
Abstract— The paper deals with modelling and control
problem of machining centres. In particular, here only the
pallet transportation system is analysed. The aim is to provide
formal design models for the control engineer, so as to help the
reconfigurability and diagnosis of specialised, software-
intensive automation systems, and to exploit the potentials of
agent-based control software development. The formalism of
Modular Finite State Machines (MFSM’s), well-known from
the scientific literature in the manufacturing control field, is
here adopted to represent the formal behaviour of control
modules of the pallet transportation system in machining
centres.

I. INTRODUCTION

MONG others, one of the most complex and
challenging component which can be found in modern

discrete manufacturing systems is represented by machining
centres. They are at the basis of a number of interesting
control problems, ranging from low-level control,
supervision, formal verification, fault detection, diagnostic,
just to mention a few. For most of such problems, from a
practical perspective there is a strong push towards
modularization and autonomy, which implies the
distribution of “intelligence” (that is control laws, hardware
and software control components) into the controlled plant.
In particular, to enhance the overall system performance and
to integrate automation level with management level, there
is a natural trend to include methods and tools of the
Information and Communication Technologies down into
the automation systems [8,9].

On the other hand, control components of manufacturing
systems have not experienced the same trend to
modularization and standardization as the other plant
components, most notably the mechanical and the electrical
ones. Such a delay has impressive, though sometimes
hidden, costs in the design, implementation, testing,
installation and maintenance of the overall control system,
and reduces the possibilities to gain real flexibility, real
reconfiguration and reuse of control solutions [3].

Clearly, this requires new modelling paradigms able to

A. Castelnuovo is with the Politecnico di Milano, Dipartimento di
Elettronica e Informazione, Piazza L. Da Vinci 32, 20133 Milano Italy (e-
mail: castelnu@elet.polimi.it)

L. Ferrarini is with the Politecnico di Milano, Dipartimento di
Elettronica e Informazione, Piazza L. Da Vinci 32, 20133 Milano Italy
(phone: +390223993672; fax: +390223993415; e-mail:
ferrarin@elet.polimi.it)

capture the overall system description and help the
translation of the more and more strict control specification
into control design and implementation. Traditional design
models and approaches used by control engineers are based
on low-level modelling paradigms (often programming
languages), centralised approaches, proprietary tools and
solutions.

A viable solution from the methodological point of view
seems the one based on two different, conceptual and
practical models of the controlled plant [7,8]: the plant
model, describing the plant components, data sheets, and I/O
points, and structured in a modular hierarchical model, and
the control model, obtained starting from the plant model,
and following its basic structure, but describing the control
commands and rules. Among the advantages, worth
mentioning are the separation of functions from code, the
semi-automatic generation of the control code, the clear
correspondence between design model and implementation
model, the soundness of the overall architecture, the
availability of formal models.

Some notable proposals are emerging both in the
scientific literature [1,2,7] and in the standardization field
[10,11], encouraging the adoption of more formal design
methods and object-orientation concepts [8,9]. In the
manufacturing field, agent-based techniques [2,3,4,9] are
even more promising for the design and implementation of
the automation code. Agents are software components
created as a natural extension of objects characterised by
having autonomous control of their own execution, showing
both reactive behaviour and proactive behaviour, and
cooperating among one another to reach a common global
aim.

Although there are successful experimentations of agents
in different industrial applications, systematic formal models
describing their behaviour are not extensively described in
the literature. In this context worth mentioning is the work
developed in [3] which addresses Adacor, a holonic control
architecture using high-level Petri net models for each type
of holon class representing the dynamic behaviour of the
manufacturing components. Worth mentioning is even the
work [2], where the holonic characteristics of the IEC 61499
[10] model for distributed intelligent control are exploited to
describe a general approach for dynamic and intelligent
reconfiguration. Unfortunately, the literature in this field
often describes the behaviour of an agent either directly

A Modular Formal Model for Pallet Transportation System in
Machining Centres Automation

Adamo Castelnuovo and Luca Ferrarini, Senior Member, IEEE

A

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIC19.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 8361

using a high-level programming language like Java.
Alternatively, the formal model refers to a very concise
description of the system under control (for example only
the description of a portion of agent behaviour is provided
without system-level description) or viceversa the agent
system is described without sufficient insight into the single
agent formal specification.

The present paper describes the overall control framework
adopted for the control of machining centres. Such a
framework is based on the modularity of control models and
componentization of software implementation through
agent-based paradigm. The aim is to maximise the
reconfigurability and self-diagnosis capabilities of
specialised, software-intensive automation systems. The
formalism of Modular Finite State Machines (MFSM’s),
well-known from the scientific literature in the
manufacturing control field, is here adopted to represent the
formal behaviour of control modules of the pallet
transportation system of machining centres. The control
modules designed will then be implemented as agents in a
straightforward way. Thus, such models can be interpreted
as formal models of agents and agent systems in an agent-
based control software implementation.

The paper is organized as follows. Section II introduces
the main subsystems considered as illustrating examples
(pallet units) in this paper while Sec. III shows the proposed
control framework. Section IV exhibits the formal
specification for the control modules and section V
describes the application of the control model to the chosen
examples. The results are summarised in Section VI.

II. THE CONSIDERED PALLET UNITS

In the present section, the main topologies of pallet
transportation unit investigated are described.

Shuttle with pallet buffers
The shuttle typically has a linear movement, and moves

along suitable tracks. Buffers can be on one or both sides of
the track, and can have a single or multiple floors. The
shuttle is endowed with suitable clamping devices to unload
a pallet to the buffer or viceversa to retrieve and load a pallet
from the buffer.

Single or Double fork with circular buffer
This unit is composed of a fork device with a single or

double clamp (each clamp can host one pallet at most). The
buffer is circular (usually a semi-circumference), with a
single o multiple floors. The fork device can rotate to the
desired buffer position, lift/lower to pick up/release a pallet,
and move forward and backwards to approach or leave a
pallet position or the working position. In Fig. 2, an example
of circular buffer with a single floor of five position and a
pallet unit with double fork is shown.

Rotating Multi-pallet station (carousel)
The rotating multi-pallet station is in principle similar to

the circular buffer, but in this case the buffer itself can
rotate, lift and lower: a suitable clamping device will then be
used to pick up and release a pallet.

Fig. 2 – Circular buffer pallet unit with double fork

III. OVERALL DESIGN METHODOLOGY

The overall proposed design methodology lays on few
concepts described in [7,8], where the object-oriented
approach is used not only for modelling and design of the
control functions but also to implement the control code.

As it is well-known, among the various advantages of
object-oriented approaches there is the “reuse”, that can be
both reuse of “code” and reuse of “model”. As for the latter
case, the great improvement than can be obtained from the
reusability is that the reuse is not restricted to a single
control project, but to a family of related projects, having
similar patterns. So, in similar control applications, there are
not only similar objects (that can be stored in a library for
example), but also similar object relations and it is
interesting to maintain this information through the “family
design” life-cycle. This is the idea of object-oriented
framework, a set of abstract classes and their relations, as
illustrated in [9]. Basically, the reuse comes from the use of
the framework and provides also other advantages: reducing
development costs and design errors across multiple similar
applications, increasing understandability and
maintainability of the system, and facilitating system
evolution.

In the presented approach these ideas lead to the
definition of two frameworks, one for the plant and one for
the control system: namely, the plant model and the control
model. The first one is defined through the specialization
and aggregation relations; the second one is defined through
the specialization and “use” relations. In Fig. 3, the draft
structure of the two adopted frameworks is sketched.

8362

Another important improvement towards reusability of
models (objects, object relations and code) in the
manufacturing field is the adoption of the agent paradigm
[4].

Elementary
Component

Equipment

Unit

Work Area

Instruction

Operation

Unit procedure

Procedure associated with

Device

Command

associated with

associated with

associated with

associated with

Fig. 3 –Control and plant model relationship

Basically, agents are software components (see also the
FIPA standard: Foundation for Intelligent Physical Agents)
characterized by autonomy, procreativity and sociality [4].

Unfortunately, only a small effort is paid in the technical
literature to the adoption of formal models to describe the
desired behaviour of agents. Worth noting is the effort in
[3], where a compact PN model is proposed for the agents
defined, although no formal modelling of the agent
interaction is introduced.

In the present section, each object at any level of the
control model of Fig. 3 will be formalized in models called
“control modules”, which can be implemented directly as
agents. The structure of the generic control module (agent)
is sketched in Fig. 4 (a single model for any module).

The meaning of the variables in that figure is explained in
Table 1, in which Oi is the generic i-th operation within the
control module. Basically, the control module can be
thought of as realized by the suitable aggregation of
different parallel sub-modules: operation manager, state
manager, operation body and alarm generator. Operations
of control modules correspond to methods of objects in the
procedural model. Operations are represented by two sub-
modules: one, generic, for the management of the request of
the operation (operation manager), and the second one for
the specification of the operation body. Clearly there is one
operation manager and one operation body for each
operation that the control module can perform. The state
manager, on the contrary, encapsulates the internal state of
the agent. Here the agent’s state is conceived as the set of
constraints to the execution of operations, i.e. the rules
according to which an agent can answer to a service request.
For example, an agent for shuttle can not perform two
release operations one immediately after the other, since a
pick-up operation must be executed in between. The
meaning of “state” is of paramount importance. Actually all

agents, at any hierarchical level, have their own state, which
need not to be coherent, since they express just operation
execution constraints. Eventually, the alarm generator
compares the logical state of an agent (represented by the
state manager) with respect to the actual one measured
through sensors. For example, the shuttle agent can be in a
state that represents the state where the shuttle is fixed in
front of a buffer position: should a sensor show a shuttle
movement, an alarm would be immediately triggered.

All sub-modules are modelled by means of a formal
methodology shown in [1,6], the Modular Finite State
Machines, which add to the classical concept of Mealy
automaton a set of innovations thus improving its
potentialities. Worth mentioning are the ideas of modularity,
Trigger/Response FSM and socket for communication
among modules [5].

OPERATION
Oi

req_Oi

OPERATION
MANAGER

OPERATION
BODY

STATE
MANAGER

ALARM
GENERATOR

req_Oi_acc

req_Oi_ref

issue_Oi_OK

issue_Oi_KO

r_Oi_comp

r_Oi_comp_OK

r_Oi_comp_KO

n

Si

sensors_val

Sx.Get_sens_val

ALARM_Sx

OiOi_OK Oi_KO

req_Oj

req_Oj_acc

req_Oj_ref

issue_Oj_OK

issue_Oj_KO

1

3

1

3 4

ERR_Oi

restore_begin

2

restore_end

recover

result

result

1

2

Parameters

Parameters

Parameters

Fig. 4 – Schematic model of a control module (agent)

req_Oi operation Oi requested by a highier level
module

r_Oi _comp compatibility request by the operation
manager to the state manager

r_Oi_comp_OK the state manager transmits to the operation
manager that the request is compatible w.r.t.
the state system

r_Oi_comp_KO the state manager transmits to the operation
manager that the request is not compatible
w.r.t. the state system

req_Oi_acc the operation manager forwards the
compatibility of the request to the higher

8363

level
req_Oi_ref the operation manager forwards the non-

compatibility of the request to the higher
level

Oi operation body execution is requested by the
operation manager

Oi _OK operation Oi execution has been successfully
completed

Oi _KO operation Oi execution has not been
completed or it has failed

issue_Oi _OK completion of operation Oi is forwarded
from the operation manager to the higher
level

issue_Oi _KO failure of operation Oi is forwarded from the
operation manager to the higher level

ERR_Oi the state manager collects an error when Oi
fails and forwards it to the supervisor level

restore_begin the nominal system working has been
recovered, going back to the initial state of
the operation in progress

restore_end the nominal system working has been
recovered, going to the final state of the
operation in progress

ALARM_Sx the alarm generator issues an alarm for a
non-matching of the sensors’ values in state
Sx

recover a supervisor level reports that the alarm has
been recovered

Tab. 1 – The events in the MFSM control module

IV. FORMAL SPECIFICATION OF THE CONTROL MODULE

A. Operation manager
The operation manager in Fig. 5 is the same for each

operation in the control module in Fig. 3, with the exception
of the buffer, which is an information module requiring a
simplified design.

B. State manager
The state manager embeds constraints on operation

execution. This aim is pursued by keeping information about
the physical conditions of the associated physical element.
Modular Finite State Machines are used to model its
behaviour; in general it is necessary to use different
MFSM’s for the different control modules.

However, it is possible to distinguish among three
different patterns in which all the cases can be included (as
usual the buffer is an exception): single waiting state MFSM
(Fig. 6), two waiting state MFSM (Fig. 7) and finite number
waiting state MFSM (Fig. 6). Notice that the representation
of a finite number waiting state MFSM is the same as the
single waiting state MFSM: the reason is that all the
different states can be collapsed in just one symbolic
representation of a single state.

In the proposed model it is possible to recognize three
different kinds of states whose meanings follow:

- Waiting state (empty circle): the module is waiting for an
operation request by the operation manager; it can be
associated to a plant configuration in which the physical
component is motionless.

- Motion state (grey-shaded circle): operation is in progress
and the module is waiting for its conclusion; it can be
associated to a plant configuration in which the physical
component is moving.

- Error state (dash-shaded circle): state associated to an
operation failure which is transmitted by the operation
body itself and forwarded to a supervisor level and to the
state manager.

1.req_O i / 2.r_O i_comp

2.req_O i_comp_KO/
1.req_O i_ref

2.req_O i_comp_OK/
1.req_O i_acc, 3.invok_O i

3. O i_OK/1. issue_O i_OK

3. O i_KO/ 1. issue_O i_KO

Fig. 5 – The MFSM description of an operation manager

1.r_ Oi _comp/
1.r_ Oi _comp_KO

2.restore_begin/-

4. Oi _OK/-

1.r_Oi_comp/
1.r_ Oi _comp_OK

4. Oi _KO/
2.ERR_ Oi

2.restore_end/-
1.r_ Oi _comp/
1.r_ Oi _comp_KO

Fig. 6 – State Manager - single waiting state MFSM and finite number
waiting state MFSM

1.r_O j_comp/
1.r_O j_comp_KO

1.r_O i_comp/
1.r_O i_comp_KO

1.r_O i_comp/
1.r_O i_comp_OK

4. Oi_OK/ -

4.Oj_OK/ - _comp_OK
1.r_O j_comp/
1.r_O j

4.Oi_KO/
2.ERR_Oi

4.Oj_KO/
2.ERR_O j

2.restore _begin /- 2.restore _begin /-

2.restore _end/-

2.restore _end/-

1.r_O j_comp/
1.r_O j_comp_KO

1.r_O i_comp/
1.r_O i_comp_KO

1.r_O j_comp/
1.r_O j_comp_KO

1.r_O i_comp/
1.r_O i_comp_KO

1.r_O j_comp/
1.r_O j_comp_KO1.r_O i_comp/

1.r_O i_comp_KO

1.r_O i_comp/
1.r_O i_comp_KO 1.r_O j_comp/

1.r_O j_comp_KO

Fig. 7 – State Manager - two waiting state MFSM

C. Alarm generator
The alarm generator has the purpose to continually get

information from both the state manager and the sensors, to
compare them and, in case, to issue an alarm. In particular
for each state in the state manager, an expected set of
sensors’ values is embedded in the alarm generator, and
comparison is done between these values and the actual

8364

ones. Whenever they do not match, an alarm event
ALARM_Sx is issued until a recover event is triggered by a
supervisor level. Different design solutions by MFSM’s are
currently investigated.

D. Operation body
For the sake of homogeneity, the body of a generic

operation has been designed by MFSM’s, in order to obtain
an overall control methodology characterized by immediate
communication among the different modules. Obviously
there is a different MFSM for every operation. Worth
mentioning is the operation request pattern, shown in Fig.
8, which is present in an operation body whenever it
requests an operation to a (lower level) module.

In particular, the transition labeled with the trigger event
expired enables the transmission of an operation failure
whenever no result signal appears within a prefixed time T.
Such an event can be issued by a timer, that has not been
represented in the overall model, whose input events are
Start_timer and Stop_timer, and whose unique output event
is expired.

trigger event/2. req_Oj

2. req_Oj_acc/
T. Start_timer

j2. req_O _ref/response event

2. issue_Oj_OK/response event,
T. Stop_timer

Initial state

Initial state
T. expired/1.Oi_KO, T. Stop _timer

Initial state

2. issue_Oj_KO/response event,
T. Stop_timer

Fig. 8 – Operation request pattern

Alternatively, the operation body could be described in
SFC formalism, easier for the control engineer. Automatic
translation from SFC to MFSM’s is actually under study.

V. THE CONTROL FRAMEWORK OF THE PALLET UNIT

The analysis of the functional characteristics for the
previously described pallet unit topologies has given rise to
the proposed framework shown in Fig. 9. A set of
fundamental elements playing a significant role into the
dynamic of pallet transportation has been outlined together
with the endowed operations and the mutual relationships.
These all have been represented as objects at the level of the
control framework (procedural model) proposed in Fig. 3.

At the higher level, for each of the considered cases, the
pallet unit shows a unique operation named
Move_pallet(X,Y), whose significance is “move pallet form
position X to position Y”. A position is a symbolic
representation of set points that must be given to the
actuators in order to reach it. It can be a place into the buffer
or the load/unload station or the machine charge position.

The pallet unit can be always thought of as composed of a
buffer and a pallet transportation system. The former is
basically an information module; it exhibits a set of
operations that can be called on by the pallet unit to retrieve
information about the current buffer configuration. For
example Get_position_state(X) can be requested in order to
know whether X is free, occupied by a raw-piece pallet or
occupied by a worked-piece pallet.

PALLET UNIT

PALLET TRANSPORTATION
SYSTEM

SENSOR

AXIS

U
N

IT
D

EV
IC

E
E

Q
U

IPM
EN

T
C

O
M

PO
N

EN
T

2.. 3

ACTUATOR

Move_pallet(X,Y)

Pick_up(Sx1,Sx2,F)

Release(Sy1,Sy2,F)

BUFFER

Position_free()

Get_position_state(X)

Get_position_set_points(X)

Change_state(X,s)

Book(X)

Unbook(X)

Move(x,v)

Stop()

Set_axis(x)

Check_position()

PALLET UNITPALLET UNIT

PALLET TRANSPORTATION
SYSTEM

SENSOR

AXIS

U
N

IT
D

EV
IC

E
E

Q
U

IPM
EN

T
C

O
M

PO
N

EN
T

2.. 3

ACTUATOR

Move_pallet(X,Y)

Pick_up(Sx1,Sx2,F)

Release(Sy1,Sy2,F)

BUFFER

Position_free()

Get_position_state(X)

Get_position_set_points(X)

Change_state(X,s)

Book(X)

Unbook(X)

Move(x,v)

Stop()

Set_axis(x)

Check_position()

Fig. 9 – The portion of procedural framework for the pallet unit

The pallet transportation system shows two different
operations that can be requested by the implementation of
Move_pallet(X,Y): Pick_up(Sx1,Sx2,F) and
Release(Sy1,Sy2,F). Any operation at any level can be
performed by composition of operations in the immediate
lower level. In particular the moving pallet operation can be
thought of as composed of two lower level operations:
taking pallet and depositing it.

In both cases parameters are Sx1, Sx2 (or Sy1, Sy2,
whose meaning is the same) and F. Sx1 and Sx2 are the set
points associated to position X. The conversion of the
position into the data has to be realized into
Move_pallet(X,Y) requiring a buffer operation:
Get_position_set_points(X). In the case the buffer has a
planar layout the second parameter is not significant. F has
the purpose to distinguish which fork has to be used to
perform the operation, merely in the topologies with double
fork.

The pallet transportation system is composed only of
axes, from the minimum of two to the maximum of three.
The former case corresponds to a rotating multi-pallet unit,
while the latter case includes all the other topologies. For
example in a circular buffer pallet unit with double fork
three are the possible movements: rotation of the

8365

transportation system, advancing of a fork (and
consequently retraction of the other one, since they are
integral) and up-down movement.

The generic axis can perform only one operation named
Set_axis(x), in which the given set point x can be either an
analogue value or a discrete one, on the basis of the motion
control that have been chosen.

The framework exhibits the axis composed of actuator
and sensor (the latter in a generic number). The
characteristics of the chosen actuators and sensors, namely
an actuator endowed of a logic or a modulating control and
sensors returning real or logic values, define the axis
typology.

The actuator provides two different operations: Move(x,v)
and Stop(), with the obvious meaning; the parameter v
enables the opportunity to modify the predefined speed
profile. The sensor exhibits only one operation:
Check_position(), which is requested by axis in order to
obtain the actual value at every time.

Usually more sensors than the strictly necessary for
nominal working are inserted, with the purpose to make the
error detection easier during the system operation. They are
usually set on the actuator or along the driving chain, always
on a fixed part for wiring issues.

Operations of control modules correspond to methods of
objects in the procedural model. Since each object in Fig. 9
can be thought of as realized by co-ordination of the
described sub-modules, each object have been designed as
specified in Sect. III and Sect. IV. Namely, as stated in Sect.
III, each object in the portion of procedural framework for
the pallet unit has been modelled by a control module. It has
been endowed of the operation manager (the same for all the
objects) and of an operation body for each operation, with
the proper exception for the buffer; then a unique state
manager and a unique alarm generator have been added.

The different state manager patterns shown in Sect. IV
can be used in this way: the pallet unit is modelled by a
single waiting state MFSM; the axis is modelled by a finite
number waiting state MFSM; the pallet transportation
system and the actuator are modelled by a two waiting state
MFSM. The two waiting states in the case of pallet
transportation system model the wait for a pick up operation
and the wait for a release operation while the two waiting
states in the case of an actuator model the wait for a move
operation and the wait for a stop operation.

It is worth mentioning, by a general overview, that within
the obtained framework each element can interact only with
one higher level element. As a consequence, the model
exhibits a hierarchical structure, which is particularly useful
in a simulation perspective. The lack of cross-references
among the different elements makes it possible to conceive
control system design in a structured fashion. Lower level
elements, in fact, might be inserted at first only via virtual
models so that partial verification of the control code

correctness can be performed.

VI. CONCLUDING REMARKS

In the present paper, the first modelling results obtained
for the control of machining centres have been shown. A
fundamental control module structure has been proposed,
that is described formally with the Modular Finite State
Machine formalism and that corresponds to the behaviour of
a control agent. Prototypical implementation of the proposed
model in JADE (Java-based Agent Development
Environment), an execution platform for agents, has been
positively tested. Future works include the full application
of the model to whole plants and an automatic translation of
MFSM models into agent-based implementation. Also,
automatic translation from SFC to MFSM’s and self-
diagnosis will be further investigated.

ACKNOWLEDGMENT

The authors are thankful to MCM spa, Italy, for the
pictures and precious information provided, and in particular
to Dr. Giuseppe Fogliazza for his constant support to the
illustrated activities.

REFERENCES

[1] E. Almeida, D. Tilbury, “Automatic Logic Generation for
Reconfigurable Cell-Based Manufacturing Systems,” WODES'04,
Reims, France, September 22-24, 2004.

[2] R.W. Brennan, M. Fletcher and D.H. Norrie, “An Agent-Based
Approach to Reconfiguration of Real-Time Distributed Control
Systems,” IEEE Transactions on Robotics and Automation, vol. 18,
no. 4, pp. 444-451, 2002.

[3] A.W. Colombo, R. Schoop, P. Leitão and F. Restivo, “A Collaborative
Automation Approach to Distributed Production Systems,” 2nd IEEE
Int. Conf. on Industrial Informatics, pp. 27-32, 2004.

[4] S.M. Deen, Agent-based manufacturing. Springer Verlag, Berlin,
2003.

[5] E. W. Endsley, “Modular Finite State Machines for Logic Control:
Theory, Verification and Applications to Reconfigurable
Manufacturing Systems,” Ph.D. thesis, University of Michigan, Ann
Arbor, MI, 2004.

[6] E. W. Endsley and D. M. Tilbury, “Modular Finite State Machines for
Logic Control,” in: Proc. of the IFAC Workshop on Discrete Event
System, 2004..

[7] L. Ferrarini and G. Fogliazza, “Advanced Control System Design for
Machining Centres,” IEEE/ASME (AIM 2001), 8–11 July 2001, Como,
Italia, pp. 671-676, vol. I, 2001.

[8] L. Ferrarini, C. Veber and G. Fogliazza, “Modelling, Design and
Implementation of Machining Centres Control Functions with Object-
Oriented Techniques,” IEEE/ASME (AIM 2003), 20-24 July, 2003,
Kobe, Japan, p. 1037-1042, 2003.

[9] B. S. Heck, L. M. Willis and G. J. Vachtsevanos, “Software
Technology for Implementing Reusable Distributed Control Systems,”
IEEE Control Systems Magazine, pp. 21-35, Feb. 2003.

[10] Standard IEC 61499, Function Blocks for Industrial-Process
Measurements and Control System, IEC TC65/WG6, Draft, 18/9/96.

[11] Torero Project, IST-2001-37573, Total life cycle web-integrated
control, funded by the European Community under the Information
Society Technology Programme (1998-2002). Available:
http://www.torero-project.com

8366

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

