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Abstract—1In this contribution the recently introduced con-
cept of fictitious inputs (see [1]) for the design of feedforward
controllers is investigated for the case of SISO systems, when
only a single fictitious input needs to be introduced. It is shown
that the internal dynamics and the input-ouput linearizing con-
troller can be derived from the differential parameterization.
Thus, in the case of stable internal dynamics, a desired trajec-
tory can be stabilized based on the differential parameterization
resulting from the introduction of the fictitious input. The
results of the paper are illustrated for the Van de Vusse type
continuous stirred tank reactor (CSTR).

I. INTRODUCTION

The flatness based approach to the analysis and control of
nonlinear systems is an important design strategy for nonlin-
ear control systems. This approach has been introduced e.g.
in [2] and [3]. For an affine input nth order SISO system

o= f(x)+g(@)u ()

y = hlz) )
the flatness property of (1) implies the existence of an
(eventually fictitious) flat output y; € R, such that

yr = 0) 3)
o= Palyrgp-yd ) )
u o= Yulyr s ud) 5)

The feedforward controller is then obtained by inserting the
arbitrary but sufficiently smooth reference trajectory for y
into (5). If system (1) is not flat, a flat system can always
be constructed by the introduction of fictitious inputs (see
[1]). Setting the fictitious inputs of the resulting differential
paramterization to zero yields a differential parameteriza-
tion for the original system (1). Yet, the components of
the parameterizing output for system (1) are differentially
dependent in contrast to the situation of a real flat system.
This contribution clarifies the structure of the differential
parameterization for the case of SISO systems, when a single
fictitious input u is introduced. This is done by comparison
with the derivation of the Byrnes-Isidori normal form for
system (1)—(2). Section II recalls some facts about input-
output linearization using the Byrnes-Isidori normal form and
feedforward controller design using fictitious inputs. Section
IIT shows that the Brunovsky states of the fictitious system
are naturally related to the coordinates of a Byrnes-Isidori
normal form for system (1)—(2). In Section IV the input-
output linearizing controller is derived from the differential
parameterization. Section V shows that the involved theoretic
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investigation of the differential parameterization in Sections
III-IV results in a very simple and systematic step-by-step
procedure to derive the input-output linearizing controller
which can be performed without knowledge of the previously
acquired theoretic background. Section VI then extends the
method to the design of tracking controllers for output
tracking for minimum phase systems. In Section VII the
approach is applied to a Van de Vusse type CSTR. This
example shows the advantage of this approach compared to
the well established transformation to Byrnes-Isidori normal
form when dealing with tracking control for nonminimum
phase systems.

II. PROBLEM FORMULATION

If the SISO system (1)—(2) has relative degree r locally
about xg (see e.g. [4]), then for z in a neighbourhood U (z)
of o

Lgh(z) = LyLh(z) = ... = LyLy h(z) =0 (6)
and
LyL ' h(x0) # 0 (M
If (6)—(7) holds, the time derivatives of y can be written as
yW =Lih(z), i=11)r-1 (8)
In this case a coordinates transformation
(&n) = () )
which is given by
& = Li'h(x), i=1(1)r (10)
n; = ¢z), j=11n—r (11)
exists, where the ¢; can always be chosen such that (9) is

nonsingular about xy. In the new coordinates (£, 1) system
(1)—(2) is represented by the Byrnes-Isidori normal form

& = &l i=11)r—-1
& = b(&n)+al&nu (12)
o= p&mn)+ae&nu
y = & (13)
where
a(&,m) LoLy " h(@)] -1 (e m) (14
(&) = Lih(@)|,_g1(c (1%

It is well known that based on the Byrnes-Isidori normal
form (12)—(13) an asymptotic tracking controller for output
(2) can be designed (see e.g. [4]). In the following it is shown
that the tracking problem can also be solved on the basis of
a differential parameterization for system (1) even if system
(1) is not flat. To this end, a fictitious scalar input uy is
introduced to system (1)

= f(x)+g@)u+gr(x)us (16)
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such that
ranklg(x) g(z)] = 2

holds locally. If (17) is satisfied, u; is independent from
u and qualifies as a new input. As a consequence of the
fact that every flat output satisfies dimy; = dimu (see
[2]), a possible flat output for system (16) has dimy,; =
dim[u us]T = 2. It is assumed that it is possible to find a
flat output for (16) of the kind

7)

yr = lyn vl =y ypol” = [h(x) hy(x)]"  (18)
where the first component y is the original output (2) of
system (1)—(2). If additionally system (16) is static feedback
linearizable, there exists a differential parameterization of the
inputs

W) (19)

) (0)

u ay;‘ql)vyf27yf27"'

wu(yfla yfla s

Up = wu]"(yflvyflv"'ay;‘ql)ayfgayf?w"
and of the states

(ri—1)

o= a(yrn, it 0 Ty e ybe ) @D
such that the controllability indices of (16) satisfy r1+r2; =n
(see [3]). In [1] it has been shown that it is always possible
to determine a differential parameterization (19)—(21) for
general nonlinear systems, although not necessarily with the
introduction of only one fictitious input uy. However, the
application of this approach to various examples shows that
the assumptions made above are not too restrictive for the
case of SISO systems.

In contrast to the case of a flat output for system (1), the
components of y; in (18) cannot be assigned freely but have
to respect uy = 0 to be trajectories of the original system
(1). In view of (20) this yields

(Tz))

W) @)

0= 1;[}uf (yflvyflv R y;‘ql)a Yr2, ?Jf27 s
Thus, the components of y; are obviously differentially
dependent. If the ouput y is supposed to track a given
trajectory y* i.e. Y%, Y, can be determined as the solution
of the differential equation

Yoy Wi i 00 ey =00 (23)
The feedforward controller is then obtained by inserting
y¥, and y3, into (19). In this paper it will be shown how
a tracking controller can be derived from the differential
parameterization (19)—(21). This extents the results in [1]
to the design of tracking controllers.

III. NATURAL COORDINATES BASED ON THE
DIFFERENTIAL PARAMETERIZATION

In this section it will be investigated how the Brunovsky
states (see [5]) of system (16)

C=0H3) = GG 6h)
—( (r—1) (ra—1 (24
yfla"'ayfl 7yf27"'7yf2 )

are related to the coordinates of a Byrnes-Isidori normal form
for system (1)—(2). The coordinates transformation

C=v, (z) = Op(x) (25)

transforms system (16) into nonlinear controller form (see

[4])

Cll = CilJrlv i=11rm -1
= bi(Q) + an(Qu+ aa(Quy (26)
G = G j=11)r2 —1

.32 = b2(() + a21(Q)u + ax(Q)uy

where the controllability indices r; and ry follow from (19)—
(21). The decoupling matrix A(¢) (see [4]) of system (26)
is given by

L,L7 " 'h(z) L, L7 'h(x)
AQ) = 9l 9=r
0= L B
= lai; (Q)] 27)

As static feedback linearizability is assumed, it follows that

det (A) = ‘ Z; Z;; ‘ =a11a22 —aza21 #0  (28)
in a neighbourhood of {y = ® (o). The normal form (26)

can be related to the original system (1) by setting u; =0

G = G i=1(1)r —1
b= bi(Q) +an(Qu (29)
G = G j=11)r2 -1
¢ = b2(¢) +axn(Qu
Output (2) reads in the (-coordinates
y=yn =G =h@)], 41 (30)

From (29) and (8) it can be deduced that for the coordinates
transformation ® in (25)
Os(z) = [h(x) ... L;l_lh(:c) hy(x) ... L?_th(:c)]T

(31
holds. Furthermore a1; and b; in (29) are given by
a1(¢) = LgL;l_lh(x)‘m:«b;l(C) (32)

Comparing (32)—(33) with (14)—(15) it follows, that for
r1 = r system (29) with output (30) is already in Byrnes-
Isidori normal form with ¢ = ¢! and n = (2. So, the
coordinates transformation into Byrnes-Isidori normal form
(29)-(30) is given by (25) which is a function of = only
and thus independent from setting uy = 0. Note that ® is
simply the inverse of the differential parameterization (21)
of the states x.

If r1 < r it follows from (6) and (32) that a1; = 0. Conse-
quently, aj2 # 0 in view of (26) and (28). Thus, the relative
degree of (2) as output of the fictitious system (16) has been
reduced by the introduction of u . As a consequence, in this
case an additional coordinates transformation into Byrnes-
Isidori normal form has to be determined. The drift term f
and input vector g of system (29) for this situation are

P

¢
&, 0
iy — | 01(Q) S(0) =
JQ=|"g" | Q=1 (34)
a21(C)
2
L 62(C) |
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where ag; # 0 because of a1; = 0 and (28). In view of (30)
LgL’;;Cll = 0, E=0(1)r—2 (35

r—1,1
Ll Gl g 7O (36)
holds for the original system (29) in the new coordinates
since the relative degree 7 is independent from the choice of
local coordinates. Thus, the &-coordinates for system (1)—(2)

can be introduced as
=L =¢ (=y"Y),  i=11)r (37
in view of (10), (30) and (34). In the following it will be
shown that introducing the n-coordinates as
=6, j=1n-r (38)
yields a nonsingular coordinates transformation &,n) =
®¢(¢) which transforms system (1)—(2) into Byrnes-Isidori
normal form (12)—(13). To this end, the structure of b1 (¢) in
(34) is investigated. From the structure of f in (34) it can
be seen that (35) is fulfilled independently from b;(¢) for
k=0(1)r;y — 1. At k = ry one has
LR = Lahi(Q)

2] ~ 9
= 2@ (200

(39)

obi1(Q5
remERE 8232 lg=0

This yields agégo = 0 in view of ag; # 0. The succeeding

conditions in (3%) can be expressed as
. . . !
LaL™'¢l = LaLihy = (g Lib1)g =0,
i=11r—r —2
5 (40)
(see (33)). With the structure of f and similar arguments as
before this leads to

d . )
@h = Lo i=0ron-1 @
= (e 2 () t14i)
where especially
by =b1(¢¢F G (i t1) (42)
Finally, (36) can be expressed as
Lzl '] =Lzl "
g f Cl Co= 1 (w0) g f 1 (C) Co= 4 (z0)
0 pi_1 !
= —L”:, 1 a
(8< f l)g Cg:@f(mo) #
(43)

and, as before, the structure of f and g yields
bt
VT E— # 0,
Oy (rr) 414 1G0=Ts (o) )
Using the above results the transformation (§,7) = ®,(¢)
into Byrnes-Isidori normal form has the following structure

i=01)r—r —1 (44)

& = ¢, i=1(1)r
di—1 1 )
rit; = Wbl = L,jf b, j=11r—-mr
= §r1+j (Clv <127 R 327(r7r1)+j) (45)
mo= ¢

I=11) ro—(r—r1)
———
B =ri1+ro—r=n—r
In view of (44) and (45) the Jacobian of ®¢(¢) is nonsingular
about {y and consequently ®,({) qualifies as a coordinates

transformation. Thus, the Byrnes-Isidori normal form for r» <
r1 of the original system (1) is given by

& = &g, t=11)r—-1
& = b&n) +al&nu (46)
N = i+ J=1Mn-r-1
Tn—r = G4 © 7 (E7)
= q(&,- - 6t1m)
with output
y==E& 47)

In case of 71 = r the transformation ®; becomes identity
and

b=b1 a=an (48)
(see (29)). So, the transformation of system (1) into the
coordinates of the corresponding Byrnes-Isidori normal form

is given by
(&) = PyoPy(x)

in either case. This will be used for a unified notation.

(49)

IV. INPUT-OUTPUT LINEARIZING CONTROLLER

This section clarifies the relation between the input-output
linearizing controller and the differential parameterization
as introduced in Section II. A major result of this section
is that equation (22) is related to the internal dynamics
of system (1)—(2). Furthermore, it is shown that the input-
output linearizing feedback for the Byrnes-Isidori normal
form (46)—(47) can be derived from the differential pa-
rameterization (19)—(20) of the inputs. The analysis of the
differential parameterization (19)—(20) is done mainly in
the (-coordinates where the fictitious system (16) is given
in nonlinear controller form (26). The exact linearizing
feedback law which transforms system (26) into Brunovsky
normal form with the new inputs v; and vy is given by

u L [ = 0a(Q)
_ A 1 1 1
[ ug } ©) [ v — b2(C)
in view of (28). The same feedback controller is obtained by
setting

(50)

1 (r1)

L2
T1 _yfl 9 (T2)

vy = ¢ v =2 =y 51

in (19)=(20), i.e.

u | [ (v, i) |, v — by
[W}_[%Aﬂmi%M}_A ©[w_@}

B 1 ag2(v1 — b1) — a12(v2 — b2)
- anezz—azan | —ag(vy — b1) + a1 (v2 — ba)
(52)

which follows from the properties of the flat system (16)
(see [3]). In the following it is important to recall that the
differential parameterization for (1) is obtained from (19)—
(20) by setting uy = 0. For the further discussions two
different cases have to be distinguished:
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A ri=r
In this case the dynamics of system (1) in the (-
coordinates are given by the controller normal form (26)
where a1; and b; are given by (32)—(33) for ;1 = r with
a11(¢o) # 0 in view of (7). Setting uy = 0 in (52) gives
1
(—a21(v1 — b1) + a1 (ve — ba)) (53)

0 == -——
a11G22 — G12G21

As det A # 0 (see (28)) (53) can be solved for Vg
- wu]c (<1 427 1) f21 (Ul_b1)+b2 a (Ul—b)+b2
(54)

in view of (48). Substituting wve according to (54) in
1/)u (Clv U1, CQa 1}2)) (See (52)) ylelds

! a21
U= ——""—"—"—"\a v — b —Qa v — b
a11022 _a12a21( 22(v1 1) 12[(111( 1 1)])
1 1 _
N —h)=Z-b 55
all(vl ) d(vl ) (55)

where again (48) was used. Thus, (55) is the input-output
linearizing feedback law for the Byrnes-Isidori normal form
(46)—(47). Application of (55) to (46)—(47) yields the fol-
lowing system representation

& = &, i=11)r—1

& = un (56)

= Njt+1, j=11ln-r-1
Dn—r = ba+ %(Ul —b) = q(&,m,v1)

(56) with output (47) is in Byrnes-Isidori normal form.
The n-subsystem of (56), which represents the internal
dynamics, is a state space representation of the implicit
differential equation (53) (i.e. 22). This is due to the fact that

q(&n0) = ¢;f1 (1, ¢2, vl)lczéil(gm) in view of (54).

B.rm<r

In this case a;; = 0 holds in (26), as derived in Section
III. Thus, with t,,, = 0 (52) simplifies to

1 a
u = —(1)2 — bg) — 22 (1)1 — bl) (57)
a21 12021
1
0 = —(v1—by) (58)
a12

For this case aj2 # 0 (as det A # 0) and thus (58) holds if
and only if

0=mun _b1(<17<127"-7 327(7«77«1)4»1) :’Jjuf (59
where also (42) was used. Inserting (59) into (57) yields

1
— (’UQ — bg) (60)
21

However, in contrast to the situation in Section IV-A addi-
tional constraints are needed to determine the unknown vo
in (60). These can be derived from the fact that admissible
trajectories for the original system (1) which respect uy =0
obviously also provide for the time derivatives of (59) to
vanish. Together with (41) this yields for the first r —r; — 2
time derivatives .

dt 0= vlz)

@0e ol —

u =

L;bl
z)(<1 Cl RN sz_(r_T1)+i+l),
1= 1(1)7"—7’1 -2 61)

For the (r — r; — 1)th time derivative one has
0 — UY*Tl*l) b(T ri— 1)(<1 Cla'-' 2)
= Ty (62)
so that the next time denvatlve can be formulated as follows
0= (r—r1)
ey a6, 1) e T 1y
(D) ot acz, )

= /lE’U«f (<17 (T7T1)7<2 <7?2) (63)

By a b(r M= £ (see (44)) it is possible to solve (63)
for T2

2 =g Q) (64)
In view of (51) this yields the desired input vy

va =P (0, 0) (65)

Thus, vy_”) can be chosen freely, as condition (63) can be
fulfilled for any v{"~™) by a suitable input v5. So, v{" ™"
can be seen as an input, whereas vy), 1 =01)r—ry —1,
are state variables. This becomes obvious in view of the
coordinates transformation ®;. Comparing (61)~(62) with
(45) yields
(1) _ , (r1+1) o I
01" =&vit (ZYp ), i=01)r—r -1 (66)
Finally, substituting (65) in (60) yields the control law

1 r—r
Uza—m(%f(( V.¢) — b2)
It is essential to realize that the next time derivative of (62)

can also be written as

(67)

0 — v;r—n) _ bgr—n)
_ 5r—7‘1) _ L}_lel _ LgL}_”_lbl u  (68)
v —
where in view of (39) ' '
a = L~LT~_”_1b1 = L~L;~71€11, a(Go) #0 (69)
b = LT le = LTCl (70)

Thus, a,b are exactly the terms appearing in (46). Solving
(68) for u yields

u= E( o 4 ) (71)

This is the input-output linearizing feedback law for the
Bg/rnes -Isidori normal form (46)—(47) with the new input
"7" . So, the application of (67) is equivalent to (71). As

a consequence the application of (67) results in the following
system dynamics in the (£, n)-coordinates

& = i, i=11)r —1

briti = Em+is J=01)r—-r -1
& = o (72)
m o= Mai, I=11n—-r—-1

Mn—r = Cr22—(7‘—7"1)+1 = w;fl(cl7vl7<12" T 7?2—(7‘—7"1))
= Q(glu"'ugh-i-l?n)

with output (47). This is an input-normalized Byrnes-Isidori

normal form with new input

o' =yl (73)
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In view of (45) and (72). The right hand side of 7,

stems from the fact that v,, in (59) can be solved for
2 PR ob

Gy (rry g1 D v1ev.v of 5. 7(T1T - # 0 (see (44)).. Tﬁus,

the n-subsystem, which represents the internal dynamics, is a

state space representation of the implicit differential equation

(59) which is equivalent to t,,, = 0.

V. INPUT-OUPUT LINEARIZATION USING THE
DIFFERENTIAL PARAMETERIZATION

The previous results can now be used to derive a system-
atic procedure for determining the input-output linearizing
controller on the basis of (19)—(20). The parameters r; and 72
can directly be derived from the differential parameterization
(19)(20). If additionally (22) can be solved for vy = 1%,
then the relative degree r of y is equal to r; (see (54)). The
input-output linearizing controller with new input v; = y frf

is then given by inserting vy = y}2 2) = » fl into (19)
r ro—1 T
u:wu(yfla"'7y§"11)7yf27"'7yj22 )71/Juf( ( 1)))
(74)

in view of (55). If in contrast y( 2) cannot be obtained
directly from (22), then (22) should be normalized such that
the coefficient of v, = ygfll) is equal to one (see (59)). This
yields

0:’JJUf(yfla"'7y§‘ql)7yf27"'7y§‘";))7 K< T2 (75)

The relative degree r of y can then be determined as

r=r1+r—K=n—~kK (76)
in view of (59) and (2, )41 = (” (r=r1)) _ ;:) In
this case y};) has to be determined as
y;?) = (ii(trf_h))_l(yfla yf17 s 7y§f1 )7 y;q)u

(r2—1)
yf27yf25"'ayf2 )
7 — . r r . ro—1
= wufl(yflvyfl, ceey y‘(fll), y‘(fl)vyf27yf27 ceey y‘(f_; ))
(77)

in view of (24), (65) and (73). The input-output linearizing
controller is then given by

(r1)

U= wu(yfluy.flu' .. 7yf1 )

yf27yf27"'7yj2 ’(/; (7y§‘q))) (78)

where the new input is v{" ") = ygfl)

VI. TRACKING CONTROLLER DESIGN

In the following a tracking controller is derived on the
basis of the differential parameterization to stabilize the
tracking of the reference trajectory y*. To this end, the
tracking error e for the control output is defined as (see 18)

e=y—y" (=yn —v}) (79)

For the case r; = r the states of the tracking error system
can be introduced as (see (37), which also holds for r; = r)
=& =& i=1(1)r (80)
In these coordinates the tracking error system is given by
i=11)r1 —1 (8D

€ = €y,

é’r‘l = 5’!‘1 - 5:?1

(r1) -

Setting v; in (55) i.e. Yy in (74) equal to

1
=& =D hes (82)
=1
yields
T1
En=v1=6 = Nies (83)
=1

in view of (56). Comparing with (81) the tracking error then
respects

r1 r
R ST RILEE S
=1 i=1

where r = r; was used. The \; can now be chosen such that
the tracking error dynamics are stable.

In the case r; < r additional states have to be introduced.
According to (37) and (45) one has

(84)

Cri+i §T1+i _g;"liri’ i = 1(1)T_T1
S (85)
The tracking error system is then given by
éi =  €i+1, 1= 1(1)’!’ -1 (86)
o= G—gr=b - é:f
Then, setting v(r ™) in (71) ie. y in (78) equal to
o) = g Z Aiei (87)
i=1
together with (72) and the last row of (86) yields
0=cr+ > Nei=el?+ > Nef ™V =0 (88)
i=1 i=1

If the \; are chosen adequately, the tracking error system is
stable. However, it is a well known fact that despite of the
tracking error system beeing stable the internal dynamics can
still be unstable and cannot be influenced using an input-
output linearizing controller. In this situation the proposed
control scheme allows easy switching of the control variables
as illustrated in the following section.

VII. EXAMPLE

In process control applications the necessity of operation
point changes occurs quite often. In [6] the Van de Vusse type
CSTR is investigated in detail as a benchmark example. The
system equations of this CSTR reactor are given by

jjl = —kjll‘l — kgx% + (CAO - CCl)U (89)
To = kixy — koxo + (_1'2)“

The control output is the state zo which is the product
concentration in the output stream, the state x; is the
reactant concentration in the reactor and the input u is
the dilution rate. A transition between the two operation
points A: (2.1534 el 0 g moly 4pd B: (2.9175 @ol 1,1 mol)

I . liter? liter . liter? liter
is considered. These operating points and the corresponding
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parameters are taken from [6]. If a fictitious input wu; is
introduced with the input vector gy

gr=1[10" 1)

rank[g gf] = 2 holds in a neighbourhood of the operation
points. As flat output ys = [xo x1]7 (see (18)) is chosen,
where (21) is obvious. After a few algebraic manipulations
one arrives at the differential parameterization of the inputs

1.
—— (U1 — k1yr2 + kays1)

— 92)
Yf1

ur = Yro2— (—k1ype — k3y§2)
Cuao—Yra,.
+;%a#2@ﬂ—kWW+kwﬂ) 93)

From (92)—(93) it can be deduced that r; = o = 1 in view

of (19)—(20). The equation resulting from setting 4y = 0 in

(93) can be solved for ygff)

Uz = (—kwys2 — ksyfy)
Ca0 —ys2,.
—————=(Yp1 — k1yy2 + kays1) (94
Yr1
This yields » = r1. (92) does not depend on y(T;) = Yr2

and can easily be verified to be the input-output linearizing
feedback for (89)-(90). (94) are the internal dynamics for
the output (90). For both operation points A and B these are
unstable. According to [6] a trajectory y7 for the transition
has been planned using backwards integration. In Figure
1 the resulting trajectory is shown. The output reference
trajectory y 7, starts at ¢ = 2min. Due to the instability of the
internal dynamics the trajectory for y%, has a noncausal part
(see [6]). However, even for very small deviations from the

w
N

oo
» ™ w

[mol/liter]

N
~

INd
N

o =
[
T T

[mol/liter]

0.95

[ e

I

I

I

I

I

I

I

I

I

I

I

I

I

|

i

1 1
0 05 1 15 2 25
t [min]

35 4 45 5

Fig. 1. yy1 and yyo trajectories

planned trajectory, the internal dynamics converge to another
operation point, when the input output linearizing controller
is used. The proposed control scheme allows easy switching

of the control variables, i.e. the trajectory is stabilized by
stabilization of the tracking error for y 2. If (93) with uy =0
is solved for ys1, one gets

OL(—ZJQ — kg2 = ksyp2) + kayra + kayp
A0 — Yr2

(95)
It can be verified that these internal dynamics (for output
Y2 = 1) are stable for both operation points. Consequently,
asymptotic tracking can be achieved using the input-ouput
linearizing feedback law for y o, which results from inserting

(95) into (92).

Y1 =

B 1

Cao — Y2
The stabilization of the trajectory is then achieved by replac-
ing ¢ro in (96) with

u (92 + kry sz + kayta) (96)

Yrz = 9;2 = A(yp2 — y;2) 97

corresponding to (82), where y%, and y, stem from the orig-
inal reference trajectory. The result for A\; = 35 % can be seen
in Figure 1, for an initial error (0.05 22 0.12 290) [t can
be verified that the desired trajectory for ;1 is approached
asymptotically. It has to be mentioned that system (89) is flat
with flat output yy = cA?—xl . A tracking controller based on
flat feedback thus would obviously require z; and x5 to be
measured, whereas for the implementation of the tracking
controller (96)-(97) only yy2 = =z has to be measured.
Furthermore in [1] a differential parameterization of a non-
flat helicopter model could be derived by the introduction
of a single fictitious input. This shows that the proposed

approach can also be used for non-flat systems.

VIII. CONCLUSIONS AND FUTURE WORK

This contribution clarified the structure of the differen-
tial parameterization obtained from the introduction of a
fictitious input. The input-output linearizing feedback has
been determined from the differential parameterization and
an asymptotic tracking controller was derived. Additionally,
as shown in the example, the proposed controller design
allows amazing flexibility to achieve the tracking. Future
work includes the investigation of the case with several
fictitious inputs and the extension to MIMO systems.
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