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Abstract— This paper is concerned with the development
of recursive distribution-free mode-estimators for a class of
discrete-time jump-linear systems. The cornerstone of the
proposed filters consists of an algebraic manipulation of the
dynamics equation of the continuous state. This equation turns
out to be linear with respect to the mode vector, and, under
the assumption of perfect state information, provides a linear
observation equation for the mode. Appending this equation
to the known linear dynamics equation of the mode yields a
linear non-Gaussian state-space model. A first mode-estimator
is then derived using standard Linear Filtering results. A second
filter is developed as an application of a general discrete-time
filter, which approximates the continuous-time optimal non-
linear filter (the conditional mean estimator for continuous
time) for small sample times. The second filter is preferred
from a performance point of view. Model order reduction
is applied in order to avoid singularity issues in the filters
implementations. The second filter is envisioned as a useful
tool in the analysis and design of dual controllers for this type
of hybrid systems.

Index Terms— Finite-alphabet homogenous Markov chain,
jump-linear system, optimal non-linear filtering

I. INTRODUCTION

A very popular way of modeling dynamical systems in
switching environments is by means of hybrid systems,
where some state variables are continuous and some are dis-
crete. The discrete variables characterize the environment in
which the continuous variables evolve. Typically, the mode,
that is the set of the discrete states, switches among a finite
number of values and the switch may be deterministic [1]
or stochastic [2]. For the stochastic case, assuming that the
continuous state is known, finite-dimensional optimal non-
linear mode-estimators can be developed; that is, algorithms
which compute the conditional expectation of the mode.
In a continuous-time setting (see [3, Chap. 9] and [4]),
these algorithms consist of non-linear stochastic differential
equations. In order to avoid the drawback of numerically
integrating them, a recursive optimal non-linear filter can be
developed in a discrete-time setting [5]. It appears, however,
that this algorithm requires a complete knowledge of the
probability distribution of the noise in the continuous state
dynamics equation.

In this work we present two types of recursive distribution-
free mode-estimators for a class of jump-linear systems. A
novel contribution in this work consists of the modeling of
the continuous state process equation. That equation turns out
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to be linear with respect to the mode. As a result, a linear
non-Gaussian state-space model for the mode is developed.
Using this linear structure, two filters are developed. The first
filter is obtained by applying standard results of Linear Least-
Squares theory. The second filter is a straightforward appli-
cation of an algorithm, which, for fairly general discrete-
time systems, is an approximation for small sample times of
the optimal non-linear filter (a brief summary is provided in
the Appendix). The linearity of the model equations and the
fact that the mode is a probability vector, which components
add to one, leads to singularity issues in various covariance
matrices. This issue is dealt with via model order reduction.

The remainder of this paper is organized as follows.
Section II includes the mathematical statement of the prob-
lem. Then, the linear state-space model for the mode is
derived in Section III. The best linear filter is developed in
Section IV. Section V presents the suboptimal non-linear
filter. A discussion is proposed in Section VI. The results
on the model order reduction are the topics of Section VII.
Finally conclusions are drawn in the last section.

II. STATEMENT OF THE PROBLEM

Consider the discrete-time dynamical system

x
k+1 = A(y

k
)x

k
+ B(y

k
)u

k
+ w

k
k∈N (1)

where x
k

∈ R
n is a known continuous state vector

and {y
k

: k ∈ N} is an unknown scalar finite-state
homogenous discrete-time Markov chain with state space
Sy = {γ1 , γ2 , . . . , γν} and transition matrix M ; that is,

M [i, j]
�
= Pr(y

k+1 = γi | y
k

= γj ) (2)

for all γ
i , γj ∈ Sy . The disturbance w

k
is assumed to be

a zero-mean white-noise sequence with known covariance
matrix W

k
, and is assumed to be independent from x

k

and y
k
. The control vector u

k
∈ R

m is assumed to be a
vector of known inputs that are function of the available
information. It can be shown [6, p. 17] that the Markov chain
{y

k
, k ∈ N} defined on a given probability space {Ω,F , Pr}

can be equivalently replaced by the vector Markov chain
{y

k
, k ∈ N} defined over the same probability space, where

y
k

is the random vector with components the characteristic
random variables associated with each of the ν elementary
events of Ω = {ωi}ν

i=1; that is,

y
k

: Ω = {ωi}ν
i=1 → Sy = { e1 , e2 , . . . , eν}

ω �→ yT
k

(ω) =
[
δ(y

k
, e1) δ(y

k
, e2) . . . δ(y

k
, eν )

]
(3)
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where ei , for i = 1, 2, . . . , ν are the standard unit vectors in
R

ν , and δ(·, ·) represents the Kronecker delta. The dynamics
of the Markov chain {y

k
∈ R

ν , k ∈ N} is governed by the
following linear ν × 1 vector difference equation

y
k+1 = My

k
+ v

k
(4)

where {v
k
} is a zero-mean white-noise sequence that is

orthogonal to y
k
, and independent from Yk−1 and from X k.

Moreover, v
k

and w
k

are assumed to be independent. It stems
from the definition of y

k
that, for k∈N,

E{y
k
} =

[
. . . Pr{y

k
= e

i
} . . .

]T �
= p

k
(5)

where p
k

∈ R
ν can be recursively computed from the

Chapman-Kolmogorov equation of the MArkov chain y
k
:

p
k+1 = Mp

k
(6)

starting at p0 . We are seeking for two types of estimator. The
first one, denoted by y

k/k
, is the unbiased linear estimator

of y
k

that minimizes the mean-square error subject to the
constraints (1) and (4). The second one, denoted by ŷ

k/k
, is

an approximation of the conditional mean of y
k

given X k,
the past history of x

k
. That approximation is to the first order

in ∆t, where ∆t denotes the discretization time increment
that is associated with the difference equation (1). Notice
that the estimate ŷ

k/k
approximates a vector of a posteriori

probabilities; that is,

ŷT
k/k

= E{yT
k
|X k} + O(∆t)

=
[
. . . Pr{y

k
= ei |X k} . . .

]
+ O(∆t) (7)

The following lemma will be used in the sequel of this
work. For a proof, see e.g. [6, p. 19].

Lemma 1 : Let u, û, ũ, and X , denote, respectively,
a random vector defined as in Eq. (3), its conditional
expectation given X , the associated estimation error, and
a collection of conditioning random variables. Then the
following identity can be shown:

cov{ũ |X} = diag{û} − ûûT (8)

III. LINEAR STATE-SPACE MODEL FOR y
k

A. Reformulation of the state-Space equation (1)

The governing equations for the dynamics of the discrete-
time jump-linear system {x

k
,y

k
} described in the previous

section can be written as follows:

x
k+1 = C(x

k
,u

k
)y

k
+ w

k
(9)

y
k+1 = My

k
+ v

k
(10)

where C(x
k
,u

k
) is an n × ν matrix defined as

C(x
k
,u

k
)
�
= A

(
Iν ⊗

[
x

k

u
k

])
(11)

In Eq. (11), ⊗ denotes the Kronecker product, I
ν

denotes
the ν × ν identity matrix, and A is the n× (n+m)ν matrix
expressed as

A �
=

[
. . .

[
Ai Bi

]
. . .

]
i = 1, 2, . . . , ν (12)

where the matrices A
i∈R

n and Bi∈R
m denote, respectively,

the matrices A(γi) and B(γi), for i = 1, 2, . . . , ν. The
novelty in this state-space model is in Eq. (9), which is
equivalent to Eq. (1), but is re-written as a linear equation
with respect to (w.r.t) the discrete state vector y

k
. Moreover,

since we assume full knowledge of x
k
, Eq. (9) can be

considered a linear observation equation for y
k
, where x

k+1

is the observation, C(x
k
,u

k
) is the observation matrix, and

w
k

is the observation noise. Together with the linear process
equation (13), this observation equation yields a linear state-
space model for y

k
.

B. Development of Eq. (9)

the matrices A(y
k
) and B(y

k
) can be rewritten as

A(y
k
) =

ν∑
i=1

A
i
δ(y

k
, e

i
) (13)

B(y
k
) =

ν∑
i=1

Bi δ(y
k
, ei) (14)

Using Eqs. (13) and (14) in the Right-hand-Side (RHS) of
Eq. (1), without the noise w

k
, yields

A(y
k
)x

k
+ B(y

k
)u

k
=

=

(
ν∑

i=1

A
i
δ(y

k
, e

i
)

)
x

k
+

(
ν∑

i=1

B
i
δ(y

k
, e

i
)

)
u

k

=
ν∑

i=1

(A
i
x

k
+ B

i
u

k
) δ(y

k
, e

i
)

=
[
. . . [Aixk

+ Biuk
] . . .

] ⎡⎢⎢⎣
...

δ(y
k
, ei)
...

⎤⎥⎥⎦

=
[
. . .

[
Ai Bi

] [
x

k

u
k

]
. . .

] ⎡⎢⎢⎣
...

δ(y
k
, ei)
...

⎤⎥⎥⎦

=
[
. . .

[
Ai Bi

]
. . .

]
⎡⎢⎢⎢⎢⎢⎣

[
x

k

u
k

]
0 . . .

0
[
x

k

u
k

]
. . .

...
...

. . .

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

...
δ(y

k
, ei)
...

⎤⎥⎥⎦
= A

(
Iν ⊗

[
x

k

u
k

])
y

k
(15)

where ⊗ denotes the Kronecker product, I
ν is the identity

matrix in R
ν , and the n × (n + m)ν matrix A is defined

from Eq. (15). Finally, defining the n× ν matrix C(x
k
,u

k
)

as follows:

C(x
k
,u

k
)
�
= A

(
Iν ⊗

[
x

k

u
k

])
(16)

and using Eqs. (15) and (16) in Eq. (1) yields Eq. (9).
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IV. BEST LINEAR UNBIASED ESTIMATION

We are interested in finding y
k/k

, the linear approxi-
mation of y

k
, which minimizes the mean squared error,

E{‖y
k
− y

k/k
‖2} subject to the linear state-space model

equations (9) and (10), and to the unbiasedness condition.
The solution to that problem, sometimes called the Best
Linear Unbiased Estimator (BLUE) [7, p. 121], can be
derived using standard techniques based, for instance, on the
Orthogonality Principle [8, p. 202]. For such a derivation the
following properties are central. First, the noise vector w

k
is

both independent from x
k

and y
k
, and is zero-mean, which

makes it orthogonal to x
k

and y
k
. Second, the observation

x
k

and the control u
k

are known quantities at time t
k+1 ,

and this makes the matrix C(x
k
,u

k
) a known quantity. The

algorithm is next summarized without proof.

1) Initialization equations:

ŷ0/0 = p0 (17a)

P 0/0 = diag{p0} − p0 pT
0

(17b)

2) Smoothing stage equations:

x̃
k+1/k

= x
k+1 − C

k
ŷ

k/k
(18a)

S
k+1 = C

k
P

k/k
CT

k
+ W

k
(18b)

K
k+1 = P

k/k
CT

k
S−1

k+1
(18c)

ŷ
k/k+1 = ŷ

k/k
+ K

k+1 x̃k+1/k
(18d)

P
k/k+1 =

(
I

ν
− K

k+1Ck

)
P

k/k

(
I

ν
− K

k+1Ck

)T

+ K
k+1 W

k
K

T

k+1
(18e)

3) Time-propagation stage equations:

ŷ
k+1/k+1 = M ŷ

k/k+1 (19a)

V
k

= diag{p
k+1} − M diag{p

k
}MT (19b)

P
k+1/k+1 = MP

k/k+1M
T + V

k
(19c)

where C
k
, P

k/k
, and V

k
denote, respectively, the matrices

C(x
k
,u

k
), cov{y

k
− y

k/k
}, and cov{v

k
}. The expressions

for P 0/0 and V
k

are easily obtained by using Lemma 1.
The denomination of Smoothing stage instead of the classical
Filtering stage is due to the fact that the observation, x

k+1 ,
is one-step delayed.

V. APPROXIMATE NON-LINEAR FILTERING

A. Algorithm Summary

The suboptimal non-linear filter equations result from
applying the general algorithm presented in the Appendix.
That algorithm recursively computes ŷ

k/k
and P

k/k
, such

that

ŷ
k/k

= E{y
k
|X k} + O(∆t) (20)

P
k/k

= cov{ỹ
k/k

|X k}
= cov{y

k
|X k} + O( ∆t2) (21)

where ỹ denotes the estimation error y−ŷ. The initialization
equations are identical to Eqs. (17a) and (17b).

ŷ0/0 = p0 (22a)

P0/0 = diag{p0} − p0 pT
0

(22b)

a) Smoothing stage equations:

x̃
k+1/k

= x
k+1 − C

k
ŷ

k/k
(23a)

S
k+1 = C

k
P

k/k
CT

k
+ W

k
(23b)

K
k+1 = P

k/k
CT

k
S−1

k+1
(23c)

δŷ
k

= K
k+1 x̃

k+1/k
(23d)

ŷ
k/k+1 = ŷ

k/k
+ δŷ

k
(23e)

∆P
k

= diag{δŷ
k
} − δŷ

k
δŷT

k
− δŷ

k
ŷT

k/k
− ŷ

k/k
δŷT

k

(23f)

P
k/k+1 =

(
Iν − K

k+1Ck

) (
P

k/k
+ ∆P

k

) (
I

ν − K
k+1Ck

)T

+ K
k+1 W

k
KT

k+1
(23g)

b) Time-propagation stage equations:

ŷ
k+1/k+1 = M ŷ

k/k+1 (24a)

V
k/k+1 = diag{ŷ

k+1/k+1} − M diag{ŷ
k/k+1}MT (24b)

P
k+1/k+1 = MP

k/k+1M
T + V

k/k+1 (24c)

where V
k/k+1 denotes cov{v

k
|X k+1}.

B. Algorithm Development

1) Smoothing stage: Using Eq. (20), the vector f̂
k/k

is
defined as follows:

E{C
k
y

k
|X k} = C

k
ŷ

k/k
+ O(∆t)

= f̂
k/k

+ O(∆t) (25)

where C
k

can be taken out of the expectation since it is
function of x

k
. At time t

k+1 , the residual x̃
k+1/k

is computed
as

x̃
k+1/k

= x
k+1 − f̂

k/k
(26)

Using Eqs. (9) and (20) in Eq. (26), one can show that
the conditional mean of x̃

k+1/k
given X k is in O(∆t). An

approximation of the conditional covariance matrix of x̃
k+1/k

given X k, to second order in ∆t, can be computed using
standard techniques:

cov{x̃
k+1/k

|X k} = E{x̃
k+1/k

x̃T
k+1/k

|X k} + O(∆t2)

= C
k
P

k/k
CT

k
+ W

k
+ O(∆t2) (27)

The cross-terms that are involved in the development of
Eq. (27) cancel out since w

k
is independent from ỹ

k/k
and

is zero-mean. The matrix S
k+1 is defined as the first term

on the RHS of Eq. (27). Let f̃
k/k

and P
yf̃

(k/k) denote,

respectively, the estimation error in f̂
k/k

, and the conditional

cross-covariance matrix of y
k

and f̃
k/k

given X k. Their
expressions are obtained as follows:

f̃
k/k

= C
k
ỹ

k/k
(28)

P
yf̃

(k/k) = P
k/k

CT
k

+ O( ∆t) (29)
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Using Eqs. (27) and (29), we define the gain matrix, K
k+1 ,

as
K

k+1

�
= P

yf̃
(k/k)S−1

k+1
(30)

which proves Eq. (23c), and we compute a smoothed esti-
mate of y

k
given X k+1 through the following equation:

ŷ
k/k+1 = ŷ

k/k
+ K

k+1 x̃k+1/k
(31)

which proves Eq. (23e). The proof of Eq. (23g) is as follows:

P
k/k+1 = cov{ỹ

k/k+1 |X k+1} + O( ∆t2)

= (I
ν
− K

k+1Ck
) cov{ỹ

k/k
|X k+1} (I

ν
− K

k+1Ck
)T

+ K
k+1 W

k
KT

k+1
+ O(∆t2) (32)

Furthermore, the conditional covariance matrix on the Right-
Hand-Side (RHS) of Eq. (32) can be computed using the
following identity:

cov{ỹ
k/k

|·} = E{ỹ
k/k

ỹT
k/k

|·} − E{ỹ
k/k

|·}E{ỹ
k/k

|·}T

(33)

The conditional mean E{ỹ
k/k

|X k+1} is expressed as

E{ỹ
k/k

|X k+1} = ŷ
k/k+1 − ŷ

k/k
+ O(∆t)

= δŷ
k

+ O( ∆t) (34)

The expression for the conditional second order moment on
the RHS of Eq. (33) is developed as

E{ỹ
k/k

ỹT
k/k

|X k+1} =

= E{y
k
yT

k
|X k+1} − ŷ

k/k+1 ŷ
T
k/k

− ŷ
k/k

ŷT
k/k+1

+ ŷ
k/k

ŷT
k/k

=
(
diag{ŷ

k/k
}−ŷ

k/k
ŷT

k/k

)
+ diag{δŷ

k
}−δŷ

k
ŷT

k/k
−ŷ

k/k
δŷT

k

=P
k/k

+ diag{δŷ
k
}−δŷ

k
ŷT

k/k
−ŷ

k/k
δŷT

k
+O(∆t2) (35)

where the last equality stems from Lemma 1 and Eq. (21).
Using Eqs. (33) to (35) in Eq. (32) yields Eqs. (23f) and
(23g).

2) Time-propagation stage: Some preliminary results are
needed.

a) Lemma 2 : The random vector v
k

is independent
from X k and orthogonal to {x

k+1}, and thus,

E{v
k
|X k+1} = 0 ∀k ∈ N (36)

Proof : It is known that v
k

is orthogonal to y
k
, and is

assumed independent from Wk �
= {wi}k

i=0. Furthermore, to
ensure the Markov property of the chain {y

k
}, the vector

v
k

is necessarily independent from X k. As a result, using
Eq. (9), v

k
is orthogonal to x

k+1 , and, therefore, to X k+1.
b) Lemma 3 : The random vectors y

k
and v

k
are

conditionally orthogonal given X k+1; that is,

E{y
k
vT

k
|X k+1} = 0 (37)

Proof:

E{y
k
vT

k
|X k+1} = E{E{y

k
vT

k
|y

k
,X k+1} | X k+1}

= E{y
k
E{vT

k
|y

k
,X k+1} | X k+1}

= 0 (38)

where we used Lemma 2 and the fact that v
k

is orthogonal
to y

k
in the passage to the last line.

The propagation equation of the estimate ŷ
k/k

as given in
Eq. (24a) is obtained by applying the conditional expectation
on both sides of Eq. (4), by using Lemma 2, and by noting
that here D

k
= 0. The conditional covariance matrix V

k/k+1

of v
k

given X k+1 is directly obtained by using Lemma 3 in
its definition. An expression for P

k+1/k+1 can be developed
as follows:

P
k+1/k+1 = E{ỹ

k+1/k+1 ỹ
T
k+1/k+1

|X k+1} + O(∆t2)

= MP
k/k+1M

T + V
k/k+1 + O(∆t2) (39)

where it can be shown, using Lemmas 2 and 3, that the
cross-terms involving ỹ

k/k+1 and v
k

cancel out.

VI. DISCUSSION

The dynamics equation for the continuous state x
k

was
recast, through a special algebraic manipulation, as a linear
equation in the discrete state y

k
[Eq. (9)]. Adding the linear

dynamics equation of y
k

[Eq. (10)] to Eq. (9) results in a
conventional linear state-space model for y

k
. Were y

k
, v

k
,

and w
k

continuous jointly Gaussian processes, we would
have been in the standard linear Conditionally Gaussian case,
and the optimal filter would be the standard Conditional
Gaussian filter, which is an extension of the classical Kalman
filter (KF) [9, Ch. 11]. The vectors y

k
and v

k
are however

discrete-valued non-Gaussian random vectors, and w
k

is not
necessarily Gaussian, so that the given model differ from the
above-mentioned standard case. Thanks to the linearity of the
state-space equations for y

k
, a best linear unbiased recursive

filter could be developed. It has the advantage of being
simple to implement and analyze. The linearity of the y

k
-

model was also utilized toward a straightforward application
of the suboptimal non-linear filter presented in the Appendix.
The difference between both filters were emphasized in the
update stage of the second-order estimation error statistics. In
particular, the gain computations in the second filter is highly
coupled with the estimate computations. From a performance
point of view, the second algorithm should be preferred since
it yields an approximation of the conditional mean of y

k
to

first-order in ∆t. Notice, using Lemma 1, that there is an
alternative more efficient way of computing the P -matrices
in the second filter; namely,

P = diag{ŷ} − ŷ ŷT (40)

It is interesting to emphasize that the proposed filters are
distribution-free. In particular, the knowledge of the distri-
bution of w

k
is not required.

VII. MODEL ORDER REDUCTION

The ν-vector y
k

is by definition a unity vector in the sense
of the l1 -norm; that is;

‖y
k
‖1

�
=

ν∑
i=1

yi(k) = 1 (41)
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By definition of the matrix M , we also know that the
columns of M are probability vectors, which components
add to one. As a result, the components of the noise vector
v

k
in Eq. (4) add to zero; that is, they satisfy to a linear

constraint and are, therefore, perfectly correlated. This leads
to a loss of one in the rank of the covariance matrix of
v

k
. The same issue arises for the estimation errors in the

proposed filters. Since the sum of the components of these
errors is close to zero, the associated covariance matrices,
P

k/k
and P

k/k
, are close to be singular. To avoid this,

we propose a linear model reduction of the linear state-
space equations (1) and (4) via the linear constraint (41).
In the following, we only present the development of the
reduced model. The applications to, respectively, Linear
Least-Squares Filtering and to the approximate Non-Linear
Filtering are straightforward.

A. Reduced-order state-space model

Let yr
k

denote the (ν − 1)-vector obtained by truncating
the last component of y

k
; that is,

yr
k

�
=

[
Pr{y

k
= e

i
}]ν−1

i=1
∈ R

ν−1 (42)

The process equation for yr
k

is given as the following (ν−1)-
vector equation:

yr
k+1

= Mryr
k

+ mr
ν

+ vr
k

(43)

where

mr
ν

�
=

[
mi,ν

]ν−1

i=1
∈ R

ν−1 (44)

vr
k

�
=

[
vi

(k)
]ν−1

i=1
∈ R

ν−1 (45)

Mr �
= M

ν−1 − mr
ν
1T ∈ R

ν−1×ν−1 (46)

and where m
i,ν denotes the element i, ν of the matrix M ,

vi
(k) denotes the ith component of the vector v

k
, the vector

1 has all its ν − 1 components equal to one, and the ν − 1
dimensional matrix M

ν−1 is the principal submatrix of M
obtained by extracting the ν − 1 first rows and columns. In
Eq. (43), the vector mr

ν
is a vector of known deterministic

inputs. The stochastic properties of the reduced noise vector
vr

k
can be directly deduced from those of the full vector

v
k
. In particular, an expression for the covariance matrix of

vr
k

is obtained by deleting the last row and column of the
covariance matrix of v

k
.

The observation equation for the truncated vector yr
k

is
given as the following n × 1 vector equation:

z
k+1 = Cr

k
yr

k
+ w

k
(47)

where

z
k+1

�
= x

k+1 − cν (k) ∈ R
n (48)

Cr
k

�
=

[
ci(k) − cν (k)

]ν−1

i=1
∈ R

n×ν−1 (49)

and c
j (k), for j = 1, 2, . . . , ν, denote the following n × 1

vectors
cj (k)

�
= Ajxk

+ Bjuk
(50)

B. Development of the reduced-order model

Consider the ν × 1 process equation for y
k
, which in

expanded form is written as⎡⎢⎣ y0(k + 1)
...

y
ν
(k + 1)

⎤⎥⎦ =

⎡⎢⎣m1,1 . . . m1,ν

...
...

mν,1 . . . m
ν,ν

⎤⎥⎦
⎡⎢⎣y0(k)

...
y

ν
(k)

⎤⎥⎦ +

⎡⎢⎣v1(k)
...

v
ν
(k)

⎤⎥⎦
(51)

Then, substituting Eq. (41) in Eq. (51) and rearranging yields⎡⎢⎣ y0(k + 1)
...

y
ν (k + 1)

⎤⎥⎦ =

=

⎡⎢⎣m1,1 − m1,ν
. . . m1,ν−1 − m1,ν

0
...

...
...

m
ν,1 − m

ν,ν
. . . m

ν,ν−1 − m
ν,ν

0

⎤⎥⎦
⎡⎢⎣ y0(k)

...
y

ν
(k)

⎤⎥⎦
+

⎡⎢⎣m1,ν

...
m

ν,ν

⎤⎥⎦ +

⎡⎢⎣v1(k)
...

v
ν
(k)

⎤⎥⎦ (52)

and deleting the last equation from Eq. (52) yields the sought
equation (43). The observation equation for y

k
is developed

as follows:

x
k+1 ==

[
c1(k) . . . c

ν−1(k) c
ν
(k)

]
⎡⎢⎢⎢⎣

y0(k)
...

y
ν−1(k)

1 − ∑ν−1
i=1 yi(k)

⎤⎥⎥⎥⎦ + w
k

= [ . . . c
i
(k) − c

ν
(k) . . . ]

⎡⎢⎣ y0(k)
...

y
ν−1(k)

⎤⎥⎦ + c
ν (k) + w

k

= Cr
k
yr

k
+ c

ν
(k) + w

k
(53)

which, using Eqs. (48) and (49) yields Eq. (47).

VIII. CONCLUSION

Two types of recursive distribution-free mode-estimators
for a class of discrete-time jump-linear systems were de-
veloped in this work. Their derivation was straightforward
thanks to the linear structure of the state space model
for the mode. Model order truncation did away with the
singularity issue without drawback. Performance-wise the
second filter should be preferred since it better approximates
the conditional expectation of the mode. Both algorithms
have structures that allow for filter tuning in practical im-
plementations. The envisioned work will be to implement
the suboptimal non-linear filter in the analysis and design of
a dual controller for this type of jump-linear systems.

APPENDIX

State-space model

Consider a joint vector random sequence {x
k
,y

k
}, k ∈ N,

where x
k
∈ R

nx is known and y
k
∈ R

ny is unknown. The

6932



dynamics of these sequences are governed by the following
random difference equations

x
k+1 = f

k
(X k,Yk) + w

k
(1)

y
k+1 = g

k
(X k,Yk) + v

k
(2)

In Eqs. (1) and (2), f
k

and g
k

are mappings into R
nx and

R
ny , respectively, that satisfy to the conditions of existence

and uniqueness of a solution, X k and Yk denote the past
histories of x and y, respectively, up to time t

k
; that is, X k =

{x0 ,x1 , . . . ,xk
} and Yk = {y0 ,y1 , . . . ,yk

}, the sequence
{w

k
,v

k
} ∈ R

nx × R
ny denotes a zero-mean white noise

sequence with a known cross-covariance matrix given as

cov

{[
w

k

v
k

]}
=

[
W

k
DT

k

D
k

V
k

]
(3)

The vector w
k

is assumed to be independent from {X k,Yk},
k ∈ N and the vector v

k
is assumed to be independent from

X k and orthogonal to Yk, k ∈ N. The initial vector x0

is known as well as the mean and the covariance matrix
of the initial vector y0 ; that is, E{y0} and Py0

. Consider
the optimal filtering problem that consists in solving for the
mean-square estimate of y

k
given X k, which is known to

be the conditional expectation of y
k

given X k. A general
suboptimal algorithm for sequential computation of ŷ

k/k
is

described in the following. The approximation is to first
order in ∆t, where ∆t denotes the underlying discretization
incremental time associated with Eq. (1). Let Â

k/l
and Ã

k/l

denote, respectively, the estimate and the estimation error at
t

k
given X l.

Summary of the filtering equations

1) Initialization stage equation:

ŷ0/0 = E{y0} (4)

P0/0 = Py0
(5)

2) Smoothing stage equations:
Assuming that the estimates ŷ

k/k
and f̂

k/k
can be com-

puted, a new observation, x
k+1 , is acquired at time t

k+1

and processed in order to yield a smoothed estimate
of y

k
at t

k+1 , denoted by ŷ
k/k+1 . The smoothing stage

equations are:

x̃
k+1/k

= x
k+1 − f̂

k/k
(6)

P̃
f
k/k

= cov{f̃
k/k

|X k} (7)

P̃
x
k+1/k

= P̃
f
k/k

+ W
k

(8)

P
yf̃

k/k

= cov{y
k
, f̃

k/k
|X k} (9)

ŷ
k/k+1 = ŷ

k/k
+ P

yf̃
k/k

P−1
x̃
k+1/k

x̃
k+1/k

(10)

3) Time-Propagation stage equations:
Assuming that the estimate ĝ

k/k+1 can be computed,
the estimate ŷ

k+1/k+1 is computed at time t
k+1 using

the cross-correlation between w
k

and v
k
. The time-

propagation equation is:

ŷ
k+1/k+1 = ĝ

k/k+1 + D
k
P−1
x̃
k+1/k

x̃
k+1/k

(11)

The approximation stems from the measurement update
Eq. (10). The second term on the RHS only represents
the orthogonal projection of y

k
onto the linear manifold

generated by x̃
k+1/k

, rather the orthogonal projection of y
k

onto the Hilbert space generated by any bounded function of
the residual.

REFERENCES

[1] Liberzon, D. and Morse, A.S. “Basic Problems in Design and Stability
of Switched Systems,” IEEE Control Systems Letters, Oct. 1999,
pp. 59–70.

[2] Wonham, W.M., Random Differential Equations in Control Theory,
In A. Bharucha-Reid, editor, Probabilistic Methods in Applied Math-
ematics, Volume 2, Academic Press, 1970, pp. 192–194.

[3] Liptser, R.S., and Shiryayev, A.N., Statistics of Random Processes I:
General Theory, Springer-Verlag New-York Inc., 1977.

[4] Wonham, W.M., Some Applications of Staaochastic Differential Equa-
tions to Optimal Non-Linear Filtering, Tech-Rept. 64-3, Feb. 1964,
RIAS, Baltimore.

[5] Liptser, R.S., Lecture Notes in Stochastic Processes, Lect. 8, Tel-Aviv
University, Israel.

[6] Elliot, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models,
Estimation and Control, Springer-Verlag New-York Inc., 1995

[7] Mendel, J.M., Lessons in Estimation Theory for Signal Processing,
Communications, and Control, Prentice Hall PTR, Englewood Cliffs,
N.J., 1995.

[8] Jazwinski, A.H., Stochastic Processes and Filtering Theory, New
York: Academic, 1970.

[9] Liptser, R.S., and Shiryayev, A.N., Statistics of Random Processes II:
Applications, Springer-Verlag New-York Inc., 1977.

6933


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




