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Abstract— Sensor scheduling has been a topic of interest to
the target tracking community for some years now. Recently,
research into it has enjoyed fresh impetus with the current
importance and popularity of applications in Sensor Networks
and Robotics. The sensor scheduling problem can be formulated
as a controlled Hidden Markov Model. In this paper, we address
precisely this problem and consider the case in which the state,
observation and action spaces are continuous valued vectors.
This general case is important as it is the natural framework
for many applications. We present a novel simulation-based
method that uses a stochastic gradient algorithm to find optimal
actions.1

I. INTRODUCTION

Consider the following continuous state Hidden Markov
Model (HMM), Xk+1 = f(Xk, Ak+1,Wk) ∈ Rnx , Yk =
g(Xk, Ak, Vk) ∈ Rny , where Xk is the hidden system
state, Yk the observation of the state, and Wk and Vk are
i.i.d. noise terms. Unlike the classical HMM model, the
evolution of the state and observation processes depends
on an input parameter Ak ∈ Rna , which is the control or
action. In HMM models, one is primarily concerned with
the problem of estimating the hidden state, which is achieved
by propagating the posterior distribution (or filtering density)
πk(x)dx = P(Xk ∈ dx|A1:k, Y1:k). By a judicious choice
of control sequence {Ak}, the evolution of the state and
observation processes can be ‘steered’ in order to yield
filtering densities that give more accurate estimates of the
state process. This problem is also known in the literature as
the sensor scheduling problem.

Sensor scheduling has been a topic of interest to the target
tracking community for the some years now [3], [7], [10],
[11], [5]. The classical setting is the problem of tracking
a maneuvering target over N epochs. Here Xk denotes the
state of the target at epoch k, Yk the observation provided
by the sensor, and Ak some parameter of the sensor that
may be adjusted to improve the “quality” of the observation.
A measure of tracking performance is the variance of the
tracking error over the N epochs:

E
{

(ψ(Xk) − 〈πk, ψ〉)2
}

, k = 1, . . . , N, (1)

where ψ : Rnx → R is a suitable test function that
emphasises the components of interest of the state vector

1Acknowledgement: S.Singh and A. Doucet were funded by EPSRC, N.
Kantas by DIF-DTC, and B. Vo by an ARC large grant.

we wish to track. The aim is to minimise the tracking error
variance with respect to the choice of actions {A1, . . . , AN}.

When the dynamics of the state and the observation
processes are both linear and Gaussian then, the optimal
solution to the sensor scheduling problem (1) (when ψ
gives a quadratic cost) can be computed off-line; this is
not surprising given that the Kalman filter covariance is
also independent of the actual realisation of observations.
In the general setting studied in this paper, the dynamics
can be both non-linear and non-Gaussian, which means that
the filtering density πk, and integration with respect to it,
cannot be evaluated in closed-form. Hence, the variance
performance criterion itself does not admit a closed-form
expression. To further complicate matters, the actions sought
are continuous valued, i.e., vectors in Rna .

To address the complications to do with the non-linear
and non-Gaussian dynamics, one could linearise the state
and observation model [7]. The majority of works [5], [8],
[11] (and references therein), while aim at minimising the
tracking error variance, do so approximately by minimising a
lower bound to the variance criterion. The bound in question
is the Posteriori Cramer-Rao Lower Bound (PCRLB), which
is the inverse of the Fisher Information Matrix (FIM). This
approach hinges on the ability to propagate recursively the
FIM in closed form by a Ricatti-type equation for the non-
linear and non-Gaussian filtering problem. Unfortunately, the
recursion for the FIM involves evaluating the expectation
of certain derivatives of the transition probability density of
the state dynamics, as well as the expectation of certain
derivatives of the observation likelihood (see (2) and (3)
below). As these quantities cannot be evaluated in general
except for the linear and Gaussian case, this assumption
is either invoked or the authors resort to simulation-based
approximations. In addition, the PCRLB bound is not always
tight.

The aim of this paper is to solve the sensor scheduling
problem with continuous action space directly.We make no
assumptions of linearity or Gaussianity for analytic conve-
nience, nor do we discretise the state, observation, or action
space. We avoid these restrictive modelling assumptions on
the continuous state HMM by recourse to methods based
on computer simulation (simulation for short).Under suitable
regularity assumptions, one can guarantee convergence to
a local optimum of the performance criterion, while it is
difficult to make similar assertions about the quality of the
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solutions obtained by other approximate methods proposed
in the literature for sensor scheduling.

Notation: The notation that is used in the paper is now
outlined. The norm of a scalar, vector or matrix is de-
noted by |·|. For a vector b, |b| denotes the vector 2-norm√∑

i |b(i)|2. For a matrix A, |A| denotes the matrix 2-
norm, maxb:|b|�=0

|Ab|
|b| . For convenience, we also denote a

vector b ∈ Rn by b = [b(i)]i=1,...,n, or the i-th component
of a vector by [b]i. For scalars aj,i, j = 1, . . . , m, i =
1, . . . , n, let

[
[aj,i]j=1,...,m

]
i=1,...,n

denote the stacked vec-

tor [a1,1, . . . , am,1, . . . , a1,n, . . . , am,n]T .) For a function f :
Rn → R with arguments z ∈ Rn, we denote (∂f/∂z(i)) (z)
by ∇z(i)f(z) and ∇f(z) = [∇z(1)f(z), · · · ,∇z(n)f(z)]T .
For the vector valued function F = [F1, · · · , Fn]T : Rn →
Rn, let ∇F denote the matrix [∇F1, · · · ,∇Fn]. For a
real-valued integrable functions f and g, let 〈f, g〉 denote∫

f(x)g(x)dx.

II. PROBLEM FORMULATION

At time k, let Xk and Yk be random vectors that model
the nx-dimensional state and its ny-dimensional observation
respectively. Suppose that an action Ak ∈ Rna is applied at
time k. The state {Xk}k≥0 is an unobserved Markov process
with initial distribution and transition law given by

X0 ∼ π0, Xk+1 ∼ p (·|Xk, Ak+1) . (2)

(The symbol “∼” means distributed according to.) The
observation process {Yk}k≥1 is generated according to the
state and action dependent probability density

Yk ∼ q (·|Xk, Ak) . (3)

Given the sequence of actions a1:k := {a1, ..., ak} and
measurements y1:k := {y1, ..., yk}, the filtering density
at time k is denoted by πk, (or π

(y1:k,a1:k)
k to emphasise

the dependence on y1:k and a1:k,) and satisfies the Bayes
recursion

πk(x) =
q (yk|x, ak)

∫
p(x|x′, ak)πk−1(x′)dx′∫ ∫

q (yk|x, ak) p(x|x′, ak)πk−1(x′)dx′dx
. (4)

Consider a suitable test function ψ : Rnx → R where,
for example, ψ could pick out a component of interest of
the state vector we wish to estimate. The optimal sensor
scheduling problem is to solve

minA1:N∈ΘA
J(A1:N ) =

E(π0,A1:N )

{∑N
k=1 βN−k (ψ(Xk) − 〈πk, ψ〉)2

}
, (5)

where ΘA ⊂ (Rna)N and for any 1 ≤ k ≤ N and integrable
function h : (Rnx)k × (Rna)k × (Rny )k → R,

E(π0,A1:k) {h(X1:k, A1:k, Y1:k)} :=
∫

h(x1:k, A1:k, y1:k)

× Πk
i=1q (yi|xi, Ai) p (xi|xi−1, Ai) π0(x0)dy1:kdx0:k. (6)

β ∈ [0, 1] is a discount factor and its inclusion favours better
tracking performance in the later epochs.

Feedback control: The sensor scheduling problem stated
in (5) is an open-loop stochastic control problem. In order to
utilise feedback, we will use the open-loop feedback control
(OLFC) approach, which is described in detail in [1].

Simulation and gradient based methods: We do not have
a closed-form expression for J because the filtering density
πk and integration with respect to it cannot be evaluated in
closed-form in our general setting. To evaluate J(A1:N ), we
could revert to state-space discretisation. One could discretise
Rnx , Rny and derive the corresponding state evolution and
observation laws, i.e. (2) and (3), for the approximating
discrete problem. We may then calculate the approximation
to J(A1:N ) for any choice of actions. However this approach
is computationally prohibitive and we would be limited to
a coarse discretisation and a small horizon N at best. Also,
it is not obvious how to choose the grid in Rnx and Rny ,
since, for accuracy of the approximation, the grid should be
finer in the regions where density in (6) has more mass. In
[11], the HMM is discretised and a close-loop formulation
of problem (5) is solved. A close-loop formulation of (5)
is known as a Partially Observed Markov Decision Process
(POMDP).

We propose to use simulation with Stochastic Approxi-
mation (SA) to minimise J(A1:N ) when ΘA is an open (i.e.
continuous) set without resorting to discretising Rnx , Rny

or ΘA. SA is a gradient descent algorithm that only requires
noisy estimates of the cost function gradient, i.e.,

A1:N,k+1 = A1:N,k − αk

(∇J(A1:N )|A1:N=A1:N,k
+ noise

)
,

(7)
where ∇J(A1:N ) denotes the gradient of J w.r.t. A1:N . The
step-size αk is a non-increasing positive sequence tending to
zero. In Section III, we derive the gradient ∇J . Once again,
we do not have a closed-form expression for ∇J for the
same reasons as in J ; the filtering density πk and integration
with respect to it cannot be evaluated in closed-form in our
general setting. We will show instead how one may obtain a
low variance estimate of ∇J , namely ∇̂J . The noise in (7)
arises precisely because we use ∇̂J instead of ∇J . Under
suitable assumptions on the noise in (7), one can guarantee
that A1:N,k eventually converges to a local minimiser of J .

III. THE COST GRADIENT AND ITS SIMULATION-BASED

APPROXIMATION

In this section, we derive the gradient of the cost
function (5) with respect to A1:N . We then propose a
suitable simulation-based approximation for optimising
with SA. Keeping in mind that (ψ(Xk) − 〈πk, ψ〉)2
is a function of the form h(X1:k, A1:k, Y1:k), then

(6) implies 2 that EA1:N

{
(ψ(Xk) − 〈πk, ψ〉)2

}
=

EA1:k

{
(ψ(Xk) − 〈πk, ψ〉)2

}
. Thus,

∇Al
EA1:N

{
(ψ(Xk) − 〈πk, ψ〉)2

}
= 0 for l > k. For

2Because the problem (5) is solved for a fixed initial state distribution
π0, henceforth, we omit reference to π0 in the notation for E(π0,A1:N )
and denote the probability with respect to which this expectation is taken
by PA1:N .

7297



l ≤ k, using (6),

∇Al

∫ (
ψ(xk) −

〈
π

(y1:k,A1:k)
k , ψ

〉)2

× Πk
i=1q (yi|xi, Ai) p (xi|xi−1, Ai) π0(x0)dx0:kdy1:k

=
∫ (

ψ(xk) −
〈
π

(y1:k,A1:k)
k , ψ

〉)2

×∇Al

[
Πk

i=1q (yi|xi, Ai) p (xi|xi−1, Ai)
]
π0(x0)dx0:kdy1:k

+
∫

∇Al

[(
ψ(xk) −

〈
π

(y1:k,A1:k)
k , ψ

〉)2
]

× Πk
i=1q (yi|xi, Ai) p (xi|xi−1, Ai) π0(x0)dx0:kdy1:k.

The first term of the gradi-
ent is EA1:N {(ψ(Xk) − 〈πk, ψ〉)2 ×[∇Al

q(Yl|Xl,Al)

q(Yl|Xl,Al)
+ ∇Al

p(Xl|Xl−1,Al)

p(Xl|Xl−1,Al)

]
}.

The second term of the gradient is

EA1:N {∇Al
[
(
ψ(Xk) −

〈
π

(Y1:k,A1:k)
k , ψ

〉)2

]} = −2×
EA1:N {

(
ψ(Xk) −

〈
π

(Y1:k,A1:k)
k , ψ

〉)
∇Al

〈
π

(Y1:k,A1:k)
k , ψ

〉
}

= 0, where the last line follows from conditioning on Y1:k. It
follows from the above derivation that to obtain an unbiased
estimator of ∇Al

J(A1:N ) for a given A1:N , one samples a
realisation of states and observations (Y1:N , X0:N ) ∼ PA1:N

and forms the following estimate,

∇̂Al
J(A1:N ) =

N∑
k=l

βN−kEA1:N {(ψ(Xk) − 〈πk, ψ〉)2

×
[∇Al

q (Yl|Xl, Al)
q (Yl|Xl, Al)

+
∇Al

p (Xl|Xl−1, Al)
p (Xl|Xl−1, Al)

]
|Y1:k}, (8)

where we have added the conditioning on Y1:k as it leads to
a lower variance gradient estimate.3

We now describe how to implement the gradient es-
timate (8). In sensor scheduling applications concerning
target tracking, the state process Xk is the state of the
target to be tracked and often evolves independently of
the action. Henceforth, we assume this independence for
simplicity in presentation, i.e. p (Xk|Xk−1), and remark that
the work may also be extended to the more general case
of state evolution and control dependence.4 Now, define
the real-valued function called the score [9], S (y, x, a) :=
q (y|x, a)−1∇aq (y|x, a) ∈ Rna . To implement (8), we see
that we require both the marginal πk and the full posterior
π0:k for all N epochs, i.e., for 1 ≤ k ≤ N . We propose
to approximate these quantities using a mixture Dirac delta-
masses,

π̂0:k(x0:k) :=
L∑

j=1

w
(j)
k δ

X
(j)
0:k

(x0:k), (9)

3The variance is reduced since, for two jointly distributed random
variables X and Y , var(E(X|Y )) = var(X) − E(var(X|Y )), and
E(var(X|Y )) > 0.

4In methods that use the PCRLB [5], [8], [11], even after assuming {Xk}
evolves independently of {Ak}, one still needs to evaluate the expectation
of derivatives of ln p (Xk|Xk−1) w.r.t. Xk and Xk−1, while this is not
needed in (8).

where δ
X

(j)
0:k

denotes the Dirac delta-mass located at

X
(j)
0:k and the importance weights {w(j)

k }L
j=1 are non-

negative scalars that sum to one. The approxima-
tion to πk, namely π̂k, follows by marginalising π̂0:k.
There are a number of ways to define such a point-
mass approximation. For example, the simplest scheme
would be to sample L independent state trajectory

realisations
{

X
(j)
0:N

}L

j=1
from

(
ΠN

i=1p (xi|xi−1)
)
π0(x0).

The importance weights would then be w
(j)
k :=

{
L∑

j=1

Πk
i=1q

(
Yi|X(j)

i , Ai

)
}−1Πk

i=1q
(
Yi|X(j)

i , Ai

)
.For any

integrable function h,
∫

h(x0:k)π̂0:k(x0:k)dx0:k converges to∫
h(x0:k)π0:k(x0:k)dx0:k as L → ∞ (see [2, Ch. 2] for a

precise statement of the mode of convergence). Practically
though, we would prefer a small sample size L and this
simple scheme of sampling from the state transition model
can result in the majority of the importance weights w

(j)
k

being very small. There are number of remedies proposed for
this in the Sequential Monte Carlo literature [2, Ch. 1.3.2].

Now, for a given A1:N , one samples a realisation of
states and observations (X0:N , Y1:N ) ∼ PA1:N and forms
the following biased estimate of ∇Al

J(A1:N ) (8),

∑N
k=l βN−k{〈π̂0:k, ψ2

k(·)S (Yl, ·, Al)
〉

+ 〈π̂k, ψk〉2 〈π̂0:k, S (Yl, ·, Al)〉
−2 〈π̂k, ψ〉 〈π̂0:k, ψk(·)S (Yl, ·, Al)〉}. (10)

To prove the convergence of the SA recursion, we would
not be able to use standard SA results. Even though (10) is
a noisy estimate of ∇Al

J(A1:N ), the noise is not zero-mean
due to the bias of the simulation-based approximation to πk

and π0:k. To assert convergence of (7) to a minima of J ,
we would have to gradually increase the number of samples
L to remove the bias. Similar conditions are required for
convergence of SA driven by sample averages [9].

Henceforth, we fix the set of L state trajectory samples{
X

(j)
0:N

}L

j=1
that is used to approximate π0:k for all k and

form the following approximation to J5,

Ĵ(A1:N ) =
N∑

k=1

βN−kE(π0,A1:N )

{〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2
}

.

(11)
We will then derive an unbiased estimate of the gradient of
Ĵ in a similar manner to J above and minimise Ĵ via SA.
This approach is easier to analyse and we show that, under
suitable assumptions, SA converges to a local minimum of
Ĵ almost surely. 6

In the same way as gradient of J was derived in (8), we

5Note that by a conditioning argument, J(A1:N ) can be written as∑N
k=1 βN−kEA1:N

{〈
πk, ψ2

〉 − 〈πk, ψ〉2
}

.
6Since the error in the approximation π̂0:k diminishes as the sample size

L increases, Ĵ will be a good approximation to J for sufficiently large L.
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have

∇Al
Ĵ(A1:N ) =

N∑
k=1

βN−k∇Al
EA1:N

{〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2
}

=

EA1:N {
N∑

k=l

βN−k(
〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2)S (Yl, Xl, Al)}+
(12)

EA1:N {
N∑

k=l

βN−k(∇Al

〈
π̂k, ψ2

〉 − 2 〈π̂k, ψ〉∇Al
〈π̂k, ψ〉)},

(13)

where7

∇Al
〈π̂k, ψ〉 = 〈π̂0:k, ψS (Yl, ·, Al)〉
− 〈π̂k, ψ〉 〈π̂0:k, S (Yl, ·, Al)〉 . (14)

It is now straightforward to obtain a simulation-based ap-
proximation of ∇Ĵ(A1:N ). For a given A1:N , one samples a
realisation of states and observations (Y1:N , X0:N ) ∼ PA1:N

and forms the following unbiased estimate of ∇Al
Ĵ(A1:N ):

For l = 1, . . . , N

S (Yl, Xl, Al)
N∑

k=l

βN−k
(〈

π̂k, ψ2
〉 − 〈π̂k, ψ〉2

)

+
N∑

k=l

βN−k
(∇Al

〈
π̂k, ψ2

〉 − 2 〈π̂k, ψ〉∇Al
〈π̂k, ψ〉) . (15)

A. Variance Reduction by Control Variates

The variance of the gradient approximation (15) (or (10))
is quite large, because we are approximating high dimen-
sional integrals using simulation and more so, with moderate
sample sizes. Naturally, it would be possible to reduce the
variance by simply increasing the number of samples. We
do not wish to do so, as our aim is to extract the most
accurate estimates of the quantities of interest for a given
set of samples.

Given a random variable W and a zero-mean random
variable Z (control variate or CV) correlated with W , to
estimate E(W ) we use W − bZ where b is a constant
(CV constant). The estimator W − bZ is also unbiased.
Furthermore, the function of b, var(W − bZ) = var(W )−
2bcov(W,Z) + b2var(Z), is convex and is minimised at
b∗ = cov(W,Z)/var(Z), which implies the variance of the
estimate W − b∗Z of E(W ) is less than the variance of the
estimate W . In the context of the gradient estimate in (15),
we found in implementation that reducing the variance of
the estimate of (12) was sufficient.

The score in (12) is zero-mean, i.e.
E(π0,A1:N ) {S (Yl, Xl, Al)} = 0, and we use it as the

7It is possible to compute ∇Al
〈π̂k, ψ〉 when re-sampling is employed in

π̂k; resampling is commonly used in the Sequential Monte Carlo literature
to yield approximations to π̂k

CV. Doing so yields the following unbiased estimator of
∇Al

Ĵ instead of (15),

diag (S (Yl, Xl, Al)) (
N∑

k=l

βN−k(
〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2)1 − bl)

+
N∑

k=l

βN−k
(∇Al

〈
π̂k, ψ2

〉 − 2 〈π̂k, ψ〉∇Al
〈π̂k, ψ〉) ,

(16)

where 1 ∈ Rna and the CV constant (vector) bl ∈ Rna is
to be determined in order to minimise the variance of the
estimate. Noting that the optimal CV constant is a solution
of the minimisation problem (III-A), we may employ the
following SA algorithm to converge to it,

bl ←− bl −βdiag (S (Yl, Xl, Al)) (diag (S (Yl, Xl, Al)) bl

−
N∑

k=l

βN−k(
〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2)1), (17)

where β is the step-size. Under suitable assumptions stated
in Section IV, we will have bl converging to

E(π0,A1:N )

{
diag (S (Yl, Xl, Al))

2
}−1

×E(π0,A1:N ){diag (S (Yl, Xl, Al))
2

×∑N
k=l βN−k

(〈
π̂k, ψ2

〉 − 〈π̂k, ψ〉2
)
1}. (18)

The same approach applies when minimising the variance of
the gradient estimate (10) with control variates.

IV. SOLVING THE SENSOR SCHEDULING PROBLEM WITH

STOCHASTIC APPROXIMATION

We now state the simulation-based algorithm that will be
used to solve the sensor scheduling problem. It is a two
time-scale SA algorithm to minimise Ĵ using the reduced
variance estimate of ∇Ĵ given by (16) and (17). We do so
for the (general) case with action path subject to the equality
constraint as specified in A1:N = F (U1:N ), U1:N ∈ (Rnu)N ,
i.e. ΘA now corresponds to the range of the function F . Note
that although we could also apply algorithm (21)-(24) below
with the gradient estimate (10), we minimise Ĵ instead as its
convergence is easier to study; see comments immediately
following (10).

We introduce the following functions to make the presen-
tation of the main algorithm concise. For each A1:N , define
the functions hi,A1:N : (Rnx)N+1 × (Rny )N → (Rna)N ,
i = 1, 2, as follows:

h1,A1:N (X0:N , Y1:N ) :=

[S (Yl, Xl, Al)
N∑

k=l

βN−k
(〈

π̂k, ψ2
〉 − 〈π̂k, ψ〉2

)
]l=1,...,N ,

(19)

h2,A1:N (X0:N , Y1:N ) :=

[
N∑

k=l

βN−k
(∇Al

〈
π̂k, ψ2

〉 − 2 〈π̂k, ψ〉∇Al
〈π̂k, ψ〉)]

l=1,...,N
.

(20)
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Note that ∇Ĵ(A1:N ) = EA1:N {h1,A1:N (X0:N , Y1:N ) +
h2,A1:N (X0:N , Y1:N )}, ∈ (Rna)N

.
For technical reasons concerning the convergence of

the two time-scale SA algorithm below, we introduce the
positive scalar valued function Γ : (Rna)N → (0,∞),
Γ(b) := (1 + |b|)−1

C, where C is a positive constant. The
function Γ is needed to ensure that the CV constants remain
bounded almost surely (details in [10]).

The two time-scale SA algorithm for solving the sensor
scheduling problem: For conciseness, let

θ = U1:N , θ̃ = A1:N (= F (θ)) , ω = (X0:N , Y1:N ).

θk+1 =θk − αk+1Γ(bk)∇F (θk)
× (h1,θ̃k

(ωk+1) + h2,θ̃k
(ωk+1) − Sθ̃k

(ωk+1)bk),
(21)

bk+1 = bk − βk+1S
2
θ̃k

(ωk+1)bk

+ βk+1Sθ̃k
(ωk+1)h1,θ̃k

(ωk+1), (22)

ωk+1 ∼ Pθ̃k
, (23)

θ̃k = F (θk), k ≥ 0, (24)

where

SA1:N,k
(X0:N,k+1,Y1:N,k+1) =

diag
(
[S (Yl,k+1, Xl,k+1, Al,k)]l=1,...,N

)
. (25)

(Note that U1:N,k = θk, A1:N,k = θ̃k,
(X0:N,k+1, Y1:N,k+1) = ωk+1.)

Assumption 1: The step-size sequences {αk} and {βk}
are non-negative, sum to infinity, are squared summable and,

for some p > 0 satisfy
∑

k

(
αk

βk

)p

< ∞.

Typically, the step-sizes are αk = k−α, βk = k−β ,

where α > β > 0.5. Thus,
∑

k

(
αk

βk

)p

< ∞ may only
be satisfied for a large positive p. Since αk tends to zero
more quickly than βk, the recursion for the action (21) is
said to evolve on a slower time-scale than that for the CV
constants (22). By having U1:N,k evolve more slowly than
bk, we allow bk to ‘track’ the optimal CV constants, which
depend on the point at which the gradient ∇Ĵ is evaluated
(see (18)). In [10], using results from [6], we establish the
convergence of algorithm (21)-(24) for the choice of step-
sizes in Assumption 1.

V. APPLICATION TO OBSERVER TRAJECTORY PLANNING

In observer trajectory planning, we wish to track a ma-
neuvering target for N epochs. At epoch k, let Xk denote
the state of the target, Ak the position of the observer
and Yk the partial observation of the target state, i.e.,
Yk = g(Xk, Ak, Vk), where Vk denotes noise. Typically,
the observer has its own motion model and we let Xo

k

denote state of the observer.The aim of OTP is to adaptively
maneuver the observer to optimise the tracking performance
the target.

We do not need to specify the target model explicitly. Our
only concern is that we can sample from the model.In Section
VI, we consider a maneuvering target in the examples. we
require an observer model of the form A1:N = F (U1:N )
where we exert control on the observer positions A1:N

through the variables U1:N . For instance, the accelerations of
the observer could be determined from the input U1:N , which
will in turn determine the observer trajectory. This is pre-
cisely the model we adopt for the examples in Section VI. Let

the state of the observer be Xo
k =

[
ro
x,k, vo

x,k, ro
y,k, vo

y,k

]T

,

with Ak =
[
ro
x,k, ro

y,k

]T

. For example, we could assume a
kinematic model for the evolution of the state,

Xo
k+1 = GXo

k + H × c1 × arctan(c2Uk+1) (26)

where matrices G and H follow the standard definition [7].
As in the standard kinematic model, the initial state Xo

0 is
fixed and Uk+1 ∈ R2 determines the acceleration in the x
and y directions. The constants c1, c2 alter the saturation
behaviour of the acceleration. The observer trajectory is
completely determined once Xo

0 and U1:N are given. The
function F is now implicitly defined by (26).

In the bearings-only model, the observation process
{Yk}k≥0 (⊂ R) is generated according to Yk =
arctan

(
rx,k−Ak(1)
ry,k−Ak(2)

)
+ Vk, where Vk

i.i.d.
∼ N (0, σ2

Y ). In our
simulation-based framework, we require that the observation
process density is known and is differentiable w.r.t. Ak. The
bearings-only case is one such example. At this point we will
assume that the x and y position of the target correspond to
the first and third component of the state descriptor Xk, i.e.
Xk = [rx,k, ·, ry,k, · · · ]T , which is usual convention in the
literature.

A. Convergence For Bearings-Only Tracking

Proposition 2: If the support of random variables X0:N

and the range of function F do not intersect then, we have the
desired convergence of two time-scale SA for OTP. That is,
almost surely, limk

∣∣∣bk − S2(A1:N,k)−1S × h1(A1:N,k)
∣∣∣ =

0 and lim infk

∣∣∣∇(Ĵ ◦ F )(U1:N,k)
∣∣∣ = 0.

Proof: See [10].
It is interesting to note that the scenario in which the support
of X0:N and the range of F do not intersect is a standard
setting studied by previous works on OTP for bearings-only
observations (see references in the Introduction), and hence
the conditions of Proposition 2 are not restrictive for the
application.

VI. NUMERICAL EXAMPLE

In all examples below, ψ(Xk) = w1Xk(1) + w2Xk(3).
Weights w1, w2 ∈ [0, 1] are selected to trade-off accuracy in
tracking the x- and y- coordinates. We solve for the optimal
open-loop observer trajectory under a variety of tracking
scenarios, namely, with a fast observer, a slow observer
and two cooperating observers. Open loop feedback control
is implemented for the two observers case. All examples
consider a maneuvering target.
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Fast Observers: The setting for this example is a maneu-
vering target that is to be tracked by a single fast observer
and two cooperating fast observers. The term fast is because
in the subsequent example the observer is significantly more
constrained in its motion. The observer motion model is
given in (26), with a fast or slow observer defined by
setting constant c1. In Figure 1(a) the optimal open-loop
trajectory of the observer is plotted for a horizon 7 problem.
The maneuvering target trajectory is also shown. The cloud
of particles surrounding the maneuvering target are target
trajectory samples drawn from the target dynamic model (2).
Note that the target maneuver was intentionally chosen to be
far more drastic than is predicted by its model. This was done
to contrast the constructed open-loop and open loop feedback
control trajectories. In Figure 1(b), we show the difference
in the optimal open-loop trajectory obtained when there are
two fast observers. Figure 1(c) shows the OLFC obtained for
the same two fast observers. The cloud of particles shown is
now the particle filter tracking the maneuvering target. We
note that the OLFC trajectory performs more maneuvers than
the equivalent open loop one.

Slow Observers: Figure 2(a) shows the optimal open-loop
trajectory of one slow observer, and Figure 2(b) that of two
cooperating slow observers. Note that a single slow observer
is obliged to do more maneuvers to improve the tracking
performance since it is significantly more constrained in
motion. Figure 2(c) shows the OLFC obtained. Note that
the two observers maneuver in Figure 2(c) much more than
in Figure 2(b) as they are responding to the target maneuver.

VII. CONCLUSION

In this paper, we proposed a novel simulation-based
method to solve the sensor scheduling problem for the
case in which the state, observation and action spaces are
continuous valued vectors. This general continuous state-
space case is important as it is the natural framework for
many applications, like observer trajectory planning. We
presented a novel simulation-based method that used two
timescale stochastic approximation to find optimal actions
and stated convergence results for the bearings-only tracking
problem.
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