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Abstract— This paper explores connections between Infor-
mation Theory, Lyapunov exponents for products of random
matrices, and hidden Markov models. Specifically, we will
show that entropies associated with finite-state channels are
equivalent to Lyapunov exponents. We use this result to show
that the traditional prediction filter for hidden Markov models
is not an irreducible Markov chain in our problem framework.
Hence, we do not have access to many well-known properties of
irreducible continuous state space Markov chains (e.g. a unique
and continuous stationary distribution). However, by exploiting
the connection between entropy and Lyapunov exponents and
applying proof techniques from the theory of random matrix
products we can solve a broad class of problems related to
capacity and hidden Markov models. Our results provide strong
regularity results for the non-irreducible prediction filter as well
as some novel theoretical tools to address problems in these
areas.

I. INTRODUCTION

In this paper we explore connections between Shannon

entropy and Lyapunov exponents for products of random

matrices. Specifically, we will examine some of the unique

problems, solution techniques, and insights that arise from

the connection between these seemingly disparate bodies

of theory. In [10] we focused on using this connection

to compute entropy and Lyapunov exponents for finite-

state channels. In this paper we will address some of the

surprising theoretical problems that arise when examining the

connections between these areas. Perhaps most significantly,

we show that the standard prediction filter associated with

hidden Markov models (HMMs) is not an irreducible Markov

chain. Hence, much of the standard theory for continuous

state space Markov chains cannot be applied to ensure

results that are often taken for granted. For example, lack of

irreducibility prevents automatic access to a unique stationary

distribution, rates of convergence to stationarity, or continuity

of the stationary distribution for the HMM prediction filter.

We then show that the connection between Lyapunov

exponents and Shannon entropy gives us access to a new

set of tools that allows to address these non-irreducibility

problems. In particular, we show that many convergence

results for products of random matrices can be applied to

ensure strong convergence results for the HMM prediction

filter (even though the filter is not irreducible). Many of these

strong convergence results require a fair amount of technical

detail for which we will refer to [9]. Our goal in this paper

is to summarize the theoretical results and to present some

of the tools we use to solve these problems.

In Section II we present our first result that shows the

symbol entropies associated with a finite state channel are

equivalent to the Lyapunov exponents associated with a

particular class of random matrix products.

Section III presents our second set of results that show the

entropy associated with finite-state Markov chains (with no

channel state information) may be computed as an expecta-

tion with respect to the stationary distribution of a particular

Markov chain. This Markov chain is closely related to the

well-known “projective product” in chaotic dynamic systems

or the prediction filter in HMMs. In Section III.B we show

the rather startling conclusion that the prediction filter is typ-

ically an extremely poorly behaved process. Specifically, the

filter does not satisfy even the weakest form of irreducibility

(i.e. Harris recurrence), and possesses infinite memory.

In Sections IV and V we present our third set of re-

sults to show that we can combine theory from random

matrix products and Markov chains to resolve many of the

difficulties described above. Specifically, by exploiting the

contraction property of positive matrices we are able to show

conditions under which the prediction filter has a unique

stationary distribution, exponential rates of convergence to

steady-state, and continuity of the stationary distribution

with respect to the channel input distribution and channel

transition probabilities.

II. MARKOV CHANNELS WITH ERGODIC INPUTS

Consider a communication channel with (channel) state

sequence C = (Cn : n ≥ 0), input symbol sequence X =
(Xn : n ≥ 0), and output symbol sequence Y = (Yn : n ≥
0). The channel states take values in C, whereas the input

and output symbols take values in X and Y , respectively. In

this paper, we shall adopt the notational convention that if

s = (sn : n ≥ 0) is any generic sequence, then for m,n ≥ 0,

sm+n
m = (sm, . . . , sm+n)

denotes the finite segment of s starting at index m and ending

at index m + n.

A. Channel Model Assumptions

In this section (and throughout the rest of this paper), we

will assume that:

A1: C = (Cn : n ≥ 0) is a stationary finite-state

irreducible Markov chain, possessing transition matrix R =
(R(cn, cn+1) : cn, cn+1 ∈ C). In particular,

P (Cn
0 = cn

0 ) = r(c0)
n−1∏
j=0

R(cj , cj+1)
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for cn
0 ∈ C, where r = (r(c) : c ∈ C) is the unique stationary

distribution of C.

A2: The input/output symbol pairs {(Xi, Yi) : i ≥ 0} are

conditionally independent given C, so that

P (Xn
0 = xn

0 , Y n
0 = yn

0 |C) =
n∏

i=0

P (Xi = xi, Yi = yi|C)

for xn
0 ∈ Xn+1, yn

0 ∈ Yn+1.

A3: For each pair (c0, c1) ∈ C2, there exists a probability

mass function q(·|c0, c1) on X x Y such that

P (Xi = x, Yi = y|C) = q(x, y|Ci, Ci+1).

The non-causal dependence of the symbols is introduced

strictly for mathematical convenience. It is clear that typical

causal channel models fit into this framework. A number

of important channel models are subsumed by A1-A3, in

particular channels with ISI, dependent inputs, or any other

finite-memory chain (see [9] for some specific examples).

B. Entropy as a Lyapunov Exponent

Let the stationary distribution of the channel be repre-

sented as a row vector r = (r(c) : c ∈ C), and let e be

a column vector in which every entry is equal to one. For

x ∈ X and y ∈ Y , let

G
(X,Y )
(x,y) = (G(X,Y )

(x,y) (c0, c1) : c0, c1 ∈ C)

be a |C| x |C| matrix with entries given by

G
(X,Y )
(x,y) (c0, c1) = R(c0, c1)q(x, y|c0, c1).

Observe that

P (Xn
0 = xn

0 , Y n
0 = yn

0 ) =∑
c0,...,cn+1

r(c0)
n∏

j=0

R(cj , cj+1)q(xj , yj |cj , cj+1)

=
∑

c0,...,cn+1

r(c0)
n∏

j=0

G
(X,Y )
(xj ,yj)

(cj , cj+1)

= rG
(X,Y )
(x0,y0)

G
X,Y )
(x1,y1)

· · ·G(X,Y )
(xn,yn)e.

Taking logarithms, dividing by n, and letting n → ∞ we

conclude that

H(X, Y ) = − lim
n→∞

1
n

E log P (Xn
0 , Y n

0 ) = −λ(X, Y ), (1)

where

λ(X, Y ) = lim
n→∞

1
n

E log(rG(X,Y )
(X0,Y0)

· · ·G(X,Y )
(Xn,Yn)e). (2)

The quantity λ(X, Y ) is known as the largest Lyapunov

exponent (or, simply, Lyapunov exponent) associated with

the sequence of random matrix products(
G

(X,Y )
(X0,Y0)

G
(X,Y )
(X1,Y1)

· · ·G(X,Y )
(Xn,Yn) : n ≥ 0

)
.

Let || · || be any matrix norm for which ||A1A2|| ≤
||A1|| · ||A2|| for any two matrices A1 and A2. Within

the Lyapunov exponent literature, the following result is of

central importance.

Theorem 1: Let (Bn : n ≥ 0) be a stationary ergodic

sequence of random matrices for which

E log(max(||B0||, 1)) < ∞. Then, there exists a determinis-

tic constant λ (known as the Lyapunov exponent) such that

1
n

log ||B1B2 · · ·Bn|| → λ a.s. (3)

as n → ∞. Furthermore,

λ = lim
n→∞

1
n

E log ||B1 · · ·Bn|| (4)

= inf
n≥1

1
n

E log ||B1 · · ·Bn||. (5)

The standard proof of Theorem 1 is based on the sub-additive

ergodic theorem due to Kingman [11].

Note that for ||A||∞ ∆= max{∑c1
|A(c0, c1)| : c0 ∈ C},

min
c∈C

r(c)||G(X0,Y0)G(X1,Y1) · · ·G(Xn,Yn)||∞
≤ rG(X0,Y0)G(X1,Y1) · · ·G(Xn,Yn)e

≤ ||G(X0,Y0)G(X1,Y1) · · ·G(Xn,Yn)||∞.

The positivity of r therefore guarantees that

1
n

E log(rG(X0,Y0)G(X1,Y1) · · ·G(Xn,Yn)e) (6)

− 1
n

E log ||G(X0,Y0)G(X1,Y1) · · ·G(Xn,Yn)||∞ → 0

as n → ∞, so that the existence of the limit in (2) may be

deduced either from information theory (Shannon-McMillan-

Breiman theorem) or from random matrix theory (Theorem

1).

With the channel model described by A1-A3, each of

the entropies H(X), H(Y ), and H(X, Y ) turn out to be

Lyapunov exponents for products of random matrices (up to

a change in sign).

Proposition 1: For x ∈ X and y ∈ Y , let GX
x =

(GX
x (c0, c1) : c0, c1 ∈ C), GY

y = (GY
y (c0, c1) : c0, c1 ∈ C),

and G
(X,Y )
(x,y) = (G(X,Y )

(x,y) (c0, c1) : c0, c1 ∈ C) be |C| x |C|
matrices with entries given by

GX
x (c0, c1) = R(c0, c1)

∑
y

q(x, y|c0, c1),

GY
y (c0, c1) = R(c0, c1)

∑
x

q(x, y|co, c1),

G
(X,Y )
(x,y) (c0, c1) = R(c0, c1)q(x, y|c0, c1).

Assume A1-A3. Then H(X) = −λ(X), H(Y ) = −λ(Y ),
and H(X, Y ) = −λ(X, Y ), where λ(X), λ(Y ), and

λ(X, Y ) are the Lyapunov exponents defined as the follow-

ing limits:

λ(X) = lim
n→∞

1
n

log ||GX
X1

· · ·GX
Xn

|| a.s.,

λ(Y ) = lim
n→∞

1
n

log ||GY
Y1

· · ·GY
Yn

|| a.s.,

λ(X, Y ) = lim
n→∞

1
n

log ||G(X,Y )
(X1,Y1)

· · ·G(X,Y )
(Xn,Yn)|| a.s.
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The proof of the above proposition is virtually identical to

the argument of Theorem 1, and is therefore omitted.

C. Entropy, Lyapunov Exponents, and Typical Sequences

At this point it is useful to provide a bit of intuition

regarding the connection between Lyapunov exponents and

entropy. Following the above development we can write

P (X1, . . . , Xn) = rGX
X1

GX
X2

· · ·GX
Xn

e,

where r is the stationary distribution for the channel C.

Using Proposition 1 and (6) we can interpret the Lyapunov

exponent λX as the average exponential rate of growth for a

random dynamic system that describes the probability of the

sequence X . Since P (X1, . . . , Xn) → 0 as n → ∞ for any

non-trivial sequence, the rate of growth will be negative. (If

the probability of the input sequence does not converge to

zero then H(X) = 0.)

This view of the Lyapunov exponent facilitates a straight-

forward information theoretic interpretation based on the

notion of typical sequences. From Cover and Thomas [3], the

typical set An
ε is the set of sequences x1, . . . , xn satisfying

2−nH(X)+ε ≤ P (X1 = x1, . . . , Xn = xn) ≤ 2−nH(X)−ε

and P (An
ε ) > 1−ε for n sufficiently large. Hence we can see

that, asymptotically, any observed sequence must be a typical

sequence with high probability. Furthermore, the asymptotic

exponential rate of growth of the probability for any typical

sequence must be −H(X) or λ(X). This probability growth

rate intuition will be useful in understanding the results

presented in the next section where we show that λ(X) can

also be viewed as an expectation rather than an asymptotic

quantity.

III. A MARKOV CHAIN REPRESENTATION FOR

LYAPUNOV EXPONENTS

We will now show that the Lyapunov exponents of interest

in this paper can also be represented as expectations with

respect to the stationary distributions for a particular class

of Markov chains. From this point onward, we will focus

our attention on the Lyapunov exponent λ(X), since the

conclusions for λ(Y ) and λ(X, Y ) are analogous.

In much of the literature on Lyapunov exponents for i.i.d.

products of random matrices, the basic theoretical tool for

analysis is a particular continuous state space Markov chain

[7]. Since our matrices are not i.i.d. we will use a slightly

modified version of this Markov chain, namely

Zn =

(
wGX

X1
· · ·GX

Xn

||wGX
X1

· · ·GX
Xn

|| , Cn, Cn+1

)

= (p̃n, Cn, Cn+1).

Here, w is a |C|-dimensional stochastic (row) vector, and the

norm appearing in the definition of Zn is any norm on �|C|.
If we view wGX

X1
· · ·GX

Xn
as a vector, then we can interpret

the first component of Z as the direction of the vector at

time n. The second and third components of Z determine

the probability distribution of the random matrix that will be

applied at time n. We choose the normalized direction vector

p̃n =
wGX

X1
· · ·GX

Xn

||wGX
X1

· · ·GX
Xn

||
rather than the vector itself because

wGX
X1

· · ·GX
Xn

→ 0 as n → ∞,

but we expect some sort of non-trivial steady-state behavior

for the normalized version.

The steady-state theory for Markov chains on continuous

state space, while technically sophisticated, is a highly de-

veloped area of probability. The Markov chain Z allows one

to potentially apply this set of tools to the analysis of the

Lyapunov exponent λ(X). Assuming for the moment that Z
has a steady-state Z∞, we can then expect to find that

Zn = (p̃n, Cn, Cn+1) ⇒ Z∞
∆= (p̃∞, C∞, C̃∞) (7)

as n → ∞, where C∞, C̃∞ ∈ C, p̃0 = w and

p̃n
∆=

wGX
X1

· · ·GX
Xn

||wGX
X1

· · ·GX
Xn

|| =
p̃n−1G

X
Xn

||p̃n−1GX
Xn

|| (8)

for n ≥ 1. If w is positive, the same argument as that leading

to (6) shows that

1
n

log ||GX
X1

· · ·GX
Xn

|| − 1
n

log ||wGX
X1

· · ·GX
Xn

|| → 0 a.s.
(9)

as n → ∞, which implies

λ(X) = lim
n→∞

1
n

log ||wGX
X1

· · ·GX
Xn

||.
Furthermore, it is easily verified that

log ||wGX
X1

· · ·GX
Xn

|| =
n∑

j=1

log(||p̃j−1G
X
Xj

||). (10)

Relations (9) and (10) together guarantee that

λ(X) = lim
n→∞

1
n

n∑
j=1

log(||p̃j−1G
X
Xj

||) a.s. (11)

In view of (7), this suggests that

λ(X) =
∑
x∈X

E log(||p̃∞GX
x ||)R(C∞, C̃∞)q(x|C∞, C̃∞)

(12)

where q(x|c0, c1)
∆=

∑
y q(x, y|c0, c1). Recall the above

discussion regarding the intuitive interpretation of Lyapunov

exponents and entropy and suppose we apply the 1-norm,

given by ||w||1 ∆=
∑

c |w(c)|, in (12). Then the representation

(12) computes the expected exponential rate of growth for the

probability P (X1, . . . , Xn), where the expectation is with

respect to the stationary distribution of the continuous state

space Markov chain Z.1 Thus, assuming the validity of (7)

(it turns out that existence of a stationary distribution is not

automatic), computing the Lyapunov exponent effectively

amounts to computing the stationary distribution of the

Markov chain Z.

1Note that while (12) holds for any choice of norm, the 1-norm provides
the most intuitive interpretation
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A. The Connection to Hidden Markov Models

As noted above, Z is a Markov chain regardless of the

choice of norm on �|C|. If we specialize to the 1-norm and

assume that p̃0 = r, it turns out that the first component

of Z can be viewed as the standard prediction filter for

the channel given the input symbol sequence X , and this

prediction filter is itself Markov. We state these results in

the following propositions that are proved in [9].

Proposition 2: Assume A1-A3, and let w = r, the stationary

distribution of the channel C. Then, for n ≥ 0 and c ∈ C,

p̃n(c) = P (Cn+1 = c|Xn
1 ). (13)

Proposition 3 Assume A1-A3 and suppose w = r. Then, the

sequence p̃ = (p̃n : n ≥ 0) is a Markov chain taking values

in the continuous state space P = {w : w ≥ 0, ||w||1 = 1}.

Furthermore,

||p̃nGX
x ||1 = P (Xn+1 = x|Xn

1 ). (14)

In view of Proposition 3, the terms appearing in the sum

(10) have interpretations as conditional entropies, namely

−E log(||p̃j−1G
X
Xj

||1) = H(Xj+1|Xj
1),

so that the formula (11) for λ(X) can be interpreted as the

well known representation for H(X) in terms of the averaged

conditional entropies;

H(X) = lim
n→∞

1
n

H(X1, . . . , Xn)

= lim
n→∞

1
n

n−1∑
j=0

H(Xj+1|Xj
1)

= − lim
n→∞

1
n

n−1∑
j=0

E log(||p̃j−1G
X
Xj

||1)

= −λ(X)

In addition, an expected value representation of H(X),
similar in spirit to (12), is a well known result in the hidden

Markov model literature [5]. Note, however, that the analysis

of the hidden Markov prediction filter (p̃n : n ≥ 0) with

w = r is only a special case of the problem we consider

here. First, the above conditional entropy interpretation of

log(||pj−1G
X
Xj

||1) holds only when we choose to use the 1-

norm. Moreover, the above interpretations also require that

we initialize p̃ with p̃0 = r, the stationary distribution of

the channel C (i.e. Proposition 3 does not hold). Hence, if

we want to use an arbitrary initial vector we must use the

multivariate process Z, which is always a Markov chain.

B. Pathologies of the Prediction Filter

It turns out that the prediction filter p̃n with w = r and

the general process Z can be extremely ill-behaved Markov

chains. In general, these filter processes are NOT irreducible

in even the weakest sense (i.e. Harris recurrence). [See [13]

for the theory of Harris chains]. The key condition required

to show that a Markov chain is Harris recurrent is the notion

of φ-irreducibility. Consider the Markov chain Z defined on

the space P x C x C with Borel sets B(P x C x C). Define

τA as the first return time to the set A ∈ P x C x C. Then,

the Markov chain Z is φ-irreducible if there exists a non-

trivial measure φ on B(P x C x C) such that for every state

z ∈ P x C x C
φ(A) > 0 ⇒ Pz(τA < ∞) > 0. (15)

However, the Markov chain Z is never irreducible, as

illustrated by the following example. Suppose that the output

symbol process Y is binary, hence the random matrices GY
Yn

can only take two values, say GY
0 and GY

1 corresponding to

output symbols 0 and 1, respectively. Suppose we initialize

p̃0 = r and examine the possible values for p̃r
n. Notice that

for any n, the random vector p̃r
n can take on only a finite

number of values, where each possible value is determined

by one of the n-length permutations of the matrices GY
0

and GY
1 , and the initial condition p̃0. One can easily find

another initial vector belonging to P , call it w �= r for which

the support of the corresponding p̃w
n ’s are disjoint from the

support for the p̃r
n’s for all n ≥ 0. This contradicts (15).

Hence, the Markov chain Z has infinite memory and is not

irreducible.

This technical difficulty means that we cannot apply the

vast number of results available from the standard theory

of Harris recurrent Markov chains. For example, we cannot

automatically state

1) the Markov chain Z has a steady-state distribution;

2) the rate of convergence to steady-state;

3) if the steady-state distribution is unique;

4) if the steady-state distribution and entropy are contin-

uous functions of the input symbol distribution and

channel transition probabilities.

All of the above issues are critical if we wish to use

the filter Markov chain in proof techniques and for the

purposes of computing entropy and mutual information. In

the following sections we will address the above problems

by exploiting the connection between Lyapunov exponents,

products of random matrices, and Shannon entropy.

Before we move on, we should note that the authors of

[12] point out an important exception to this irreducibility

problem for the case of ISI channels with Gaussian noise.

When Gaussian noise is added to the output symbols the

random matrix GY
Yn

is selected from a continuous population.

In this case the Markov chain Z is in fact irreducible and

standard theory applies. However, since we wish to consider

any finite state channel, including those with finite symbol

sets, we cannot appeal to existing Harris chain theory.

IV. COMPUTING THE LYAPUNOV EXPONENT AS AN

EXPECTATION

In the previous section we showed that the Lyapunov

exponent λ(X) can be directly computed as an expectation

with respect to the stationary distribution of the Markov

chain Z. However, in order to make this statement rigorous

we must first prove that Z in fact has a stationary distribution.

1759



Furthermore, we should also determine if the stationary dis-

tribution for Z is unique. We address the rate of convergence

and continuity issues in Section V.

As it turns out, the Markov chain Z with Zn =
(p̃n, Cn, Cn+1) is a very cumbersome theoretical tool for

analyzing many properties of Lyapunov exponents. The main

difficulty is that we must carry around the extra augmenting

variables (Cn, Cn+1) in order to make Z a Markov chain.

Unfortunately, we cannot utilize the channel prediction filter

p̃ alone since it is only a Markov chain when p̃0 = r. In

order to prove properties such as existence and uniqueness

of a stationary distribution for a Markov chain, we must

be able to characterize the Markov chain’s behavior for any

initial point.

In this section we introduce a new Markov chain p, which

we will refer to as the “P-chain”. It is closely related to the

prediction filter p̃ and, in some cases, will be identical to the

prediction filter. However, the Markov chain p possess one

important additional property – it is always a Markov chain

regardless of its initial point. The reason for introducing this

new Markov chain is that the asymptotic properties of p are

the same as those of the prediction filter p̃ (we show this in

Section V), and the analysis of p is substantially easier than

that of Z. Therefore the results we are about to prove for p
can be applied to p̃ and hence the Lyapunov exponent λ(X).

A. The Channel P-chain

We will define the random evolution of the P-chain using

the following algorithm

Algorithm A:
1) Initialize n = 0 and p0 = w ∈ P , where P = {w :

w ≥ 0, ||w||1 = 1}
2) Generate X̃ ∈ X from the probability mass function

(||pnGX
x ||1 : x ∈ X ).

3) Set pn+1 =
pnGX

X̃

||pnGX

X̃
||1 .

4) Set n = n + 1 and return to 2.

The output produced by Algorithm A clearly exhibits the

Markov property, for any initial vector w ∈ P . Let pw =
(pw

n : n ≥ 0) denote the output of Algorithm A when p0 =
w. Proposition 3 proves that for w = r, pr coincides with

the sequence p̃r = (p̃r
n : n ≥ 0), where p̃w = (p̃w

n : n ≥ 0)
for w ∈ P is defined by the recursion (also known as the

forward Baum equation)

p̃w
n =

wGX
X1

· · ·GX
Xn

||wGX
X1

· · ·GX
Xn

||1 , (16)

where X = (Xn : n ≥ 1) is a stationary version of the

input symbol sequence. Note that in the above algorithm the

symbol sequence X̃ is determined in an unconventional fash-

ion. In a traditional filtering problem the symbol sequence

X follows an exogenous random process and the channel

state predictor uses the observed symbols to update the

prediction vector. However, in Algorithm A the probability

distribution of the symbol X̃n depends on the random vector

pn, hence the symbol sequence X̃ is not an exogenous

process. Rather, the symbols are generated according to a

probability distribution determined by the state of the P-

chain. Proposition 3 establishes a relationship between the

prediction filter p̃w and the P-chain pw when w = r. As

noted above, we shall need to study the relationship for

arbitrary w ∈ P . Proposition 4 provides the key link (see

[9] for a proof).

Proposition 4: Assume A1-A3. Then, if w ∈ P ,

pw
n =

wGX
X1(w) · · ·GX

Xn(w)

||wGX
X1(w) · · ·GX

Xn(w)||1
(17)

where X(w) = (Xn(w) : n ≥ 1) is the input symbol

sequence when C1 is sampled from the mass function w.

In particular,

P (X1(w) = x1, . . . , Xn(w) = xn) = wGX
x1

· · ·GX
xn

e.
(18)

Indeed, Proposition 4 is critical to the remaining analysis

in this paper and therefore warrants careful examination.

In Algorithm A the probability distribution of the symbol

X̃n depends on the state of the Markov chain p̃w
n . This

dependence makes it difficult to explicitly determine the joint

probability distribution for the symbol sequence X̃1, . . . , X̃n.

Proposition 4 shows that we can take an alternative view

of the P-chain. Rather than generating the P-chain with

an endogenous sequence of symbols X̃1, . . . , X̃n, we can

use the exogenous sequence X1(w), . . . , Xn(w), where the

sequence X(w) = (Xn(w) : n ≥ 1) is the input sequence

generated when the channel is initialized with the probability

mass function w. In other words, we can view the chain p̃w
n

as being generated by a stationary channel C, whereas the

P-chain pw
n is generated by a non-stationary version of the

channel, C(w), using w as the initial channel distribution.

Hence, the input symbol sequences for the Markov chains

p̃w and pw can be generated by two different versions of

the same Markov chain (i.e. the channel). In Section V we

will use this critical property (along with some results on

products of random matrices) to show that the asymptotic

behaviors of p̃w and pw are identical.

The stochastic sequence p̃w is the prediction filter that

arises in the study of “hidden Markov models”. As is natural

in the filtering theory context, the filter p̃w is driven by the

exogenously determined observations X . On the other hand,

it appears that pw has no obvious filtering interpretation,

except when w = r. However, for the reasons discussed

above, pw is the more appropriate object for us to study. As

is common in the Markov chain literature, we shall frequently

choose to suppress the dependence on w, choosing to denote

the Markov chain as p = (pn : n ≥ 0).

B. The Lyapunov Exponent as an Expectation

Our goal now is to analyze the steady-state behavior of the

Markov chain p and show that the Lyapunov exponent can

be computed as an expectation with respect to p’s stationary
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distribution. In particular, if p has a stationary distribution

we should expect

H(X) = −
∑
x∈X

E log(||p∞GX
x ||1)||p∞GX

x ||1, (19)

where p∞ is a random vector distributed according to p’s

stationary distribution.

Theorem 2: Assume A1-A3 and let P+ = {w ∈ P : w(c) >
0, c ∈ C}. Then,

1) For any stationary distribution π of p = (pn : n ≥ 0),

H(X) ≤ −
∑
x∈X

∫
P

log(||wGX
x ||1)||wGX

x ||1π(dw).

2) For any stationary distribution π satisfying π(P+) = 1,

H(X) = −
∑
x∈X

∫
P

log(||wGX
x ||1)||wGX

x ||1π(dw).

Proof: See [9] for details. The result follows from a straight-

forward application of Birkhoff’s ergodic theorem and the

Monotone Convergence Theorem.

Note that Theorem 2 suggests that p = (pn : n ≥ 0) may

have multiple stationary distributions. The following example

shows that this may indeed occur, even in the presence of

A1-A3.

Example 5: Suppose C = {1, 2}, and X = {1, 2}, with

R =
(

1
2

1
2

1
2

1
2

)
(20)

and

GX
1 =

(
1
2 0
0 1

2

)
GX

2 =
(

0 1
2

1
2 0

)
. (21)

Then, both π1 and π2 are stationary distributions for p, where

π1((
1
2
,
1
2
)) = 1 (22)

and

π2((0, 1)) = π2((1, 0)) =
1
2
. (23)

Theorem 2 leaves open the possibility that stationary

distributions with support on the boundary of P will fail to

satisfy (19). Furstenberg and Kifer [7] discuss the behavior

of p = (pn : n ≥ 0) when p has multiple stationary distri-

butions, some of which violate (19) (under an invertibility

hypotheses on the GX
x ’s). Theorem 2 also fails to resolve

the question of existence of a stationary distribution for p.

To remedy this situation we impose additional hypotheses:

A4: |X | < ∞ and |Y| < ∞.

A5: For each (x, y) for which P (X0 = x, Y0 = y) > 0, the

matrix G
(X,Y )
(x,y) is row-allowable (i.e. it has no row in which

every entry is zero).

Theorem 3 Assume A1-A5. Then, p = (pn : n ≥ 0)
possesses a stationary distribution π.

Proof: See [9] for details. The row allowability of G
(X,Y )
(x,y)

allows us to show that p is a Feller chain on a compact space,

and therefore it possesses a stationary distribution.

As we shall see in the next section, much more can be said

about the channel P-chain p = (pn : n ≥ 0) in the presence

of strong positivity hypotheses on the matrices {GX
x : x ∈

X}. The Markov chain p = (pn : n ≥ 0), as studied in this

section, is challenging largely because we permit a great deal

of sparsity in the matrices {GX
x : x ∈ X}. The challenges

we face here are largely driven by the inherent complexity

of the behavior that Lyapunov exponents can exhibit in the

presence of such sparsity. For example, Peres [14], [15],

provides examples of discontinuity and lack of smoothness

in the Lyapunov exponent as a function of the input symbol

distribution when the random matrices have a sparsity struc-

ture like that of this section. These examples suggest strongly

that entropy can be discontinuous in the presence of A1-A5.

We will alleviate these problems in the next section through

additional assumptions on the aperiodicity of the channel

as well as the conditional probability distributions on the

input/output symbols.

V. THE STATIONARY DISTRIBUTION OF THE CHANNEL

P -CHAIN UNDER POSITIVITY CONDITIONS

In this section we introduce extra conditions that guarantee

the existence of a unique stationary distribution for the

Markov chains p and p̃r. By necessity, the discussion in this

section is rather technical. Hence we will first summarize the

results of this section and then explain further details.

The key assumption we will make in this section is that

the probability of observing any symbol pair (x, y) is strictly

positive for any valid channel transition (i.e. if R(c0, c1) is

positive) – recall that the probability mass function for the

input/output symbols q(x, y|c0, c1) depends on the channel

transition rather than just the channel state. This assumption,

together with aperiodicity of R, will guarantee that the

random matrix product GX
X1(w) · · ·GX

Xn(w) can be split into a

product of strictly positive random matrices. We then exploit

the fact that strictly positive matrices are strict contractions

on P+ = {w ∈ P : w(c) > 0, c ∈ C} for an appropriate

distance metric. This contraction property allows us to show

that both the prediction filter p̃r and the P-chain p converge

exponentially fast to the same limiting random variable.

Hence, both p and p̃r have the same unique stationary

distribution that we can use to compute the Lyapunov ex-

ponent λ(X). This result is stated formally in Theorem 5.

In Theorem 6 we show that λ(X) is a continuous function

of both the transition matrix R and the symbol probabilities

q(x, y|c0, c1).

A. The Contraction Property of Positive Matrices

We assume here that:

A6: The transition matrix R is aperiodic.
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A7: For each (c0, c1, x, y) ∈ C2 x X x Y , q(x, y|c0, c1) > 0
whenever R(c0, c1) > 0.

Under A6-A7, all the matrices {GX
x , GY

y , G
(X,Y )
(x,y) : x ∈

X , y ∈ Y} exhibit the same (aperiodic) sparsity pattern as

R. That is, the matrices have the same pattern of zero and

non-zero elements. Note that under A1 and A6, Rl is strictly

positive for some finite value of l. So,

GX
X(j−1)l+1

· · ·GX
Xjl

(24)

is strictly positive for j ≥ 0. The key mathematical property

that we shall now repeatedly exploit is the fact that positive

matrices are contracting on P+ in a certain sense.

For v, w ∈ P+, let

d(v, w) = log
(

maxc (v(c)/w(c))
minc (v(c)/w(c))

)
. (25)

The distance d(v, w) is called “Hilbert’s projective distance”

between v and w, and is a metric on P+; see page 90 of

Seneta [16]. For any non-negative matrix T , let

τ(T ) =
1 − θ(T )−1/2

1 + θ(T )−1/2
, (26)

where

θ(T ) = max
c0,c1,c2,c3

(
T (c0, c3)T (c1, c4)
T (c0, c4)T (c1, c3)

)
. (27)

Note that τ(T ) < 1 if T is strictly positive (i.e. if all the

elements of T are strictly positive).

Theorem 4: Suppose v, w ∈ P+ are row vectors. Then, if

T is strictly positive,

d(vT, wT ) ≤ τ(T )d(v, w). (28)

For a proof, see pages 100-110 of Seneta [16]. The quantity

τ(T ) is called “Birkhoff’s contraction coefficient”.

Our first application of this idea is to establish that

the asymptotic behavior of the channel P-chain p and the

prediction filter p̃ coincide. Note that for n ≥ l, p̃r
n and

p̃n
w both lie in P+, so d(p̃r

n, p̃w
n ) is well-defined for n ≥ l.

Proposition 5 will allow us to show that p̃w = (p̃w
n : n ≥ 0)

has a unique stationary distribution. Proposition 6 will allow

us to show that pw = (pw
n : n ≥ 0) must have the same

stationary distribution as p̃w.

Proposition 5: Assume A1-A4 and A6-A7. If w ∈ P , then

d(p̃r
n, p̃w

n ) = O(e−αn) a.s. as n → ∞,

where α
∆= −(log β)/l and

β
∆= max{τ(GX

x1
· · ·GX

xl
) : p(X1 = x1, . . . , Xl = xl) > 0}.

Proposition 6: Assume B1-B4 and B6-B7. For w ∈ P , there

exists a probability space upon which d(pw
n , p̃r

n) = O(e−αn)
a.s. as n → ∞.

The proofs of Propositions 5 and 6 rely on Proposition 4

and a coupling argument that we will summarize here (see

[9] for the details). Recall from Proposition 4 that we can

view p̃r
n and pw

n as being generated by a stationary and non-

stationary version of the channel C, respectively. The key

idea is that along each sample path the non-stationary version

of the channel will eventually couple with the stationary

version. Once the channels couple then the non-stationary

version of the symbol sequence X(w) will also couple with

the stationary version X . When this coupling occurs, say

at time T < ∞, the symbol sequences (Xn(w) : n > T )
and (Xn : n > T ) will be identical. This means that for

all n > T the matrices applied to p̃r
n and pw

n will also be

identical. This allows us to apply the contraction result from

Theorem 4 and complete the proofs. Note that without the

contraction property of positive matrices we would not be

able to prove this convergence argument due to the infinite

memory problem discussed earlier.

B. A Unique Stationary Distribution for the Prediction Filter
and the P-Chain

We will now show that there exists a limiting random

variable p∗∞ such that p̃n
r ⇒ p∗∞ as n → ∞. In view

of Propositions 5 and 6, this will ensure that for each

w ∈ P , pw
n ⇒ p∗∞ as n → ∞. To prove this result,

we will use an idea borrowed from the theory of “random

iterated functions”; see Diaconis and Freedman [4]. We leave

the technical details of the argument for [9] and present a

summary of the proof technique here.

Let X = (Xn : −∞ < n < ∞) be a doubly-infinite

stationary version of the input symbol sequence, and put

χn = X−n for n ∈ Z . Then,

rGX
X1

· · ·GX
Xn

D= rGX
χn

· · ·GX
χ1

, (29)

where
D= denotes equality in distribution. Put p∗0 = r and

p∗n =
rGX

χn
· · ·GX

χ1

||rGX
χn

· · ·GX
χ1
|| ,

for n ≥ 0.

The process (p∗n : n ≥ 0) is a time-reversed version of p̃r,

such that p̃r
n

D= p∗n for all n ≥ 0. Take careful note of the

order in which matrices are applied to p∗n (they are applied in

reverse). Hence, the matrix observed at time n is applied in
front of the matrix products rather than at the end (as is the

case with p̃r
n). Then, if we look at consecutive values of p∗n

we can show that it is a.s. a Cauchy sequence (through the

contraction property). Hence, there exists a random variable

p∗∞ such that p∗n → p∗∞ a.s. as n → ∞. This guarantees

weak convergence of the forward process p̃r to a random

variable with the same distribution as p∗∞. This reversal

argument is remarkably useful since we have no means of

directly showing that the forward process converges. In [9]

we provide the detail to prove the following theorem.

Theorem 5: Assume A1-A4 and A6-A7. Then,
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i.) p = (pn : n ≥ 0) has a unique stationary distribution

π.

ii.) There exists a set K ∈ P+ such that π(K) = 1 and

π(·) = P (p∗∞ ∈ ·).
iii.) For each w ∈ P , pw

n ⇒ p∗∞ as n → ∞.

iv.) K is absorbing for (pln : n ≥ 0), in the sense that

P (pw
ln ∈ K) = 1 for n ≥ 0 and w ∈ K.

Applying Theorem 2, we may conclude that under A1-

A4 and A6-A7, the channel P-chain has a unique stationary

distribution π on P+ satisfying

H(X) = −
∑
x∈X

∫
P

log(||wGX
x ||1)||wGX

x ||1π(dw). (30)

We can also use our Markov chain machinery to establish

continuity of the entropy H(X) as a function of R and

q. Such a continuity result is of theoretical importance in

optimizing the mutual information between X and Y , which

is necessary to compute channel capacity. The following

theorem generalizes a continuity result of [8] obtained in

the setting of i.i.d. input symbol sequences.

Theorem 6: Assume A1-A4 and A6-A7. Suppose that (Rn :
n ≥ 1) is a sequence of transition matrices on C for which

Rn → R as n → ∞. Also, suppose that for n ≥ 1,

qn(·|c0, c1) is a probability mass function on X x Y for

each (c0, c1) ∈ C2 and that qn → q as n → ∞. If

Hn(X) is the entropy of X associated with the channel

model characterized by (Rn, qn), then Hn(X) → H(X) as

n → ∞.

Proof: See [9] for the details. With Theorem 5 in hand we

need a standard weak convergence argument for the expected

value of a continuous function on a compact set.

Our final result presents a simple and intuitive connection

between the stationary prediction filter p∗∞, the Lyapunov

exponent (or entropy), and the random matrix process GX
X .

It turns out, that these three quantities are related through

the following random eigenvector-eigenvalue relation:

pGX
X

D= γp′, (31)

where p
D= p′ D= p∗∞, and Eπ log γ = −H(x), where π

is the stationary distribution from Theorem 5. Hence, the

stationary filter random variable is a random eigenvector for

the random matrix GX
X . The associated random eigenvalue

γ then determines the Lyapunov exponent. A proof of this

result follows directly from [1].

VI. CONCLUSIONS

This work examines some of the theoretical issues that

arise when investigating the connections between Lyapunov

exponents, Shannon entropy, and hidden Markov models. We

first demonstrated that entropies for finite state channels are

equivalent to Lyapunov exponents for products of random

matrices. We then showed that entropy can be expressed

as an expectation with respect to the stationary distribution

of a Markov chain that is closely related to the hidden

Markov prediction filter. As a consequence, we proved that

the prediction filter is a non-irreducible Markov chain. By

applying tools from the theory of random matrix products we

were able to provide new regularity results for the prediction

filter, even though the filter Markov chain is not Harris recur-

rent. The theoretical tools presented here may also be used

to compute entropy and mutual information for finite-state

Markov channels. The non-irreducibility problems discussed

above create many problems in simulation-based algorithms

for computation, and we also address these issues in [9].

Finally, we should note that this connection between

Lyapunov exponents and Information Theory is just a first

step. We now have access to a wide range of tools from

statistical mechanics that can be applied to problems in

Information Theory and hidden Markov models. Clearly, a

significant amount of translation work between the languages

of the different fields needs to occur, but the mathematical

connections and potential results appear to be promising.

Indeed, it might now be possible to fully extend the notion

of a “Thermodynamic Formalism” [2] to Shannon’s Theory

of Information – thereby permitting information theoretic

interpretations of many quantities in quantum physics and

dynamic systems.
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