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Abstract— In this paper, a novel stability robustness test for
systems with linear time-varying uncertainties is introduced.
The advantages of the stability robustness test lie in the fact
that it can cope with multi-input multi-output, stable, or
unstable systems whose linear time-varying uncertainties can
be represented by a standard structured uncertainty model,
and that the implementation of the test is straightforward. The
tool used to provide the means of determining system stability
robustness is the linear time-invariant ν-gap metric.

I. INTRODUCTION

When a stabilizing controller is designed for a nominal

plant, a desired objective is that the controller also succeeds

in stabilizing the “true-life” system in the face of uncer-

tainty [1]. Frequently, uncertainty is modelled as an un-

structured perturbation to the nominal plant; classes of these

uncertainties include additive uncertainty, input- or output-

multiplicative uncertainty and input- or output-feedback un-

certainty. The more general structured uncertainty model may

be used when plants are subjected to multiple uncertainties,

for example when the plant contains multiple unstructured

uncertainties, or when the plant contains a number of un-

certain parameters. The aim of this paper is to introduce a

stability robustness test for systems with linear time-varying

(LTV) uncertainties that can be represented with the standard

structured uncertainty model.

The tool used to provide the means of determining system

stability robustness is the LTI (linear time-invariant) ν-

gap metric, defined in [2]. Regarding this metric, it was

shown that, given a nominal LTI system and stabilizing

LTI controller, that the same controller was guaranteed to

stabilize a second LTI system, provided that the distance

between the two plants, as measured by the ν-gap metric,

was smaller than a number determined by the size of the

nominal closed-loop transfer function matrix. It was also

shown that if the distance between the nominal system and

the second LTI system, as measured by the ν-gap metric,

was not sufficiently small, then the second plant would be

destabilized by some controller achieving a certain level

of performance with the nominal system [2, Theorem 4.5].
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Furthermore, it was shown that the LTI ν-gap metric is easy

to compute.

In [3, Section 5], a simplified stability robustness test

for single-input single-output systems with LTV output-

multiplicative uncertainties was presented without proof.

This test involved determining whether a certain LTI quantity

was smaller than a number determined by the size of the

nominal closed-loop transfer function matrix, called the gen-

eralized robust stability margin [4]. It was shown that if this

LTI quantity was indeed the smaller of the quantities, then

the controller that stabilized the nominal LTI system was also

guaranteed to stabilize the system with the LTV uncertainty.

It was then shown that it was possible to transform the

problem of computing the LTI quantity into one of simply

calculating a LTI ν-gap distance [3, Theorem 4]. This result

is valid only for classes of multiplicative uncertainty.

The test introduced in this paper is a generalization of the

kinds of results in [3, Section 5]. Now, multi-input multi-

output systems with multiple uncertainty blocks (as opposed

to one block) are considered, and the class of uncertainty

is not restricted to the output-multiplicative family. The

theoretical basis of the test is given in Section III. Again,

it is shown that if a certain LTI quantity is smaller than the

generalized robust stability margin achieved by a controller

stabilizing the nominal LTI system, then robust internal

stability is guaranteed for systems with LTV uncertainties.

Unlike in the case for the LTI quantity in [3], the more

general, and therefore more complex, LTI quantity in this

paper cannot be found by computing a LTI ν-gap distance.

However, it is shown in Section IV that the quantity can,

in fact, be determined by selecting a number, say β , as a

guess to the LTI quantity, solving a collection of linear matrix

inequality (LMI) feasibility problems, and implementing a

bisectional line search over β . A numerical example is given

in Section V.

Notation

The notation is standard. The space L2(−∞,∞) consists

of Lebesgue measurable functions with finite norm. L2[0,∞)
is the subspace of L2(−∞,∞) with functions zero for t < 0.

R denotes the set of proper real rational transfer function

matrices. L∞ is a Banach space of matrix- (or scalar-) valued

functions that are essentially bounded on jR. The Hardy

space, H∞, is the closed subspace of L∞ with functions that
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are analytic and bounded in the open right-half plane (RHP),

with norm denoted ‖ · ‖∞. In other words, H∞ is the space

of transfer functions of stable, LTI, continuous-time systems.

RH ∞ denotes the subspace of H∞ whose transfer function

matrices are proper and real rational. The L2-induced norm

for LTV operators will be denoted by ‖ · ‖ and corresponds

to ‖ · ‖∞ for LTI systems.

For a general matrix X = [xi j] ∈ C
r×s, X∗ denotes the

complex conjugate transpose [x̄ ji]. For a transfer function

matrix X(s) ∈ Rr×s, X∗(s) is defined to mean X(−s)T . The

notation (
A B
C D

)

refers to a system realization (A,B,C,D) and the notation

Fl(F,C) := F11 +F12C(I−F22C)−1F21 and Fu(F,E) := F22 +
F21E(I −F11E)−1F12 refers to the standard lower and up-

per linear fractional representations (LFTs), respectively, as

shown in Fig. 1. F1 � F2 denotes the interconnection of two

LFTs known as the Redheffer star-product, as shown in Fig.

2. Well-posedness is assumed.

II. MATHEMATICAL PRELIMINARIES

In this section, a number of mathematical objects that are

used often throughout the paper are defined. First, consider

the following sets of LTV and LTI uncertainties. Let ∆∆∆ be the

set of causal, stable, structured LTV uncertainties with L2-

induced norm strictly less than one. By structured, it is meant

that ∆∆∆ contains elements consisting of k blocks, not necessar-

ily square, with each block denoted ∆q1×p1 , . . . ,∆qk×pk and

where q1 + . . .+qk = q and p1 + . . .+ pk = p. Let δδδ := {δ :

δ ∈RH q×p
∞ ,‖δ‖∞ < 1}. Similarly to [5], [6], define a set of

constant diagonal matrix pairs sharing the same scalar coef-

ficients as DDD := {(Dl ,Dr) : Dl = diag(d1Iq1 , . . . ,dkIqk),Dr =
diag(d1Ip1 , . . . ,dkIpk),di ∈ R+}, and note that for each D =
(Dl ,Dr) ∈ DDD, Dl and Dr commute with ∆∆∆ in the following

way:

∆ = Dl∆D−1
r ∀ ∆ ∈∆∆∆.

Next, consider a generalized system F that is partitioned

as follows:

F =
(

F11 F12
F21 F22

)
, (1)

where F11 ∈ R p×q, F12 ∈ R p×m, F21 ∈ Rn×q, F22 ∈ Rn×m.

Let P0 := Fu(F,0) denote a nominal plant. Let a controller

be C ∈ Rm×n.

Finally, let the interconnection of the plants P0 and C, as

shown in Fig. 3, be denoted by [P0,C]. This interconnection

is said to be internally stable if it is well-posed and if each

of the four transfer functions mapping the signals v1 and v2
to y and u are stable; that is, they belong to RH ∞ in a LTI
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Fig. 1. Lower and upper LFTs respectively.
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Fig. 2. Redheffer star product.
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Fig. 3. Internal stability of [P0,C].

setting. Define the generalized robust stability margin, de-

noted bP0,C; the optimal generalized robust stability margin,

bopt(P0) := supC bP0,C; and the LTI ν-gap metric, denoted

δν(P0,P1), as in [2].

III. MAIN RESULT

This section contains the result which forms the theoretical

basis for the stability robustness test. In words, the result

states that if a certain LTI quantity is smaller than the gen-

eralized robust stability margin determined from a nominal

plant and a stabilizing controller, then the same controller

will stabilize the system when subject to LTV uncertainty.

Formally, this result is stated as Theorem 1 below. First, the

definition of an induced realization is required.

Definition 1: Let a stabilizable and detectable realization1

for F ∈ R(p+n)×(q+m) be given by⎛
⎝ A B1 B2

C1 D11 D12
C2 D21 0

⎞
⎠ , (2)

and let stabilizable and detectable realizations for C ∈Rm×n

and D−1
l δDr ∈Rq×p be (Â, B̂,Ĉ, D̂) and (Ă, B̆,C̆, D̆), respec-

tively. The induced realization for

(a) Fl(F,C) is the realization formed from the realizations

for F and C, and is given by(
Aθ Bθ
Cθ Dθ

)
, (3)

where Aθ :=
(

A+B2D̂C2 B2Ĉ
B̂C2 Â

)
, Bθ :=

(
B1+B2D̂D21

B̂D21

)
,

Cθ := (C1+D12D̂C2 D12Ĉ ) and Dθ := D11 +D12D̂D21;

(b) Fu(F,D−1
l δDr) is the realization formed from the re-

alizations for F and D−1
l δDr, and is given by(
Aη Bη
Cη Dη

)
, (4)

where Aη :=
(

Ă+B̆(I−D11D̆)−1D11C̆ B̆(I−D11D̆)−1C1
B1(I−D̆D11)−1C̆ A+B1(I−D̆D11)−1D̆C1

)
,

Bη :=
(

B̆(I−D11D̆)−1D12
B1(I−D̆D11)−1D̆D12+B2

)
, Cη :=

(D21(I−D̆D11)−1C̆ D21(I−D̆D11)−1D̆C1+C2 ) and Dη :=
D21(I − D̆D11)−1D̆D12.

1The D22 term may be absorbed into C by a loop shifting argument (see
[7, Section 4.6] for instance).
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Theorem 1 (Main result): Let a generalized plant F ∈
R(p+n)×(q+m) be partitioned as in (1) and have a stabilizable

and detectable realization as given by (2). Let P0 := Fu(F,0)
be the nominal plant with an inherited realization (A,B2,C2)
which is stabilizable and detectable2, and let C ∈ Rm×n be

a stabilizing controller for P0. Consider the uncertainty sets,

∆∆∆ and δδδ , and the set of constant diagonal matrix pairs, DDD, as

defined in Section II. Suppose that each induced realization

for Fu(F,∆) and Fu(F,D−1
l δDr) is stabilizable and detectable.

If

inf
D=(Dl ,Dr)∈DDD

sup
δ∈δδδ

δν(P0,Fu(F,D−1
l δDr)) < bP0,C, (5)

then [PLTV ,C] is internally stable for all ∆∈∆∆∆, where PLTV :=
Fu(F,∆) is a time-varying uncertain plant.

The complete proof of the main result will be published

elsewhere. The following proof sketch has been included to

illustrate several key steps and to motivate the statement

of some important results. The proof sketch proceeds as

follows. From LTI ν-gap theory [2], it is known that if

δν(P0,Fu(F,D−1
l δDr)) < bP0,C, then the closed-loop system

[Fu(F,D−1
l δDr),C] is internally stable. Next, as shown in

Figs. 4 and 5, it is desired to transform the points of external

signal injection from between the plant Fu(F,D−1
l δDr) and

controller C to between the uncertainty δ and the system

DrFl(F,C)D−1
l such that internal stability is preserved. This

is achieved via the following result.

Lemma 2: Consider a F ∈ R(p+n)×(q+m), a C ∈ Rm×n, a

δ̄ ∈Rq×p and a D = (Dl ,Dr) ∈DDD, where DDD is the set as de-

fined in Section II. Suppose that the induced realizations for

Fu(F,D−1
l δ̄Dr) and Fl(F,C) are stabilizable and detectable.

Then [Fu(F,D−1
l δ̄Dr),C] is internally stable if and only if

[D−1
l δ̄Dr,Fl(F,C)] is internally stable.

Proof: To be published elsewhere.

2Such an assumption is a standard assumption in H∞ control and is
necessary and sufficient for F to be internally stabilizable via a controller
connecting controller input y to plant input u.
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Fig. 4. Internal stability of [Fu(F,D−1
l δDr),C].
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Fig. 5. Internal stability of [δ ,DrFl(F,C)D−1
l ].

It follows that [D−1
l δ̄Dr,Fl(F,C)] is internally stable if and

only if [δ̄ ,DrFl(F,C)D−1
l ] is internally stable since Dl and Dr

are constant diagonal matrices. Note that Lemma 2 describes

the more general case of a δ̄ ∈Rq×p as opposed to the case

δ ∈ δδδ .

To sidetrack from the proof sketch of the main result

for a moment, note that it is an important and interesting

problem in its own right to investigate under what conditions

the induced realizations for Fu(F,D−1
l δ̄Dr) and Fl(F,C) are

stabilizable and detectable, as is non-trivially supposed in

Lemma 2. For the induced realization for Fl(F,C), the answer

is relatively straightforward. Let P0 ∈ Rn×m and C ∈ Rm×n

have stabilizable and detectable realizations (A,B2,C2) (see

Footnote 1) and (Â, B̂,Ĉ, D̂), respectively, and suppose that

the nominal closed-loop system [P0,C] is internally stable.

Then, by [8, Lemma 5.2], the matrix

Ã :=
(

A+B2D̂C2 B2Ĉ
B̂C2 Â

)

is Hurwitz. Now, let F ∈ R(p+n)×(q+m) have a stabilizable

and detectable realization as given by (2) and consider the

computation of the induced realization for Fl(F,C) as given

by (3). Since Aθ = Ã, then Aθ is also Hurwitz, and so the

induced realization for Fl(F,C) is stabilizable and detectable.

Since it is not sensible to assume internal stability of the

closed-loop system [δ ,F11], nor to assume that the inherited

realization for F11 is stabilizable and detectable, a more

complex result is required to give conditions under which

the induced realization for Fu(F,D−1
l δ̄Dr) is stabilizable

and detectable. Again consider (2) to be a stabilizable

and detectable realization for F , and let D−1
l δ̄Dr ∈ Rq×p

have a stabilizable and detectable realization (Ă, B̆,C̆, D̆).
The following state-space result gives conditions for the

stabilizability and detectability of the induced realization for

Fu(F,D−1
l δ̄Dr).

Theorem 3: Let F ∈ R(p+n)×(q+m) and δ̄ ∈ Rq×p. Sup-

pose that a stabilizable and detectable realization for F is

given by (2). Then the induced realization for Fu(F,D−1
l δ̄Dr)

where D = (Dl ,Dr) ∈ DDD, as defined in Definition 1, is

stabilizable and detectable if and only if n̄(Fu(F,D−1
l δ̄Dr)) =

n̄(T ), where n̄(·) denotes the number of closed RHP poles

counted according to the usual notion of the Smith-McMillan

decomposition and T (s) denotes the transfer function matrix

mapping (v′2 v′1 u′)′ to (w′ z′ y′)′, as shown in Figure 6.

Furthermore, the induced realization for Fu(F,D−1
l δ̄Dr) is

(a) detectable if
(

A−λ I B1
C2 D21

)
has full column rank

∀Re(λ ) ≥ 0;
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Fig. 6. Mapping of (v′2 v′1 u′)′ to (w′ z′ y′)′.
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(b) stabilizable if
(

A−λ I B2
C1 D12

)
has full row rank ∀Re(λ )≥

0.

Proof: Parts (a) and (b) of the second part of the

theorem have been extracted from [8, Lemma 16.1] and are

proved in that reference. The first part of the proof is to be

published elsewhere.

Parts (a) and (b) of the final part of Theorem 3 are given

because the necessary and sufficient condition stated in the

earlier part of the theorem is dependent on δ̄ , and can hence

be difficult to check. This is as opposed to the sufficient

conditions in (a) and (b), which are equivalent to requiring

no unstable invariant zeros of the realizations(
A B1

C2 D21

)
and

(
A B2

C1 D12

)
,

for F21 and F12, respectively.

Returning now to the proof sketch of Theorem 1, re-

call that it has been established that [Fu(F,D−1
l δDr),C] is

internally stable if and only if [δ ,DrFl(F,C)D−1
l ] is in-

ternally stable, supposing that the induced realizations for

Fu(F,D−1
l δDr) and Fl(F,C) are stabilizable and detectable.

Note also that Fl(F,C)∈RH ∞ due to the suppositions of the

theorem statement (and see [8, Lemma 12.2]). Then the small

gain theorem (see [8, Theorem 9.1] for instance), which

states that [δ ,DrFl(F,C)D−1
l ] is internally stable for all δ ∈δδδ

if and only if ‖DrFl(F,C)D−1
l ‖∞ ≤ 1, can be applied to give

inf
D=(Dl ,Dr)∈DDD

‖DrFl(F,C)D−1
l ‖∞ ≤ 1

when the infimum is appropriately carried through. It then

remains to apply a time-varying small gain argument from

[9, Section III.E] to obtain robust internal stability of

[∆,Fl(F,C)], and then to apply a time-varying version of

Lemma 2 to obtain robust internal stability of [Fu(F,∆),C].
This concludes the proof sketch of the main result.

IV. ON DETERMINING WHETHER THE INEQUALITY IN

THE MAIN RESULT IS SATISFIED

A procedure for computing the LTI quantity on the left-

hand side (LHS) of (5) is now proposed. Let a LTI system

R (dependent on a nominal system P0 and a given number

β ∈ (0,bopt(P0))) be introduced and defined as follows.

Suppose that P0 has a stabilizable and detectable realization

(AP0 ,BP0 ,CP0). Let X = X∗ ≥ 0 be the stabilizing solution to

the generalized control algebraic Riccati equation (GCARE)

A∗
P0

X +XAP0 −XBP0B∗
P0

X +C∗
P0

CP0 = 0

and Z = Z∗ ≥ 0 be the stabilizing solution to the generalized

filtering algebraic Riccati equation (GFARE)

AP0 Z +ZA∗
P0
−ZC∗

P0
CP0 Z +BP0B∗

P0
= 0.

Define R ∈R(m+n)×(n+m) as in [10], where R is invertible in

R(n+m)×(m+n). A stabilizable and detectable realization for

R−1 is ⎛
⎜⎝

AR−1 BR−1
1

BR−1
2

CR−1
1

0 I

CR−1
2

√
γ2 −1I 0

⎞
⎟⎠ , (6)

where AR−1 := AP0 − BP0 B∗
P0

X − γ2ȲC∗
P0

CP0 , BR−1
1

:=
γ√

γ2−1
(I − Y X)−1BP0 , BR−1

2
:= γȲC∗

P0
, CR−1

1
:= −γCP0 ,

CR−1
2

:= −γB∗
P0

X , Ȳ := Y (I − XY )−1, Y := 1
γ2−1 Z and

γ := 1
β . The following result states that if a number of LMIs

involving R−1 are feasible, then the LTI quantity on the LHS

of (5) is upper bounded by the number β ∈ (0,bopt(P0)).
Theorem 4: Suppose F ∈ R(p+n)×(q+m) is a generalized

system partitioned as in (1), with a stabilizable and detectable

realization as given by (2), and suppose P0 := Fu(F,0) has the

inherited realization (A,B2,C2) which is also stabilizable and

detectable (see Footnote 2). Furthermore, suppose that δδδ is

the LTI uncertainty set, and that DDD is the set of constant

diagonal matrix pairs, as defined in Section II; and that

each induced realization for Fu(F,D−1
l δDr) as defined in

Definition 1 is stabilizable and detectable. Given a β ∈
(0,bopt(P0)), then

inf
D=(Dl ,Dr)∈DDD

sup
δ∈δδδ

δν(P0,Fu(F,D−1
l δDr)) ≤ β (7)

if ∃D ∈DDD : ∀ω ∈ R ∃dω ∈ R+ :

J∗( jω)
(

d2
ω In 0

0 D2
r

)
J( jω) ≤

(
d2

ω Im 0

0 D2
l

)
,

where J := R−1 �
(

P0 F21
F12 F11

)
, and R−1 is defined as in (6).

The proof of Theorem 4 will be published elsewhere. As

in Section III, a sketch is provided as follows to illustrate

the key steps and motivate the statement of some important

results. The following result, which is a minor but important

extension of [10, Proposition 1.1], is used to relate the LTI

inequality (7) with a transfer function matrix stability and

small gain concept.

Lemma 5: Given LTI systems P0, P1 ∈ Rn×m and a num-

ber β ∈ (0,bopt(P0)), there exists a LTI system R (dependent

on P0 and β only), as defined above, such that δν(P0,P1) ≤
β ⇔ S(s) ∈ RH ∞ and ||Fl(R−1,P1)||∞ ≤ 1, where S(s)
denotes the transfer function matrix mapping (w′ v′1 v′2)

′ to

(z′ a′1 a′2)
′, as shown in Fig. 7.

Proof: As Lemma 5 is an extension of [10, Proposition

1.1], which states that δν(P0,P1)≤ β ⇔ Fl(R−1,P1)∈RH ∞
and ||Fl(R−1,P1)||∞ ≤ 1, it is only required to show that

Fl(R−1,P1) ∈ RH ∞ if and only if S(s) ∈ RH ∞. This will

be published elsewhere.

Now set P1 in Lemma 5 to be Fu(F,D−1
l δDr), as

in (7). Then it is easy to show (to be published else-

where) that S(s) ∈ RH ∞ if and only if U(s) ∈ RH ∞,

where U(s) denotes the transfer function matrix mapping

(w′ v′1 v′2)
′ to (z′ b′1 b′2)

′, as shown in Fig. 8, where

G :=
(

0 Dr
In 0

)
J
(

0 Im
D−1

l 0

)
. The above now corresponds to a

���

��

�

�

�
�

��
�

�

��

	�

	�

Fig. 7. Mapping of (w′ v′1 v′2)
′ to (z′ a′1 a′2)

′.
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Fig. 8. Mapping of (w′ v′1 v′2)
′ to (z′ b′1 b′2)

′.

structured singular value problem [8, Chapter 11] (see Corol-

lary 6 below) which is employed to reformulate the stability

and small gain concept into one involving LMIs (since the

structured singular value is equal to an infimum over a

frequency dependent scaling factor as it has two uncertainty

blocks). Correspondence with a structured singular value

problem is possible due to the following result, which is

a consequence of Lemma 5.

Corollary 6: Consider J ∈ R(n+p)×(m+q) as defined in

Theorem 4. Then J ∈ RH ∞.

Proof: Follows from Lemma 5 by setting P1 = P0. To

be published elsewhere.

This concludes the proof sketch of Theorem 4. Finally, it

remains to show how Theorem 4 is used to compute the LTI

quantity on the LHS of (5), and hence determine internal

stability of the LTV system [PLTV ,C]. Upon determination

of the feasibility of the LMI constraints using Theorem 4

for some β , the next iteration of a bisectional line search

may be implemented over the interval (0,bopt(P0)) to select

the next test β . The direction in which the line search

proceeds depends on the ‘true’ or ‘false’ result acquired

by solving the LMI feasibility problem: a ‘false’ result

suggests that a larger test β should be chosen; while a ‘true’

result indicates one can try a smaller test β . Consequently,

the LTI quantity infD=(Dl ,Dr)∈DDD supδ∈δδδ δν(P0,Fu(F,D−1
l δDr))

is achieved to within a sufficiently small pre-determined

tolerance. Provided that the LTI quantity is smaller than the

generalized robust stability margin bP0,C achieved with some

controller C that internally stabilizes the nominal plant, then

internal stability of the system [PLTV ,C], for all time-varying

uncertainties ∆ ∈∆∆∆, is guaranteed.

A complete solution algorithm is provided as follows:

1) Set the bounds on possible β to be αl = 0 and αr =
bopt(P0). Set a sufficiently small tolerance ε > 0 for

the iterative bisections with respect to finding β to end.

Select an initial β0 = αr − ε and set β f eas = bopt(P0).
Set i = 0. Goto step 2.

2) Given a βi, solve the convex optimization problem:

“does there exist a D ∈ D such that, for all ω ∈ R,

there exist dω ∈ R+ such that

J∗( jω)
(

d2
ω In 0

0 D2
r

)
J( jω) ≤

(
d2

ω Im 0

0 D2
l

)
,

where J := R−1 �
(

P0 F21
F12 F11

)
, and R−1 is defined as in

(6)”. Note that each different dω can have a differ-

ent value (with each different dω corresponding to a

different frequency ω). Now,

i) If the optimization problem is feasible, set

β f eas = βi and βi+1 = αl+βi
2 . Update αr = βi. Goto

step 2iii.

ii) If the optimization problem is not feasible, test if

β f eas −βi ≤ ε . If yes, then end. If no, set βi+1 =
βi+αr

2 . Update αl = βi. Goto step 2iii.

iii) Set i = i+1 and goto step 2.

If β f eas < bP0,C, where C is some internally stabilizing

controller, then [PLTV ,C] is internally stable for all ∆ ∈ ∆∆∆.

If not, internal stability of [PLTV ,C] has not been determined

(and a possibility if β f eas 	= bopt(P0) is to choose a different

controller to obtain a larger stability margin).

The convex optimization problem in Step 2 of the solution

algorithm is easily solved using Matlab’s LMI toolbox for

instance. A numerical example follows in the next section.

V. NUMERICAL EXAMPLE

Consider a nominal system P0 with state-space representa-

tion as given in Fig. 9. This data was obtained by implement-

ing the H∞ loop-shaping design procedure, described in [11],

given the input from the example provided in [11]. Note that

bopt(P0) = 0.376, which can be determined using Matlab’s

µ-Analysis and Synthesis Toolbox “ncfsyn” function, for

instance.

Now consider the uncertain system shown in Fig. 10,

where ∆1 and ∆2 represent output multiplicative and input

feedback LTV uncertainties, respectively. Formally, the un-

certain system shown in Fig. 10 is described by

PLTV := (I + ε1∆1)P0(I − ε2∆2)−1, (8)

where
(

∆1 0
0 ∆2

)
∈∆∆∆ and ε1,ε2 ∈ [0,1]. Recall that output mul-

tiplicative uncertainty may typically represent output (sensor)

errors or neglected high frequency dynamics, while input

feedback uncertainty may represent low frequency parameter

errors (see [8, Table 9.1]). Expressing (8) in the standard

structured uncertainty form gives

F =

⎛
⎝ 0 ε1ε2P0 ε1P0

0 ε2I I
I ε2P0 P0

⎞
⎠ .

The solution algorithm presented in this paper can be

used to investigate stability robustness of the uncertain feed-

back interconnection. For this example, one hundred equally

spaced frequency points on a logarithmic scale between ω =
10−4 and 104 rad/s were chosen for Step 2 of the algorithm

and a tolerance of 0.001 was chosen for Step 1. First, stability

robustness of the system subject only to output multiplicative

uncertainty was investigated. Four hundred and one evenly

spaced scaling factors ε1 were chosen from between [0,1] to

represent different sizes of the uncertainty, while ε2 was set

fixed at zero. An algorithm output quantity β f eas (representa-

tive of the LTI quantity on the LHS of (5)) was produced for

each of the 401 pairs of uncertainty scaling factors (ε1,ε2).
The results for when ε1 ranged between [0,0.5] are shown

in Fig. 11. For example, a size of ε1 = 0.4975 resulted in a

β f eas of 0.367, which is less than bopt(P0) = 0.376. This

means that the interconnection [PLTV ,Cs] subject to LTV

output multiplicative uncertainties with scaling factors of
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-23.8 -3.36 4.60 -0.239 11.8 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-16.8 -0.0248 22.8 -0.916 0 0 9.83 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -50.0 63.2 0 0 112 -9590 -1530 -1250 0 0 0 0 -45300 0
0 0 0 0 0 -40.0 0 0 -142 12100 1930 1580 0 0 0 0 57400 0
0 0 0 0 0 0 -50.0 63.2 0 0 0 0 -58.0 10600 -145 -1320 0 -55500
0 0 0 0 0 0 0 -40.0 0 0 0 0 73.3 -13400 183 1670 0 70200
0 0 0 0 0 0 0 0 -0.00561 1.14 0.178 0.123 0 0 0 0 -15.9 0
0 0 0 0 0 0 0 0 -1.14 -258 -43.9 -74.7 0 0 0 0 -1360 0
0 0 0 0 0 0 0 0 -0.178 -43.9 -7.52 -13.9 0 0 0 0 -216 0
0 0 0 0 0 0 0 0 0.123 74.7 13.9 -43.9 0 0 0 0 177 0
0 0 0 0 0 0 0 0 0 0 0 0 -0.00271 1.52 -0.0158 -0.120 0 8.20
0 0 0 0 0 0 0 0 0 0 0 0 -1.52 -262 5.05 72.0 0 1500
0 0 0 0 0 0 0 0 0 0 0 0 0.0158 5.05 -0.117 -2.76 0 -20.5
0 0 0 0 0 0 0 0 0 0 0 0 -0.120 -72.0 2.76 -43.9 0 187
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 9. State-space model of P0.
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Fig. 10. Uncertain open-loop shaped plant.

size up to and including 0.4975, as described by (8), will

be internally stable, given that Cs is a stabilizing controller

that achieves bP0,Cs > 0.367. Note that the next (larger)

scaling factor tested was ε1 = 0.5, for which the algorithm

produced an output β f eas > bopt(P0) and so internal stability

of [P0,Cs] subject to LTV output multiplicative uncertainties

with ε1 > 0.4975 was not concluded here.

Next, stability robustness of the feedback interconnection

was tested with respect to when P0 is subjected to both

output multiplicative and input feedback LTV uncertainties.

For example, when the scaling factors were set to ε1 = 0.35

and ε2 = 0.38, the algorithm produced a β f eas of 0.371,

meaning that [PLTV ,Ct ] subject to both output multiplicative

and input feedback LTV uncertainties of size 0.35 and

0.38, respectively, as described by (8), is guaranteed to be

internally stable, given that Ct is a stabilizing controller that

achieves bP0,Ct > 0.371.

VI. CONCLUSIONS

A new stability robustness test for systems with LTV

uncertainties that can be described with the standard struc-
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Fig. 11. The quantity β f eas with respect to the size of the output
multiplicative uncertainty.

tured uncertainty model was introduced. The main theoretical

result forming the basis of the test involved transforming the

problem of LTV system stability robustness into a problem

of determining whether a certain LTI quantity was smaller

than the generalized robust stability margin achieved by a

controller stabilizing a nominal plant. A solution algorithm

that computed the LTI quantity was supplied, and was

demonstrated with a numerical example.
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