
Abstract— An extension of backstepping design method to 
stabilization of nonlinear systems with respect to a set is 
presented. Robust version of controller providing the system 
with input-to-output stability (IOS) is proposed. The 
performance of obtained solution is demonstrated by the 
pendulum with actuator example. 

I. INTRODUCTION

URING last two decades the problem of stabilizing 
control design for nonlinear dynamical systems was 

intensively studied see, e.g. survey [10]. As a result the 
number of approaches were developed. Method of Control 
Lyapunov function (CLF) [4], [5], [22] gives necessary and 
sufficient conditions for affine in control nonlinear systems 
stabilizable by continuous control. Feedback linearization 
approach [8] provides elegant geometric design tool for a 
class of nonlinear systems transforming them to linear ones 
and allowing to apply a wide spectrum of solutions available 
for linear systems. The control design problem for cascades 
systems plays an important role among fundamental control 
design problems. There are several methods like 
backstepping, nested saturation design or forwarding [10], 
[12], [11], [16], [29] which allow to design a stabilizing 
control for a class of nonlinear dynamical systems fitting 
some structural conditions (e.g. well defined relative degree, 
minimum phase property, low-triangular model of the plant). 
Passification design method is focused on stabilization of a 
class of nonlinear systems possessing weak minimum phase 
property [17], [7]. There exist robust versions of the above 
approaches mainly based on input-to-state stability (ISS) 
theory [23], [25], [26]. 

Another promising topic deals with the problem of 
nonlinear systems stabilization with respect to set [7], [15], 
[18]–[21], [30] (part of variables or output). Such problem 
arises in oscillation or synchronization control, energy level 
stabilization in mechanical systems, maneuvering problem 
or in robotic applications. Robust analogues of stability with 
respect to set or output were formulated in [13] and [9], 
[27], [28] in IOS framework (as extension of ISS property 
for systems with output).  

Although set stabilization algorithms are demanded in 
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practical applications, the corresponding part of theory 
dealing with control design is developed only for CLF 
approach [6], feedback linearization [7], [30] and 
passification [19], [20]. Paper [14] analyzes robust 
properties of energy level stabilization control for a 
pendulum. To our best knowledge, no results in set 
stabilization by backstepping are available. 

In this paper we attempt to provide such result. Also we 
investigate robust properties of proposed control laws basing 
on IOS theory. In Section 2 preliminary results and 
definitions are summarized. Section 3 contains problem 
statement and control design results for stabilization with 
respect to set. In the second part of Section 3 robust 
properties of proposed controls are also analyzed. The 
problem of robust energy level stabilization for a pendulum 
is considered in Section 4. 

II. PRELIMINARIES

Let us consider a nonlinear dynamical system 
),( uxfx , )( xhy , (1) 

where nRx  is state vector; mRu  is input vector; 
pRy  is output vector; f  and h  are locally Lipschitz 

continuous vector functions, 0)0(h , 0)0,0(f .

Euclidean norm will be denoted as x , and tt ,0
u

denotes the mL  norm of the input ( )( tu  is measurable and 

locally essentially bounded function mRR:u ,
0:RR ):

TtttessTt ,,)(sup 0,0
uu ,

if T  then the notation u  will be used. We will 

denote as mRM  the set of all such Lebesgue measurable 

inputs u  with property u  and M  will be the set 

of inputs u  such that mRt )(u  for almost all 0t ,
where  is a compact set. For initial state 0x  and input 

mRMu  let  ),,( 0 uxx t  be the unique maximal solution 

of (1) (we will use notation )( tx  if all other arguments of 
solution are clear from the context; 

),,(),,( 00 uxxhuxy tt ), which is defined on some 
finite interval T,0 ; if T  for every initial state 0x
and mRMu , then system is called forward complete. 
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System (1) has unboundedness observability (UO) property, 
if for each state 0x  and input mRMu  such that T

necessarily
),,(suplim 0 uxy t

Tt
.

Boundedness of UO output means forward completeness. 
The necessary and sufficient conditions for forward 
completeness and UO properties were investigated in [1]. 
Distance in nR  from given point x  to set A  is denoted as 

xxx
AA A inf,dist  and xx 0  is standard 

Euclidean norm. 
 As usual, continuous function RR:  belongs to 

class K  if it is strictly increasing and 00 ; it belongs 
to class K  if it is additionally radially unbounded; and 
continuous function RRR:  is from class LK , if 
it is from class K  for the first argument for any fixed 
second, and it is strictly decreasing to zero by the second 
argument for any fixed first one. 

It is said that system (1) has bounded-input-bounded-state 
(BIBS) property, if  inequality 

uxuxx ,max),,( 00t , 0t

holds for some function K  and for all nR0x  and 
mRMu . Another one characterization of (1) is global 

stability modulo output (GSMO) property: 
),,(),,( 00 uxyuxx tt , Tt

~,0

Tt ~,000 ,max),,( uxuxx , Tt
~,0 ,

where functions K , K  and nR0x , mRMu ,

TT
~ . If Mu , then the term T

~,0u  can be 

dropped in the last inequality. It is worth to note, that 
GSMO property and boundedness of the output ensure 
BIBS. Additionally, if set 0)(: xhxZ  is compact, 
then system possesses GSMO property. Symbol 

Fx )(VD  will be used for directional derivative of 
function V  with respect to vector field F  if function V  is 
differentiable and for Dini derivative if function V  is 
Lipschitz continuous. 

D e f i n i t i o n  1  [9], [27]. A UO system (1) is IOS, if 
there exist LK  and K  such, that 

uxuxy tt ,),,( 00 , 0t

holds for all nR0x  and mRMu .
D e f i n i t i o n  2  [9]. For system (1), a smooth function 

V  and a function RR n:  are called respectively an 
IOS-Lyapunov function and auxiliary modulus if there exist 

K21,  such that inequalities 

xxxh 21 )( V  (2) 

hold; there exist K  and LK3  such, that 

ux )(V xxuxfx ,,)( 3 VVD  (3) 

for all nR0x  and all mRMu , and there exists some 

K  such that for any 0T
)(),,( 0 ttV uuxx , Tt ,0

uxuxx ,max),,( 00t .
In [28] IOS-Lyapunov functions was introduced for BIBS 
system (1), in this case one can use x  as auxiliary 
modulus .

T h e o r e m  1 [9]. Suppose that system (1) is UO. The 
following are equivalent for the system: 

– it is IOS; 
– it admits an IOS-Lyapunov function.
If input u  takes values in compact set mR , then  

there is another characterization of output stability. 
 D e f i n i t i o n  3  [9], [27]. A forward complete system 

(1) with inputs from M  is UOS, or uniformly output 

stable, if there exists LK  such, that

tt ,),,( 00 xuxy , 0t

for all nR0x  and Mu .
D e f i n i t i o n  4  [9], [28]. For system (1), a smooth 

function V  and a function RRn:  are called 
respectively an UOS-Lyapunov function and auxiliary 
modulus if there exist K21,  so that (2) holds and 

there exists LK3  such that 

xxuxfx ,, 3 VVD  (4) 

is satisfied for all nR0x  and all Mu , and  is 

locally Lipschitz on the set 0: xx V and

00,, xuxx t .
T h e o r e m  2  [9], [28]. Suppose that system (1) is 

forward complete and Mu . The following are 
equivalent for the system: 

– it is UOS; 
– it admits an UOS-Lyapunov function.
In work [6] the corresponding CLF formulations are 

given for the tasks of IOS and UOS stabilization. 
L e m m a  1 . Let system (1) with inputs Mu  be UO 

and there exist a continuously differentiable function 

RRV n: , which admits (2) and with K0 for all 
nRx  and Mu

)||(),( 0 yuxfxV .

If function ),(),( uxfxhux  is bounded for boun-

ded values of  )( xV  and Mu , then system is UOS.
Proofs of the lemma and all theorems are excluded due to 
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space limitation. It is said that system (1) is V -detectable

[19] with respect to continuous function RRV n:  on 

set nRX , if for all nR0x  and 0u the following 
property holds: 

X)0,,( 0xx t  , 0t 0)0,,(lim 0xx tV
t

.

Sufficient conditions for system (1) to be V -detectable are 
presented in work [19]. 

III. MAIN RESULTS

Let us consider the model of the plant 
),,( 1dzxfx , )(xhy , (5) 

2duz , (6) 

where nRx  is state vector of system (5). The system 
should be stabilized with respect to set 0)(: xhxZ

defined by zero level of output vector pRy ; mRz  is 

state vector of system (6); mRu  is control vector; 
11

qRd , 22
qRd  are vectors of external disturbances, 

qR),( 21 ddd , 21 qqq . Functions pn RR:h

and nqmn RR 1:f  are locally Lipschitz continuous, 
0)0,0,0(f . As usual [12] we assume that there exists 

some continuously differentiable feedback control law 
mn RR:k  such, that system 

),)(,( 1dexkxfx  (7) 
possesses UOS or IOS properties with respect to output y
and input 1d  for 0e , where variable e  corresponds to 
“virtual” control realization error )( xkze . More 
precise definition of control k  properties will be described 
later. Taking into account control k  it is necessary to design 
control ),( zxUu , which provides UOS or IOS property 
with respect output y  and input d  for overall system (5), 
(6). It is the standard backstepping control problem 
reformulated with respect to the output. 

Assume that relations  ZZ xxhx 21 )(  are 

satisfied for K21, . Therefore, stability with respect to 
set Z  in the sense of [13] and UOS with respect to output 
y  (see definition 3) will be equivalent. The above relations 
mean that convergence to zero and boundedness of output 
function imply the corresponding convergence to zero and 
boundedness of the distance to set Z  and vice versa. Here 
we assume that both state vectors x  and z  are available for 
measurements.  

A. UOS stabilization 
Let 0)( td , 0t . The following assumptions 

formulate requirements to “virtual” control k  in this case. 
A s s u m p t i o n  1 . There exist continuously 

differentiable functions RRV n:  and mn RR:k
such, that 

)||()|)(|( 21 xxxh V , K21,  (8) 

and one of the following properties holds for all nRx ,
pRy , and mRe :

1. System (7) is UO and
))(()0),(,( 3 xxkxfx VV , K3 ;

2. System (7) is UO and
)||()0),(,( 4 yxkxfxV , K4 and

)||()()0,)(,( 21 eexkxfxh V , K21, ; (9) 
3. System (7) is GSMO or BIBS and 

)|)(|()0),(,( 5 xxkxfxV , K5
and system (7) is V -detectable into set X

0)(: xx , ln RR: is a continuous function.
A s s u m p t i o n  2 . There exist continuously 

differentiable functions RRV n:  and mn RR:k
such, that (8) is satisfied and one the following properties 

holds for all nRx  and mRe :
1. System (7) is UO and for K6 and K1

)||())(()0,)(,( 16 exexkxfx VV ;
2. System (7) is GSMO or BIBS and 

)||()|)(|()0,)(,( 27 exexkxfxV

and system (7) is V -detectable into set X , K7 and

K2 , ln RR:  is a continuous function.
In the first assumption the control k  provides only UOS 

property or its analogues for system (7), while the second 
assumption establishes IOS-like property for system (7).  

Note that opposite to classical works [12] right hand side 
of equation (5) depends on z  in a nonlinear fashion. 

A s s u m p t i o n  3 . There exists continuous function 
mmn RR:r  s., t. for all nRx , mRzz, , 11

qRd

)(),(),,(),,( 11 zzzxrdzxfxdzxfx
TVV .

The last assumption is satisfied for standard case when 
zxGdxfdzxf )(),(),,( 101 , where 0f  and 0G  are 

locally Lipschitz continuous vector and matrix functions of 
appropriate dimensions. In this case )()( xGxxr V .
Also the last assumption is valid for example if 

),(),(),,( 101 zxgdxfdzxf , where g  is a continuously 
differentiable vector function dependent on variable z  in 
concave fashion, then zgxzxr V),( .

T h e o r e m  3 . Let assumptions 1 and 3 hold. Then 
system (5), (6) with control

))(())(,()0,,( xkzxkxrzxfxku  (10) 

possesses UOS property, mm RR:  is a continuous 

function, )||()( zzzT  for all mRz , K .
R e m a r k  1 . Note, that the third part of assumption 1 
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covers the second one under weakening supposition, that for 
some K21,  and all nRx , mRe  estimate 

)||()()0,)(,( 21 eexkxfx V
holds instead of GSMO or BIBS properties. 

T h e o r e m  4 . Let assumption 2 hold. Then system (5), 
(6) with control

))(()0,,( xkzzxfxku  (11) 

possesses UOS property, where mm RR:  is a 

continuous function, )||()( zzzT  for all mRz ,
K and )(),(max)(~)( 21 ssss , K~ .

Let us compare results of theorems 3 and 4 or control 
laws (10) and (11). Theorem 3 needs additional assumption 
3, but it starts from UOS control k . Theorem 4 assumes 
IOS properties for control k  and it does not require any 
structural properties of function f  stated in assumption 3, 
but in (11) additional restriction on growth of  is needed. 
Using terminology from paper [3] one may say that control 
(10) realizes so-called “cancellation backstepping”, while 
control (11) corresponds to so-called ” VLg -backstepping”. 

Also control (11) is close to algorithms proposed in book 
[11] and it is a part of control (10).  

B. IOS stabilization 
In this section we will consider problem of IOS 

stabilization of system (5), (6) and some other variants of 
robustification of controls (10) and (11), when closed loop 
system possesses integral variants of IOS property. This new 
property introduced in the appendix and is called integral 
ISS (iISS) with respect to set by analogy with [2], [24]. The 
main result of the appendix is formulated in theorem A1. 
The result of theorem A1 can be used to prove robustness 
with respect to integrally bounded disturbances of 
passification based controls [7], [17], [18]–[20] (as it will be 
done in the next section for the example). 

A s s u m p t i o n  4 . There exist continuously 

differentiable functions RRV n:  and mn RR:k
such, that (8) is satisfied and one the following properties 

holds for all nRx , mRe  and 11
qRd :

1. System (7) is UO and for K8 and K3
)||())(()),(,( 1381 dxdxkxfx VV ;

2. System (7) is UO and for K9 and K4
)||()||())((),)(,( 14491 dexdexkxfx VV ;

3. Set Z  is compact and 
)||()||()|)(|(),)(,( 155101 dexdexkxfxV

and system (7) is V -detectable into set X , K10 and

K5 , ln RR:  is a continuous function.
This assumption incorporates assumptions 1 and 2 for 

control (10) (the first part) and control (11) (the last two 
parts). 

A s s u m p t i o n  5 . There exists a continuous function

RRb mn: such, that for all nRx  and 111, qRdd
with K

)||(),(|),,(),,(| 1111 ddzxdzxfx
kdzxfx

k b .

If disturbance d  is present, then we should handle 
nonlinear dependence of function f  in (5) on vector 1d .

T h e o r e m  5 . Let the first part of assumption 4 and 
assumptions 3,5 hold. Then system (5), (6) with control

))((),(15.0

))(())(,()0,,(
2 xkzzx

xkzxkxrzxfxku

b
(12)

is IOS provided that mm RR:  is a continuous function, 

)||()( zzzT  for all mRz , K .
Let the second part of assumption 4 and assumption 5 

hold. Then system (5), (6) with control

))((),(15.0

))(()0,,(
2 xkzzx

xkzzxfxku

b
 (13)  

possesses IOS property, where mm RR:  is a 

continuous function, )||()( zzzT  for all mRz ,
K , )()(~)( 4 sss , K~ .

Let the third part of assumption 4 and assumption 5 hold, 

and additionally for all nRx , K21,
)|)(|()|)(|( 21 xhxxh V .

Then system (5), (6) with control (13) is iISS with respect 

to set )(,:, xkzxzx ZA  with mm RR:  be a 

continuous function, )||()( zzzT for all mRz ,
K and )()(~)( 5 sss , K~ .

Controls (12) and (13) are robust modifications of 
controls (10) and (11) respectively. The difference between 
them consists in presence of additional feedback with 
respect to error )( xkze  with functional gain 

2),(1 zxb . In fact one can hide this gain under sign of 
function . Therefore the price of robustification of 
controls (10) and (11) is more stronger requirement the 
growth rate for function .

IV. CONTROL OF A PENDULUM WITH ACTUATOR

Let us consider the following example of system (5), (6): 
;)sin(; 11

2
2221 dzxxxxx  (14) 

2duz , (15) 
where subsystem (14) corresponds to the forced pendulum 
( Rx1  is the angle and Rx2  is the velocity);  is 
friction coefficient and  is pendulum frequency; system 
(15) models some actuator presence in the input of the 
pendulum; 2

21 )( Rddcold  is external disturbances 
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vector. It is well known that in the absence of friction (i.e. 
0 ) the function ))cos(1(5.0),( 1

22
221 xxxxH

describes the full energy of the pendulum. The problem is to 
stabilize the desired level *H  of energy function H . In 
this case we can introduce the output function for system 
(14) as *),( 21 HxxHy , which points out to a compact 
set Z . To UOS stabilization of system (14) it is possible to 
use well known control law [7], [19]: 

2221 ),( xyxkxxk ,

-1 
x1

1

3

-1 
x2

1

-1 

e

1

Fig. 1. Trajectories of system (14) – (16) 

which for positive definite, radially unbounded with respect 
to set Z  and differentiable Lyapunov function 25.0 yV
provides the estimate for its time derivative 

22
1

22
2)5.0( edyxkV , 5.0k .

First of all note, that according to result of theorem A1 
system (14) with control k  ( 0e ) has iISS property with 
respect to set Z , that is a new result too. Therefore, all 
conditions of the third part of assumption 4 are satisfied with 

yxxx 221 ),( , 2
10 )5.0()( sks  and 2

5 )( ss ; set 
X 00:, 221 yxxx  and in paper [19] it was 
established V -detectability property of the system on this 
set. Time derivative of control k  has form 

)())sin(

)((),(

122
2
2211

2
222221

dxzxxxkdzx

xykxyxkyxkxxk

and assumption 5 holds in this case for ),,( 21 zxxb
2
2xkyk . Thus, according to theorem 5 control 

,)sin()()(

)),((),,(5.05.0

1
2

22
2
2

21
2

21

xxzykxzxk

xxzzxxbKu k
 (16) 

here zz K)( , 0K  provides for system (14), (15) iISS 
with respect to set Z  property. The trajectories of system 
(14)–(16) for 1, 1K , 2k , 1*H ,

1.0)2sin(1.0)()( 21 ttdtd  are shown in Fig. 1 in 
coordinates ),,( 21 exx , ),( 21 xxze k . As it possible to 
conclude from Fig. 1 all trajectories of the system converge 

to small neighborhood of set Z  in plane ),( 21 xx  while e
converges to vicinity of zero, the size of neighborhood is 
proportional to amplitude of disturbance d .

V. CONCLUSION

The paper presents the extension of backstepping 
technique for problem of stabilization with respect to set or 
UOS stabilization. Robust version of this result for IOS 
stabilization is also proposed. Introduced in the appendix 
new iISS property with respect to set helps to establish 
robust properties of passification controls in tasks of energy 
level stabilization. 

APPENDIX

Here we will consider a dynamical nonlinear system 
),( uxfx , (A.1) 

where nRx  is state space vector, mRu  is control or 
disturbing input, Lebesgue measurable and essentially 
bounded function of time, that is mRMu ; f  is locally 

Lipschitz continuous vector field in nR , 0)0,0(f . Then 
),,( 0 uxx t  denotes the system solution with initial value 

nR0x  and given mRMu  defined at the least locally. It 
is assumed, that system (A.1) has an uniformly globally 
asymptotically stable (GAS) set A  for 0u  in the sense 
of definitions from [14]. Then according to that work the 
system possesses corresponding smooth Lyapunov function 

0: RRV n  with respect to the set A :

AA xxx 21 )(V , Axxfx 3)0,(V ,(A.2)

where 1 , 2 , 3  are from class K ; function V  is 
positive definite and radially unbounded with respect to set 
A . A positive definite function 0:~

RRV n  is called 
semi-proper [2], if there exist radially unbounded positive 
definite function 0: RRV n  and function K , such, 

that )()(~ xx VV . The following result is a slight 
extension of Proposition 2.5 proposed in [2]. 

L e m m a  A 1 . System (A.1) is GAS with respect to 
compact set A  with zero input u  if and only if there exist 

smooth semi-proper function 0:~
RRV n , a function 

K  and continuous positive definite function 

00: RR , such, that 

uxuxfx A),(
~
V , (A.3) 

for all nRx  and mRu .
Proofs are omitted due to space limitation. In work [2] 

several characterizations of integral input-to-state stability 
(iISS) property [21] were introduced. Here we present a 
simple development of that results for case of compact sets. 
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D e f i n i t i o n  A 1 . Forward complete system (A.1) is 
called iISS with respect to closed invariant set A  if there 
exist functions K , K  and LK , such, that for 

any nR0x  and all mRMu , the solution ),,( 0 uxx t  is 

defined for all 0t  and  inequality holds:

dtt
t

0
00 )(,),,( uxuxx AA , 0t .

D e f i n i t i o n  A 2 . Continuously differentiable function 

0: RRW n  is called an iISS Lyapunov function with 

respect to closed invariant set A  for system (A.1) if there 
exist functions K21, , K  and continuous positive 

definite function 3  s., t. for all nRx , mRu :

AA xxx 21 )(W ,

uxuxfx A3),(W .

If in above definition impose K3 , then one can 
recover W  as ISS or IOS Lyapunov function with respect to 
set A  from papers [25], [28]. The following theorem 
presents only sufficient conditions for system (A.1) to be 
iISS with respect to compact set, while the main result in [2] 
provides complete equivalent characterizations for iISS 
property with respect to the origin. 

T h e o r e m  A 1 . System (A.1) is iISS with respect to 
compact set A  if one of the conditions is fulfilled:

1. The system has iISS Lyapunov function with respect to 
set A .

2. Set A  is GAS for the system with zero input u  and for 
system (A.1) there exists continuously differentiable, positive 
definite and radially unbounded with respect to A  function 

0: RRU n  and for all nRx , mRu

uuxfx ),(U , K .
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