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Abstract— We investigate the problem of synchronization in
oscillator networks when the delay inherent in such systems is
taken into account. We first investigate a general Kuramoto-
type model with heterogeneous time delays, both with a
complete network as well as a nearest neighbor interaction,
for which we propose conditions for synchronization around a
rotating frequency. Then, we turn our attention to the problem
of synchronization when the topologies are allowed to change.
We show that synchronization is possible in the presence of
delay, using a common Lyapunov functional argument.

I. INTRODUCTION

The phenomenon of synchronization [1] is one of the most
intriguing in the physical world and shows the desire for
nature to develop and maintain order of some sort. It is
observed in biological oscillator networks such as cardiac
pacemaker cells, as well as in ecological networks such as
flashing fireflies and chorusing crickets. Beyond these are
examples from various areas of engineering: for example
in [2] the phenomenon was observed in semiconductor laser
arrays.

From a design perspective, understanding how synchro-
nization is achieved provides us with invaluable information
for constructing large-scale systems for this purpose. For
example, in leaderless coordination of multi-agent systems,
a key issue is how to achieve consensus for arbitrary topolo-
gies, even when these change, a subject of many papers [3],
[4], [5], [6]. The related issue of self-ordered particle motion
was investigated in [7], [8]. Perhaps the most celebrated
model for synchronization is the Kuramoto model, a system
of structured ordinary differential equations, which has been
used to explain how synchronization is achieved in many
engineering, physical and biological systems. Details on the
model can be found in [9], [10].

The original Kuramoto formulation was related to a net-
work that is ‘all-to-all’, i.e. whose interconnection topology
is one of a complete graph; the case of networks with arbi-
trary topologies was introduced and investigated in [3]. It was
observed there too, that the system achieves synchronization
for arbitrary topologies when the oscillators are identical.

A. Papachristodoulou’s work financially supported by AFOSR MURI,
NIH/NIGMS AfCS (Alliance for Cellular Signalling), DARPA, the Kitano
ERATO Systems Biology Project, and URI “Protecting Infrastructures from
Themselves”. A. Jadbabaie’s work has been supported by ARO/MURI
DAAD19-02-1-0383, ONR/YIP-542371 and NSF-ECS-0347285.

A. Papachristodoulou is with Control and Dynamical Systems,
California Institute of Technology, Pasadena, CA 91125, USA.
Email: antonis@cds.caltech.edu. Ali Jadbabaie is
with the Department of Electrical and Systems Engineering,
University of Pennsylvania, Philadelphia, PA 19104 USA. Email:
jadbabai@seas.upenn.edu.

Kuramoto oscillator networks is the subject of this paper,
but we include a feature that has been neglected in some
of the earlier work on the subject. This is the presence of
time delays in the oscillator interactions. Time delays in this
framework can be used to model the effect of propagation of
information in spatially large networks making the problem
of achieving synchrony more difficult; for example in the
phenomenon of flashing fireflies, one observes that synchro-
nization is not perfect, just as in the case of a large crowd
that is trying to sing the same song in synchrony. Previous
work in this area has revealed that synchronization is possible
for specific types of topologies, for homogeneous delays (i.e.
identical for all interactions) and identical oscillators, under
some specific assumptions. In this paper we will show that
synchrony is possible for arbitrarily connected topologies,
even in the presence of heterogeneous delays with non-
identical oscillators under some assumptions.

Another aspect of the problem, which is also a subject
of this paper, is whether synchronization can be ensured
for switching topologies even if delays are present in the
system. This question is somewhat related to the stability of
systems for arbitrary switching with no chattering and with
a finite dwell time, for which a sufficient but many times
conservative condition is quadratic stability i.e. the existence
of a common Lyapunov function for all the possible system
instances (topologies) [11]. In a later part of this paper we
present a proof of synchronization when switching occurs
between connected topologies even if delays are included in
the model description.

The paper is organized as follows. In Section II we present
tools from Functional Differential Equation (FDE) theory
that will be used in the rest of this paper, as well as some
preliminaries in Algebraic Graph theory. In Section III we
present our work on synchronization for a network with
Kuramoto dynamics. In Section IV we investigate the effect
that arbitrary switching between connected topologies has on
synchronization, even when delays are taken into account.
We conclude the paper in Section V.

II. PRELIMINARIES

The effects of time-delay in system stability and perfor-
mance has been a subject of intense research in the past
few years [12], [13], and examples have traditionally been
coming from population dynamics [14], and recently from
network congestion control for the Internet [15]. In the latter
problem, conditions ensuring stability of congestion control
schemes for arbitrary topologies with delays at the linearized
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level have been proposed [16]; recently these have been
extended to cover the nonlinear case [17], [18].

In this section we provide the theoretical basis that will be
used in the sequel, and introduce some basic notations from
algebraic graph theory.

A. General FDE Theory

Time delay systems are described by Functional Differen-
tial Equations. Let C([a, b], Rn) denote the Banach space of
continuous functions mapping the interval [a, b] to R

n, with
the topology of uniform convergence. For a function φ ∈
C([a, b], Rn), we define the norm |φ| = supa≤θ≤b |φ(θ)|.
For any σ > 0, and any continuous function φ ∈ C([t0 −
a, t0 − b+σ]) and t0 ≤ t ≤ t0 +σ, let φt ∈ C be a segment
of φ defined by φt(θ) = φ(t + θ), θ ∈ [a, b]. A Functional
Differential Equation (FDE) of retarded type takes the form

ẋ(t) = f(t, xt), (1)

where x(t) ∈ R
n and f : R×C → R

n. An appropriate initial
condition for such a differential equation is a function xt0 =
φ ∈ C. For a σ > 0, a function x is a solution on the interval
[t0 − a, t0 − b + σ] if within this interval x is continuous
and satisfies (1). Such a solution is known to exist and to
be unique locally under specific assumptions, which can be
found in, e.g [12]. Throughout the paper we assume that
f satisfies these conditions. Just as in the case of Ordinary
Differential Equations, we assume without loss of generality
that there is a solution to (1) that satisfies x∗(t) = 0. Stability
definitions for this steady-state can be found in [12].

Lyapunov theory for FDEs can be used to determine the
stability properties of the equilibrium solutions. Lyapunov
functions are functions of state; since the state itself in
the case of FDEs is a function, the appropriate Lyapunov
certificate is a functional, known as a Lyapunov-Krasovskii
functional. In particular the following theorem is well known.
Here, by V̇ (t, φ) we mean the upper right hand derivative of
V (t, φ) along the solution of (1).

Theorem 1: [12] (Lyapunov-Krasovksii) Suppose f : R×
C → R

n in (1) maps R× (bounded sets in C) into bounded
sets in R

n, and that u, v, w : R
+ → R

+ are continuous non-
decreasing functions, u(s) and v(s) are positive for s > 0,
and u(0) = v(0) = 0. If there is a continuous function
V : R × C → R such that:

u(|φ(0)|) ≤ V (t, φ) ≤ v(|φ|)

V̇ (t, φ) ≤ −w(|φ(0)|)

then the trivial solution of (1) is uniformly stable. If w(s) > 0
for s > 0, then it is uniformly asymptotically stable. If, in
addition, lims→∞ u(s) = ∞, then it is globally uniformly
asymptotically stable.

B. Autonomous FDEs

For autonomous functional differential equations, which
take the form

ẋ = f(xt), (2)

with f : C → R
n completely continuous, we consider a

continuous function V : C → R. In this case, a LaSalle-
type argument can be made when V̇ is not negative definite
to ensure attractivity to a positively invariant set, just as in
the case of Ordinary Differential Equations. For this, define
V : C → R to be a Lyapunov function on a set G in C, if
V be continuous on G (the closure of G) and V̇ ≤ 0 on G.
Let

S = {φ ∈ G : V̇ (φ) = 0} (3)

M =
largest set in S that is invariant
with respect to (2)

(4)

Then we have the following theorem:
Theorem 2: [12] If V is a Lyapunov function on G and

xt is a bounded solution of (2) that remains in G, then xt

tends to M as t → ∞.
We will be using the above theorem in the sequel.

C. Stability under arbitrary switching for systems of FDEs

Consider now a time-delay system comprised of a set of
m systems of the form

ẋ = fi(xt), i = 1, . . . , m (5)

We assume that 0 is a common steady state for all the above
systems. The existence of a common Lyapunov function
ensures the stability of the above system under arbitrary
switching.

Theorem 3: Suppose fi : C → R
n in (5) are completely

continuous for i = 1, . . . , m and that u, v : R
+ → R

+ are
continuous functions, u(0) = v(0) = 0 and u(s) → ∞ as
s → ∞. If there is a continuous function V : C → R such
that:

V (φ) ≥ u(|φ(0)|)

V̇ (φ) ≤ −v(|φ(0)|)

for all i = 1, . . . , m then the trivial solution of (5) is stable
and every solution is bounded.
This theorem, in conjunction with the LaSalle type argument
of the previous subsection will be used to prove synchro-
nization under arbitrary switching for a system comprised of
subsystems described by functional differential equations.

D. Algebraic Graph Theory

Throughout the paper we will be using the following
notation to capture the topology of the network interactions.
A graph G = (V, E) consists of a set of vertices V and
a set of edges E . We denote each vertex by vi ∈ V for
i = 1, . . . , N , and each edge by e = (vi, vj) ∈ E . All graphs
in this paper are undirected. If vi, vj ∈ V and (vi, vj) ∈ E ,
then vi and vj are neighbors. The valence of each vertex
vi, i.e. the number of its neighbors, is denoted by ni. The
valency matrix ∆(G) is an N ×N diagonal matrix in which
the (i, i) element is the valence of vertex i. If a graph is
regular, then ni = n and ∆(G) = nI where I ∈ R

N×N

denotes the identity matrix. A path of length r from vertex
vi to vj is a sequence of r+1 distinct vertices starting from vi
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and ending at vj so that consecutive vertices are neighbors.
A graph G is said to be connected if there is a path between
any two vertices in it. The adjacency matrix A(G) = [aij ]
of an (undirected) graph is an N × N symmetric matrix
such that aij = 1 if vi and vj are neighbors, and aij = 0
otherwise.

The matrix

L(G) = ∆(G) − A(G)

is called the Laplacian of G, and it has the properties that
it is symmetric and singular (the row sums of L are zero).
The algebraic multiplicity of its zero eigenvalue is equal to
the number of connected components in the graph. The N -
dimensional eigenvector associated to the zero eigenvalue is
the vector of ones.

III. THE DELAYED KURAMOTO MODEL

In this section we provide the model we will be working
with, previous results and our contribution.

Consider a set of N coupled oscillators with phases
θi ∈ [0, 2π] and natural frequencies ωi. The phase of each
oscillator θi is associated to a vertex vi ∈ V of an underlying
undirected graph G with no loops and adjacency matrix A.

The original Kuramoto model, proposed by Kuramoto [10]
in 1975 was for a complete graph (the ‘all-to-all’ case), and
took the form:

θ̇i = ωi +
K

N

N∑
j=1

sin (θj − θi)

where K is the coupling strength between the oscillators,
assumed to be the same. An excellent review paper on the
Kuramoto model and how synchronization emerges as a
property of the system is [9]. The stability of this system
when an underlying graph structure is imposed, i.e. when it
is transformed to

θ̇i = ωi +
K

N

N∑
j=1

Aij sin (θj − θi) (6)

was the subject of an earlier paper [19], where a network of
identical oscillators was proven stable for arbitrary topolo-
gies. The coupling strength K plays an important role when
the oscillators are not the same, i.e. the ωi differ — below a
certain coupling strength, there is no synchronization. For the
case of non-identical oscillators, lower and upper bounds on
the strength of the coupling strength K to ensure synchrony
were established in [19].

In this paper we consider a time-delayed version of the
above system. We introduce a time delay τij in the coupling
between two vertices vi and vj if these are neighbors.
This models the finite time in the propagation of phase
information from oscillator to oscillator. We assume that
these delays are inhomogeneous (i.e. unequal and non-
commensurate), which is one of the main contributions of

this paper. In particular we consider the following delayed
Kuramoto dynamics at the i-th oscillator:

θ̇i = ωi +
K

N

N∑
j=1

Aij sin (θj(t − τij) − θi(t)) (7)

Most available results on the above system can be found
in the physics literature: In [20] and [21] the above system
was studied in the case of regular graphs with τij = τ , and
synchronization criteria were established. In [22] the general
connected graph case was considered, in which the model
was modified to

θ̇i = ωi +
K

ni

N∑
j=1

Aij sin (θj(t − τij) − θi(t)) (8)

where ni is the number of neighbors to node i, again for the
case in which τij = τ . Other phenomena were also observed,
which are attributed to the presence of multi-stabilities.
For example, a phenomenon known as ‘time-delay-induced
oscillator death’ was asserted analytically [23] and was later
observed experimentally [24]. This phenomenon is due to the
fact that other equilibria may ‘appear’ as parameters change.
Further results behind weakly connected oscillators in the
presence of interaction delay have been given in [25].

We center our attention to the case in which all the
oscillators synchronize, i.e. θi(t) = θ(t) for all i. We are
interested in the case of uniform rotations, i.e. θ(t) = Ωt+α.
For this to be achievable for system (7) self-consistency
relations of the following form need to be imposed:

Ω = ωi −
K

N

∑
j

Aij sin(Ωτij) (9)

for all i. We assume that the oscillators ωi and the coupling
strength K are chosen judiciously so that there exists a
compatible solution to the above equations. Now let us
consider the dynamics of oscillator θi in this rotating frame.
To do this, we write θi = Ωt + φi(t) to get:

φ̇i(t) =
K

N

N∑
j=1

Aij sin(−Ωτij + φj(t − τij) − φi(t))

+
K

N

N∑
j=1

Aij sin(Ωτij)

Linearizing about the steady state φi(t) = α we have:

φ̇i(t) =
K

N

N∑
j=1

Gij(φj(t − τij) − φi(t)) (10)

where Gij = Aij cos(Ωτij). Note that this system does
not have a unique equilibrium, but rather a subspace of
equilibria, given by φi(t) = α, i = 1, . . . , N . This subspace
is one-dimensional in the case in which the underlying graph
topology is connected, a property of the Laplacian dynamics
of the undelayed system.

We have the following result for the linearization:
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Theorem 4: Consider a network of N oscillators with
dynamics given by (10) and with an underlying topology
of a connected graph. If

cos(Ωτij) > 0

for all i, j for which Aij = 1 and Ω solves (9), then

lim
t→∞

φi(t) = α, i = 1, . . . , N

for some constant α, i.e. the oscillators will synchronize.
Proof: Consider a Lyapunov-Krasovskii functional

comprised of two terms:

V (φ) = V1(φ) + V2(φ)

V1(φ) =
1

2

N∑
i=1

φ2
i (t)

V2(φ) =
1

2

K

N

N∑
i=1

N∑
j=1

Gij

∫ 0

−τij

φ2
j (t + ξ)dξ

Note that V > 0. Consider the first term in the Lyapunov
functional. Differentiating,

V̇1 =
K

N

N∑
i=1

N∑
j=1

Gij (φj(t − τij) − φi(t)) φi(t)

= −
K

N

N∑
i=1

N∑
j=1

Gijφ
2
i (t)

+
K

N

N∑
i=1

N∑
j=1

Gijφi(t)φj(t − τij)

The second term in the Lyapunov functional differentiates to

V̇2 =
1

2

K

N

N∑
i=1

N∑
j=1

Gijφ
2
j (t) −

1

2

K

N

N∑
i=1

N∑
j=1

Gijφ
2
j (t − τij)

Therefore we have:

V̇ = −
1

2

K

N

N∑
i=1

N∑
j=1

Gij(φi(t) − φj(t − τij))
2 ≤ 0,

so V̇ ≤ 0. The set S defined by (3) is the set of all functions
φ ∈ C([−maxi,j τij , 0], RN ) such that V̇ = 0. This is only
true when φi = φj = α. To see this, note that V̇ = 0
implies that φi(t) = φj(t − τij) for any i that is adjacent
to j. Since the graph is connected and the delays are finite,
the result follows immediately. The only invariant set for the
system’s equations, the set M (see Equation (4)) corresponds
to φi = α, a constant. Using a version of LaSalle theorem for
time-delayed systems (Theorem 2), we conclude that φi → α

as t → ∞. Therefore the oscillators synchronize.
Note that in the proof we did not require that the graph be
regular, nor that the delays be homogeneous which were key
assumptions in [21].

It may be counter-intuitive that the terms in the vector
field (10) were scaled down by the total number of nodes in
the network N . A more interesting case would be the one in
which they are scaled down only by the number of neighbors

to node i. This is the system given by Equation (8). The
linearization about the uniform rotation state θi = Ωt + α,
where Ω satisfies

Ω = ωi −
K

ni

∑
j

Aij sin(Ωτij) (11)

is

φ̇i(t) =
K

ni

N∑
j=1

Gij(φj(t − τij) − φi(t)) (12)

and Gij = Aij cos(Ωτij) as before. For this system, we have
the following result:

Theorem 5: Consider a network of N oscillators with
dynamics given by (12) and with an underlying topology of
a connected graph. If

cos(Ωτij) > 0

for all i, j for which Aij = 1 and Ω solves (11), then

lim
t→∞

φi(t) = α, i = 1, . . . , N

for some constant α, i.e. the oscillators will synchronize.
The proof of this theorem is similar to the proof of Theo-
rem 4.

Proof: Consider a Lyapunov-Krasovskii functional
comprised of two terms:

V (φ) = V1(φ) + V2(φ)

V1(φ) =
1

2

N∑
i=1

niφ
2
i (t)

V2(φ) =
1

2
K

N∑
i=1

N∑
j=1

Gij

∫ 0

−τij

φ2
j (t + ξ)dξ

Note that V > 0. Consider the first term in the Lyapunov
functional. Differentiating,

V̇1 = K

N∑
i=1

N∑
j=1

Gij (φj(t − τij) − φi(t)) φi(t)

= −K

N∑
i=1

N∑
j=1

Gijφ
2
i (t)

+K

N∑
i=1

N∑
j=1

Gijφi(t)φj(t − τij)

The second term in the Lyapunov functional differentiates to

V̇2 =
1

2
K

N∑
i=1

N∑
j=1

Gijφ
2
j (t) −

1

2
K

N∑
i=1

N∑
j=1

Gijφ
2
j (t − τij)

Therefore we have

V̇ = −
1

2
K

N∑
i=1

N∑
j=1

Gij(φi(t) − φj(t − τij))
2 ≤ 0.

We can use a similar argument as in the proof of the previous
theorem to get attractivity to a set, i.e. to show that the
oscillators synchronize about the steady-state φi = α.
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We would like to make a few remarks about the above
systems. First, the stability proof uses Lyapunov-Krasovskii
functionals that prove stability independent of delay even
though the criteria for stability are delay-dependent. This is
because even though a system of the form

ẋ = −ax(t) − bx(t − τ)

is asymptotically stable for all delays if a > 0 and |b| < a, in
our case, the coefficients a and b are static functions of the
delay themselves, and this gives rise to the delay-dependent
criterion. The ‘scaling’ of the gains by the delay size was
judiciously used in the case of network congestion control for
the Internet to render a delay-dependent stability condition
delay-independent [16].

For comparison purposes, both systems (7) and (8) with
homogeneous delays τij = τ and identical oscillators ωi = ω

were shown to be stable under the assumption that cos Ωτ >

0 in [21] for regular graphs and in [26] for general graphs.
In both cases the parameter Ω solves the ‘self-consistency’
relation

Ω = ω − K sin(Ωτ). (13)

In our case, we allow for heterogeneous delays, and networks
that need not be regular. The problem that may arise with
the introduction of heterogeneous delays in the network, is
that Equations (9) or (11) may not have solutions, unless the
coupling strength K and the oscillator frequencies ωi are
tuned appropriately.

We would like to stress that synchronization is independent
of the network topology. A question that arises, is whether
the same properties hold for the system when the topology
changes, which is a more complicated issue. In the next
section we present a result that shows how the system given
by (12) with homogeneous delays can switch in an arbitrary
way between topologies with regular graph structures, in a
way that synchronization is ensured.

IV. SWITCHING TOPOLOGIES

The issue of coordination under changing topologies has
been investigated in [3] [6] [4] [27], for the case in which the
system does not have any delays that make the state-space
infinite-dimensional. But even if the time-delays are ignored,
the problem of ensuring stability in this case is difficult.
Switching arbitrarily among a set of possible topologies of
size N can be regarded as a problem of establishing stability
for a switching system with an unknown switching rule.

In the area of switching systems, the (conservative) con-
dition of quadratic stability has been used to ensure that a
system comprised of m subsystems of the form ẋ = Aix, i =
1, . . . , m is stable under arbitrary switching; the conditions
in this case require the existence of a common Lyapunov
function V = xT Px, P > 0 so that AT

i P + PAi < 0 for
all i = 1, . . . , m. This argument is many times inconclusive,
as this criterion is conservative. This conservativeness was
observed in [3], where a different approach had to be taken
to conclude coordination.

This said, one can imagine the difficulties faced when
trying to prove stability for arbitrary switching when delays

are taken into account. This is the aim of this section,
in which we consider a model that allows synchronization
to be ensured for Kuramoto networks with delays, and
arbitrary switching between connected, regular graphs. In
other words, we assume that switching occurs through a
piecewise constant switching signal σ : [0,∞) → P where
P = {1, . . . , m} denotes the indices of m regular graphs Gm

of degree n with N vertices so that Gi, i = 1, . . . , m are
connected. Associated to graph Gk is an adjacency matrix
A(k). The switching signal is assumed to be non-chattering,
with a dwell time τD > 0, i.e. consecutive discontinuities of
σ are separated by τD. The switching signal may however
have an infinite period of persistence, i.e. σ ∈ Sweak-dwell —
for definitions see [28].

A technicality which we are faced with is that in the pres-
ence of heterogeneous delays and changing graph structures
the Ω that solves the various consistency conditions may be
different. For this reason, in this section we assume that we
are dealing with identical oscillators with homogeneous time
delays over regular graphs. In this case, the self-consistency
equation is given by (13). Each network has the following
dynamics:

φ̇i =
K

n

N∑
j=1

G
(k)
ij (φj(t−τ)−φi(t)), k = 1, . . . , m. (14)

where G
(k)
ij = A

(k)
ij cos (Ωτ). We have the following result:

Theorem 6: Consider a piecewise constant switching sig-
nal σ : [0,∞) → P where P = {1, . . . , m} is the index set
of graphs {G1, . . . , Gm} with N vertices that are connected
and regular, and σ ∈ Sweak-dwell. To each vertex vi assign the
dynamics given by Equation (14). Then

lim
t→∞

φi(t) = α, i = 1, . . . , N

for some constant α, i.e. the oscillators will synchronize.

Proof: We will show that the following is a common
Lyapunov functional:

V =
1

2

N∑
i=1

φ2
i +

K cos (Ωτ)

2

N∑
i=1

∫ 0

−τ

φ2
i (t + ξ)dξ (15)

Note that V > 0 and is independent of the topology of the
network. The derivative of this, when the topology is given
by graph Gk is:

V̇ =
K

n

N∑
i=1

N∑
j=1

G
(k)
ij (φj(t − τ) − φi(t))φi(t)

+
K cos (Ωτ)

2

N∑
i=1

(φ2
i (t) − φ2

i (t − τ))
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= −
K cos(Ωτ)

2

N∑
i=1

(
φ2

i (t) + φ2
i (t − τ)

)

+
K cos(Ωτ)

n

N∑
i=1

N∑
j=1

A
(k)
ij φj(t − τ)φi(t)

= −
K cos(Ωτ)

2n

N∑
i=1

N∑
j=1

A
(k)
ij (φj(t − τ) − φi(t))

2

Note that V̇ ≤ 0 for all graphs Gi, so as switching occurs
V is non-increasing. For each graph Gi, the set S defined
by (3) is the set of all functions φ ∈ C([−τ, 0], RN ) such
that V̇ = 0. This is only true when φi = φj = α. Since we
assumed that switching happens between connected graphs
and σ ∈ Sweak-dwell, the only invariant set for the system’s
equations, the set M (see Equation (4)) is one-dimensional
and corresponds to φi = α, a constant. Using a version of
LaSalle theorem for time-delayed systems (Theorem 2), we
conclude that φi → α as t → ∞. Therefore the oscillators
synchronize, even if the topology changes.

Remark 7: The connectivity assumption in the above the-
orem can probably be relaxed to the case in which the set
{G1, . . . , Gm} is jointly connected, i.e. if the graph G with
vertex set V and edge set E equaling the union of the edge
sets of all of the graphs in the collection is connected [29].
This ensures that there is a time interval [a, b] within which
all oscillators are ‘linked together’ by the sequence of graphs
encountered in it. This will be the focus of future research.

V. CONCLUSIONS

In this paper we have considered the problem of syn-
chronization of coupled oscillator networks in the Kuramoto
framework with heterogeneous communication delays and
not necessarily regular graphs and have derived conditions
that ensures it. We have manifested that synchronization
can be achieved even if the oscillators are non-identical, if
we allow heterogeneous delays in the networks. Moreover,
we have established synchronization for Kuramoto networks
with switching topologies even in the presence of delay.

The synchronization of the delayed Kuramoto models may
not be global in the nonlinear case, as in general the solution
of the consistency Equations (9) or (11) may not be unique.
The uniqueness of the solution to the consistency equations
will depend on the value of K - and so will the stability
properties of these uniform rotation states.

A nonlinear result similar to the one obtained in the case
of network congestion control would be desirable, at least in
the case in which there is a unique attracting set. This will
be the focus of future research.
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