use of the following “potential”
function:

P (t) =
∑
∀(i,j)

|xi(t) − xj(t)| (2)

where the sum is over all n(n−1)
2 possible pairs (i, j). For

instance, the potential function for the network in Figure 1
is

|x1 − x2| + |x1 − x3| + |x1 − x4|
+ |x2 − x3| + |x2 − x4| + |x3 − x4|

Lemma 1: If nodes (i, j) update at time t while node i
being the sender, then at the next time unit t + 1

P (t + 1) ≤ P (t) − 2 min{γj , 1 − γj}|xi(t) − xj(t)| (3)

Proof: In summary at time t + 1⎧⎪⎨
⎪⎩

xi(t + 1) = (1 − γj)xi(t) + γjxj(t)
xj(t + 1) = γjxi(t) + (1 − γj)xj(t)
xk(t + 1) = xk(t), ∀k �= i, j

(4)

Therefore besides the term |xi − xj |, n − 2 terms of the
form |xk−xj | and n−2 terms of the form |xi−xk|, k �= i, j
in the potential function P (t), are affected by the update.
First of all we have

|xi(t + 1) − xj(t + 1)| = |(1 − 2γj)||xi(t) − xj(t)| (5)

Now consider the sum of two of the affected terms |xk(t)−
xi(t)| + |xk(t) − xj(t)|. If we look at the relative positions
of xi(t), xj(t), and xk(t) on the real line, then either xk

is on the same side of xi and xj or it is in between them.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x
3

x
2

x
1

x
4

x
i

Fig. 2. The four node network embedded on the real line according
to node value xi. The bold lines indicate segments, i.e. intervals on the
real line separating two adjacent values. The dashed curves indicate the
communication topology from Figure 1. Thus, an update on the link between
node 1 and node 3 will claim two segments, [x3, x2] and [x2, x1].

Therefore as long as 0 < γi < 1, it is clear geometrically in
both cases we have

|xk(t + 1) − xi(t + 1)| + |xk(t + 1) − xj(t + 1)|
≤ |xk(t) − xi(t)| + |xk(t) − xj(t)|

Therefore

P (t + 1) − P (t) ≤ |xi(t + 1) − xj(t + 1)|
−|xi(t) − xj(t)|

≤ −2 min{γj, 1 − γj}|xi(t) − xj(t)|

The quantity min{γj , 1 − γj} can be thought of as an
effective stepsize for node j since a stepsize of .6, say, is
equivalent to .4 in terms of reducing the relative difference
in absolute value.

Lemma 2: At any time t, there exists a later time t′ > t
such that at time t′ there has been at least one update on
every link since time t. Furthermore,

P (t′) ≤
(

1 − 8γ∗

n2

)
P (t) (6)

where γ∗ = mini min{γi, 1 − γi}
Proof: Without loss of generality, suppose at time t

we have x1(t) ≤ x2(t) ≤ ... ≤ xn(t). We call the n − 1
terms of the form |xi(t) − xi+1(t)|, i ∈ {1, 2, ..., n − 1},
segments of the network at time t. By expanding every term
in the potential function as a sum of segments, we see that
the potential function can be written as a linear combination
of all the segments:

7448

P (t) =
n−1∑
i=1

(n − i)i |xi(t) − xi+1(t)| (7)

We say that a segment |xi(t)−xi+1(t)| at time t is claimed
at time t′ > t, if there is an update on a link of nodes
r and s such that the interval [xs(t′), xr(t′)] (on the real
line) contains the interval [xi(t), xj(t)]. For instance, for the
network in Figure 1, the segments are |x3 − x2|, |x2 − x1|,
and |x1 − x4|, as shown in Figure 2. Thus, an update on the
link between node 1 and node 3 will claim segments [x3, x2]
and [x2, x1].

Clearly by using the Eventual Update Assumption on each
link, the existence of t′ is guaranteed. From Lemma 1 it is
clear that whenever a segment is claimed, it contributes a
reduction in the potential function proportional to its size (see
(3)). Referring to Figure 2, it is clear an update that does
not claim a segment can only leave the segment unchanged
or make it larger. Therefore no matter when a segment is
claimed after time t, it will contribute at least 2γ∗|xi(t) −
xi+1(t)| reduction in the potential function.

Now connectedness of the network implies that for each
segment, there is at least one link such that an update on
that link will claim the segment. Therefore by time t ′ all
segments will be claimed. Thus the total reduction in the
potential function between t and t ′ is at least

2γ∗
n−1∑
i=1

|xi(t) − xi+1(t)| .

It follows that

P (t′) ≤ P (t) − 2γ∗
n−1∑
i=1

|xi(t) − xi+1(t)|

=

(
1 −

∑n−1
i=1 2γ∗ |xi(t) − xi+1(t)|∑n−1

i=1 (n − i)i |xi(t) − xi+1(t)|

)
P (t)

≤
(

1 − 8γ∗

n2

)
P (t)

where in the last inequality we use the fact that n(n− i) ≤
n2/4.

With the above lemmas, we are ready to show conver-
gence:

Theorem 1: limt→∞ xi(t) = 1
n

∑n
i=1 zi, i.e. the average

of the initial conditions of the network, ∀i ∈ {1, 2, ..., n}.

Proof: Repeatedly applying Lemma 2, we see that

lim
t→∞P (t) = 0 (8)

Therefore

lim
t→∞ |xi(t) − xj(t)| = 0, ∀i, j (9)

x
1
 = 0.7

x
2
 = 0.5

x
3
 = 0.2 x

4
 = 0.9

Fig. 3. The graph H for the example network, where the node indices are
taken as the UIDs.

now by the conservation property
n∑

i=1

xi(t) =
n∑

i=1

zi, ∀t (10)

we see that

lim
t→∞xi(t) =

1
n

n∑
i=1

zi. (11)

V. IMPLEMENTATION AND DEADLOCK AVOIDANCE

Any implementation that satisfies the Eventual Update
Assumption is within the scope of the convergence proof
of A1. However we have not, as yet indicated a specific
mechanism for the update triggering. Caution must be taken
because of the blocking behavior. Without a properly de-
signed procedure for initiating communication, the system
can drive itself into a deadlock.

Below we present one particular implementation based
on a round-robin initiation pattern, which provably prevents
deadlock and satisfies the updating assumption. This is by no
means the only way to carry this out, but it has the advantage
of being simple and easy to implement.

Our implementation will be based on some unique identi-
fiers (UID), e.g. IP address. Based on these UIDs, we impose
an additional directed graph H = (V, F), in which an edge
points from i to j if and only if node j has a higher UID
than node i. This graph has two important properties:

H1: H has at least one root, i.e. a node with no inbound
edges.

H2: H is acyclic.

This graph is illustrated for our four-node example net-
work in Figure 3.

Our proposed initiation scheme is as follows:

7449

0 1 2 3 4 5 6

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time ms

x
i

Sample Trajectories from Simulation of A1 on 50−node Network

Fig. 4. State histories from a simulation of the provably convergent
algorithm A1 on a fifty-node network. Round-trip delays on each link
were assigned randomly, between 40 (ms) and 1000 (ms). Note that this
represents forty seconds of simulation time; this is clear motivation for the
more aggressive algorithm A2.

RR1: A node will wait to observe updates from all of its
inbound edges.

RR2: The node will then sequentially initiate communication
with each of its outbound edges, ordered by UID.

RR3: Upon completion, it repeats, waiting for all of its
inbound edges and so on.

Lemma 3: The above procedure guarantees that the Even-
tual Update Assumption is satisfied.

We will prove this by contradiction. Suppose there is a a
link ij and an interval [t,∞) during which this link does not
update. Then, node i must be waiting for one of its inbound
edges to be activated, implying the existence of a node k with
a UID lower than that of i, which is also waiting for one of
its inbound edges to be activated. Repeating this argument,
and utilizing the fact that H is acyclic, we can find a path
of inactive edges beginning at a root. However, a root has
no inbound edges, and hence must initiate communication
on all of its outbound edges at some point in [t,∞). This is
a contradiction, and proves the desired result.

VI. SIMULATION OF A1

We have written a discrete event simulator in Java and
simulated algorithm A1. Below, we present a simulation of
A1 with 50 nodes on a random topology with maximum
degree 5. The stepsizes were chosen to be .5 for all nodes and
the round-trip delays on the links were uniformly randomly
distributed from 40(ms) to 1000(ms). Half of the nodes
started with initial states 0 and the others with 1; the target
average was therefore .5. The results of this simulation are
shown in Figure 4.

VII. ALGORITHM A2

The blocking behavior for algorithm A1 requires occa-
sional dropping of packets, which may not be desirable when
node power is a scarce resource. Moreover, it constitutes

most of the coding complexity in the implementation of A1.
As an alternative, we will propose another algorithm, denoted
by A2.

We will denote the set of all neighbors of node i to be N i.
In A2, each node i has an additional set of dynamic variables
δij , for all j ∈ Ni (namely, one for each neighbor). In other
words, if there is a link connecting nodes i and j, there
will a dynamic variable δij stored with node i, and another
dynamic variable δji stored with node j. The algorithm A2
is specified in terms of the xi’s and the δij’s as follows in
the synchronous environment:

{
xi(t + 1) = xi(t) + γi

[∑
j∈Ni

δij(t) + zi − xi(t)
]

δij(t + 1) = δij(t) + φij [xj(t) − xi(t)]
(12)

Under A2, each xi is initialized to zi as in A1, and each
δij is initialized to 0. If there is a link between i and j, the
parameters φij and φji are set to be equal. The variables δij

and δji on each link ij can be arranged to conserve their sum
(i.e., 0) in the same way A1 conserves the sum of states.

It can be shown that the above mapping is a contraction
mapping, provided the stepsizes γi and φij satisfy

{
0 < γi < 1

di+1

0 < φij < 1
2

Notice that the stepsize constraints are local: each node only
needs to know the local degree di to determine the above
stepsize bounds.

In the convergence proof of A1, we have used the fact that
there are no overlapping updates on adjacent links. Therefore
we can ignore the message-passing details and just consider
each complete pairwise update in a sequence of discrete time
instants as in (4). A2 does not impose the blocking constraint
and thus it does not enjoy this nice property for analysis.

In particular, under A2, after node i sends out a state
message to node j, node i is allowed to immediately send out
another state message to some other neighbor k regardless of
when node j’s reply arrives. While waiting for a reply from
node j, node i can also accept any incoming reply messages,
and any state messages from all neighbors (including node
j).

We enumerate all these message-passing events in the set
T = {0, 1, 2, ...}, and let T ij ⊂ T be the set of times when
δij updates its value, and T i ⊂ T be the set of times when
xi updates its value. Equations (12) become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi(t + 1) = xi(t) + γi

[∑
j∈Ni

δij(τ i
ij) + zi − xi(t)

]
, if t ∈ T i

xi(t + 1) = xi(t), if t /∈ T i

δij(t + 1) = δij(t) + φij

[
xj(τ

ij
j) − xi(τ

ij
i)

]
, if t ∈ T ij

δij(t + 1) = δij(t), if t /∈ T ij

where 0 ≤ τ ij
i , τ ij

j , τ i
ij ≤ t indicate possibly “old” copies of

the variables involved in the update equations. (see [1] for
more details.)

7450

It can be shown that the following asynchronous timing
assumption guarantees convergence of all the states to the
desired average value:

Total asynchronism: (as defined in [1]) Given any time t1,
there exists a later time t2 > t1 such that

τ ij
i (t) ≥ t1, τ

i
ij(t) ≥ t1, ∀i, j, and t ≥ t2 (13)

This is in spirit similar to the Eventual Update Assumption
for A1. In general, we have the following asynchronous
convergence theorem for A2:

Theorem 2:

lim
t→∞xi(t) =

1
n

n∑
i=1

zi, ∀i

under A2 with total asynchronism, provided the stepsizes
satisfy {

0 < φi < 1
di+1

0 < γij < 1
2

Proof: Due to space limitations we will only sketch the
proof. It can be shown that given the stepsize constraints,
the synchronous equations are a contraction mapping with
respect to infinity norm. Also, the linear part of the mapping
satisfies the diagonal dominance property. Using Proposition
2.1 of Section 6.2 in [1], A2 converges under total asynchro-
nism.

VIII. EXPERIMENTAL RESULTS

We developed an implementation of A2 in a C socket
program and deployed it on the PlanetLab network [10]. We
performed several runs of the algorithm, each time randomly
choosing 50 to 100 nodes. Round-trip delays on this network
ranged between tens of milliseconds and one second. Various
overlay topologies were tested, with consistent convergence
on the order of a few seconds.

In each experimental run, every node obtained a list
of neighbors from a central server and established TCP
connections to its neighbors. After the topology-formation
phase was completed, the nodes were each sent a message
instructing them to begin the iterative computation with their
neighbors. One sample of these experimental results is shown
in Figure 5. Note that despite comparable round-trip times to
those used in the simulation of A1, the experimental results
for A2 show much more rapid convergence.

IX. SUMMARY, CONCLUSION, AND FUTURE WORK

We have presented a class of practically implementable
distributed iterative averaging algorithms, inspired by the
Laplacian algorithm of [7]. Our algorithms do not rely
on synchronization, knowledge of the global topology, or
coordination of parameter values. The iterative nature of the
algorithm renders it robust to changes in topology.

Our analytical results for A1 show that under a mild
timing assumption, the asynchronous message-passing algo-
rithms can achieve exponential convergence. Despite this, the
blocking behavior of A1 is unduly conservative, and so we
have introduced the significantly more aggressive algorithm

0 1 2 3 4 5 6 7 8 9 10

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sample Trajectories from A2 Experiments on 100−node Planetlab Network

time µ s

x
i

Fig. 5. Sample histories from an experiment on the PlanetLab network,
using one-hundred nodes and the completely asynchronous algorithm A2.
Round trip times on this network ranged between tens of milliseconds to
approximately half a second. Note the rapid convergence of the estimates.

A2, which is also provably convergent under very general
asynchronous timing.

We have presented simulations, as well as experimental
results from a real-world TCP/IP network. These results
demonstrate the desired convergence behavior, and show that
the algorithms proposed can be implemented robustly in a
practical network.

REFERENCES

[1] D.P. Bertsekas and J.N. Tsitsiklis, “Parallel and distributed computa-
tion: Numerical methods,” Prentice Hall, 1989.

[2] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analaysis,” Proceedings of STOC, 2004.

[3] D. Kempe, A. Dobra, and J. Gehrke, “Computing aggregate informa-
tion using gossip,” Proceedings of FOCS, 2003.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip and mixing
times of random walks on random graphs,” Proceedings of STOC,
2004.

[5] M. Jelasity, W. Kowalczyk, and M. van Steen, “An approach to
massively distributed aggregate computing on peer-to-peer networks,”
Proceedings of the 12th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, 2004.

[6] N. Lynch, “Distributed algorithms,” Morgan Kaufmann Publishers,
1997.

[7] R. Olfati-Saber and R. Murray, “Consensus Problems in Networks of
Agents with Switching Topology and Time-Delays,” IEEE Trans. on
Automatic Control, vol. 49, no. 9, September 2004.

[8] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Proceedings of the Conference on Decision and Control, 2003.

[9] D.P. Spanos, R. Olfati-Saber, and R.M. Murray, “Dynamic consensus
on mobile networks,” Preprint (Submitted to IFAC 05), 2005.

[10] PlanetLab http://www.planet lab.org, ,” .

7451

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

