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Abstract�A long-standing problem of the start-up instability
in the model-reference adaptive control of distributed parame-
ter systems caused by setting the initial controller parameter
values sufÞciently far from the ideal ones, unknown a priori, is
solved for a class of systems. The latter include systems modeled
by parabolic and hyperbolic partial differential equations
(PDEs) with spatially varying parameters. The stabilizing direct
model reference adaptive control (MRAC) laws are synthesized
using Lyapunov redesign. The controller uses plant state and
for hyperbolic case, additionally, its time derivative. The key
feature of the approach proposed is the elimination from the
control laws of the plant state spatial derivatives that could
give rise to the closed loop system ill-posedness. The approach
also prevents closed-loop system instability by keeping the gains
for plant state and, in the hyperbolic case - state and its time
derivative, negative under arbitrary initial controller parameter
setting.

I. INTRODUCTION

One of the main drawbacks of the adaptive control laws
(cf. [1]) for distributed parameter systems (DPS) has been
the possibility of the quick unpredictable algorithm blow-
up at the start-up. This feature characterizes MRAC laws
for DPS proposed in [2], [3], [6], and references therein.
It was conjectured that this drawback is caused by the use
of the second order spatial derivatives of the output in the
MRAC laws feedback path. Effort to robustify these control
laws through the spatial differentiation order reduction of
the output was made in [2], where the reference input was
limited to a constant. The latter work, however, has not
produced algorithms capable of avoiding the blow-up possi-
bility. This problem is solved in the present work for a class
of DPS described by parabolic and hyperbolic PDEs with
spatially-varying coefÞcients. For brevity, one dimensional
case is considered. Extension to higher dimensions can be
carried out by imposing more regularity on coefÞcients,
reference input, domain, and initial conditions. The paper
has the following structure: the systems to be controlled
are described in the Introduction. An inÞnite-dimensional
adaptive control law synthesis for these system is carried
out in Section II. This section demonstrates the start-up
instability of the MRAC laws of the type presented in [2],
[3], [6], and then introduces a novel direct MRAC structure
that eliminates this problem both for the parabolic and the
hyperbolic cases. Numerical simulations demonstrating the
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stable algorithm performance are presented in Section III.
Finally, conclusions are given in Section IV.

For open and bounded domain U ⊂ R, consider a plant
represented by a parabolic PDE

ut = (a(x)ux)x + b(x)u+ f, (x, t) ∈ UT ,

u(x, 0) = g(x), x ∈ U,
u(x, t) = α(x), x ∈ ∂U, (1)

where UT := U × (0, T ], ν ≥ a(x) ≥ ε > 0 and b(x) ≤ 0
are unknown spatially varying parameters, f(x, t) is a control
input, and (·)x and (·)t denote partial derivatives with respect
to x and t, respectively. The reference model is in the same
form as the plant:

vt = (a1(x)vx)x + b1(x)v + r, (x, t) ∈ UT ,

v(x, 0) = g1(x), x ∈ U,
v(x, t) = α(x), x ∈ ∂U, (2)

where ν1 ≥ a1(x) ≥ ε1 > 0 and b1(x) ≤ 0 are the
prespeciÞed spatially varying parameters, and r(x, t) is a
reference input. The boundary conditions for the model are
assumed to be equal to those of the plant. Since the non-zero
boundary problem can be changed into the zero boundary
one, α(x) = 0 is considered hereafter.

Correspondingly, a plant modeled by a hyperbolic PDE is
described by

utt(x, t) = (a(x)ux(x, t))x + b(x)u(x, t)

+c(x)ut(x, t) + f(x, t), (x, t) ∈ UT ,

u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ U,
u(x, t) = α(x), x ∈ ∂U, (3)

where ν ≥ a(x) ≥ ε > 0, b(x) ≤ 0 and c(x) ≤ 0, with the
reference model given by

vtt(x, t) = (a1(x)vx(x, t))x + b1(x)v(x, t)

+c1(x)vt(x, t) + r(x, t), (x, t) ∈ UT ,

v(x, 0) = g1(x), vt(x, 0) = h1(x), x ∈ U,
v(x, t) = α(x), x ∈ ∂U, (4)

where ν1 ≥ a1(x) ≥ ε1 > 0, b1(x) ≤ 0, and c1(x) ≤ 0 are
spatially varying parameters, and r(x, t) is a reference input.
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Again, the same boundary condition is assumed for the plant
and the model, and α(x) = 0 hereafter.

The following deÞnitions will be used subsequently.
DeÞnition 1 [5]: A Lyapunov function is a continuos real-

valued function V on D such that

úV (x) ≡ lim sup
∆t→0+

1

∆t
{V (x(t+∆t))− V (x(t))} ≤ 0 (5)

for all x ∈ D.
To cope with a broader class of initial data and input

functions a weak solution is deÞned.
DeÞnition 2 [4, p. 352]: A function u ∈ L2(0, T ;H1

0 (U)),
with u0 ∈ L2(0, T ;H−1(U)), is said to be a weak solution
of the parabolic initial/boundary-value problem (1) providedZ

U

u0vdx =
Z
U

−auxvx + buvdx+
Z
U

fvdx (6)

for each v ∈ H1
0 (U) and a.e. time 0 ≤ t ≤ T, and

u(0) = g, (7)

where H−1(U) is a dual space of H1
0 (U).

DeÞnition 3 [4, p. 379]: A function u ∈ L2(0, T ;H1
0 (U)),

with u0 ∈ L2(0, T ;L2(U)), u00 ∈ L2(0, T ;H−1(U)), is said
to be a weak solution of the hyperbolic initial/boundary-value
problem (3) providedZ

U

u00vdx =
Z
U

−auxvx + buv + cutvdx+
Z
U

fvdx (8)

for each v ∈ H1
0 (U) and a.e. time 0 ≤ t ≤ T, and

u(0) = g, u0(0) = h. (9)

II. CONTROLLER DESIGN

For the purpose of designing a control law that uses the
reference input, and the plant and the model states, assume
that:

i) the plant equation structure is known but the parameters
are unknown;

ii) the initial condition of the plant can be unknown;
iii) the plant state u(x, t) is measured and control input

f(x, t) is applied for every x, t.
First, well-deÞnedness of the closed loop system is demon-

strated. The term "well-deÞnedness" characterizes the system
equation that has a solution in some sense. It is then proved
that the given controller makes the plant output follow that
of the reference model under a given reference input, r(x, t).
DeÞne

e(x, t) = v(x, t)− u(x, t), η∗a1(x) = a1(x)− a(x),
η∗a2(x) = (a1(x)− a(x))x,
η∗b(x) = b1(x)− b(x), η∗c(x) = c1(x)− c(x),

ξa1(x, t) = ηa1(x, t)− η∗a1(x),
ξa2(x, t) = ηa2(x, t)− η∗a2(x),
ξb(x, t) = ηb(x, t)− η∗b(x),
ξc(x, t) = ηc(x, t)− η∗c(x), (10)

where ηa1,a2,b,c will be used as controller parameters, e(x, t)
is the output error, and ξa1,a2,b,c(x, t) are the parameter
errors.

A. Parabolic case
The basic structure of adaptive control laws in [2] and [6]

is as follows. Let us rewrite the system and the reference
model as

ut = Lu+ f, vt = L1v + r. (11)

If plant operator L is known, control input f can be chosen
as

f = L1u− Lu+ r, (12)

resulting in

ut = Lu+ L1u− Lu+ r = L1u+ r. (13)

If the closed loop system, i.e., in this case, the operator of
the reference model L1, has a dissipation term, the difference
between u and v caused by their possible initial condition
mismatch decays, and u follows v asymptotically. When L is
unknown and the reference model does not have a dissipating
term, L has to be identiÞed and correction has to be made
in f, respectively. The problem with control form like

f = �L(t)u+ r (14)

is that the closed loop system can be ill-posed and unstable
depending on how �L(t) evolves. For illustration, the algo-
rithm [6] is simulated. Using (1) and (2) with the same
parameters as in [6]

a(x) = 0.1 + 0.2 sin(πx),

a1(x) = 0.5, ηa(x, 0) = 0.1, (15)

the simulation shows that tracking is achieved when the
control in [6] is used. When initial controller parameter is
set, however, as

ηa(x, 0) = −1, (16)

increasing the possibility of making the closed loop system
ill-posed, plant state blows up in a short time.
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Fig. 1. Plant state u of the closed loop system: start-up instability.
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To Þx this problem consider controller

f = r + ε0e+ ηa1vxx + ηa2vx + ηbv (17)

with the parameter update laws

úηa1 = úξa1 = εa1evxx,

úηa2 = úξa2 = εa2evx,

úηb = úξb = εbev, (18)

where proportional gain ε0 > 0 determines the dependence
of control input on state error, and adaptation gains εa1,a2,b
determine the size of parameter update.

Reference 
Model 

Controller Plant 

Adaptation 
algorithm 

Reference 
input 
 
r 

v, vx, vxx, (vt) 

Control  
input 
 
f 

u

u, (ut)  

Fig. 2. Schematics of MRAC of parabolic case. (hyperbolic case uses ut
and vt additionally)

Note that control input does not use the spatial derivative
of the plant state.

B. Well-deÞnedness of the closed loop system for parabolic
case

The system will be referred to as well-deÞned if it has a
weak solution as in DeÞnition 2. The following lemma will
be used to prove that the closed system is well-deÞned under
proper conditions.

Lemma 1: Suppose a, b ∈ C1(Ū), f(x, t) ∈ L∞(UT ),
d(x, 0) ∈ C1(Ū), and g(x) ∈ L2(U). Then there exists a
unique weak solution u(x, t) of

ut = (a(x)ux)x + b(x)u− d(x, t)f(x, t),

∂d(x, t)

∂t
= εuf(x, t), (x, t) ∈ UT ,

u(x, 0) = g(x), x ∈ U (19)

where ν ≥ a(x) ≥ θ > 0, b(x) ≤ 0, and ε > 0. The proof
is omitted due to space limitations.

For well-deÞnedness of the closed loop system, the fol-
lowing conditions are assumed on the reference model and
the reference input to guarantee the necessary regularity of
v:

(A1)



a1, b1 ∈ C∞(Ū), g1 ∈ H3(U),
∂kr
∂tk

∈ L2(0, T ;H2−2k(U)), (k = 0, 1)
with compatibility conditions

g1 ∈ H1
0 (U),

r(·, 0) + (a1g1x)x + b1g1 ∈ H1
0 (U),

d
dtr(·, 0) + (a1h1x)x + b1h1 ∈ H1

0 (U).

If (A1) is satisÞed, by Theorem 6 [4, p. 365] the reference
model has a weak solution (v ∈ L(0, T ;H4(U))) such that
for C1, C2 <∞,

∂

∂x
v2xx = 2vxxvxxx for a.e. UT , (20)

which is justiÞed by Theorem 5 [4, p. 280] and¯̄
v2xx
¯̄ ≤ C1 + 2

Z
U

|vxxvxxx| dx

≤ C1 +

Z
U

v2xxdx+

Z
U

v2xxxdx < C2 for a.e. UT .

Similarly, ¯̄
v2
¯̄
< C2,

¯̄
v2x
¯̄
< C2 for a.e. UT . (21)

(A1) will be assumed in Proposition 1 to guarantee that
the forcing terms −ξa1vxx − ξa2vx − ξbv of the state error
equation below satisfy L∞(UT ) boundedness.

Proposition 1: If the controller input and the controller
parameter update law are given as (18), and conditions (A1)
and (A2) on plant parameters, initial conditions, and control
parameter initial conditions are satisÞed, where

(A2)

 a, b ∈ C1(Ū),
g(x) ∈ H1

0 (U), h(x) ∈ L2(U),
ξa1(x, 0), ξa2(x, 0), ξb(x, 0) ∈ C1(Ū),

then the closed loop system is well deÞned.
Proof: Lemma 1 can be used to prove well-deÞnedness of

the error equation. Since

u = v − e, (22)

the closed loop system is well deÞned. ¥

C. Properties of the control algorithm for parabolic case
Let us now prove that the controller proposed makes the

plant output follow that of the reference model.
Theorem 1: If the control input (17) and controller para-

meter update laws (18) are deÞned for (1) and (2), and (A1),
(A2) are satisÞed, the L2 norm of the output error e(x, t)
goes to zero asymptotically.

Proof: The following function will be used as a candidate
Lyapunov function

V =
1

2
(e, e) +

1

2εa1
(ξa1, ξa1)

+
1

2εa2
(ξa2, ξa2) +

1

2εb
(ξb, ξb), (23)
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where (·, ·) is an inner product in real L2(U ) space. Time
derivative of V is

úV = (et, e) +
1

εa1
( úξa1, ξa1)

+
1

εa2
( úξa2, ξa2) +

1

εb
( úξb, ξb). (24)

Substituting the equation for et

úV = ((aex)x, e) + ((b− ε0)e, e)
−(ξa1vxx, e)− (ξa2vx, e)− (ξbv, e)
+
1

εa1
( úξa1, ξa1) +

1

εa2
( úξa2, ξa2)

+
1

εb
( úξb, ξb). (25)

Using integration by parts with e = 0 on ∂U, and úξa1,a2,b
deÞned above

úV = −(aex, ex) + ((b− ε0)e, e). (26)

Because e(x, t) ∈ H1
0 (U) for a.e. t by Proposition 1 and

b ≤ 0 is assumed, there exists C > 0, independent of e(x, t),
such that

úV < −ε0(1 +C)(e, e). (27)

Thus, V is indeed a Lyapunov function in D = {e(·, t) ∈
H1
0 (U ), a.e. t}. Following [5, p. 84], since V is a nonneg-

ative nonincreasing function of t, there exists l < ∞ such
that

lim
t→∞V (t) = l. (28)

If l = 0,
lim
t→∞ ke(t)kL2 = 0. (29)

If l > 0, as t goes to ∞, each term in V either converges
to some constant or keeps ßuctuating in a bounded interval
while maintaining V = l. To cover both cases, suppose

lim
t→∞ supke(t)kL2 =m 6= 0. (30)

Then
lim
t→∞ inf

úV (t) = −ε0(1 +C)m2, (31)

which contradicts the fact that lim
t→∞V (t) = l > 0. Since

ke(t)kL2 is nonnegative

lim
t→∞ ke(t)kL2 = 0. (32)

¥
Remark 1: Since Theorem 1 requires either e = 0 or

ex = 0 on ∂U, under the proper compatibility conditions
this controller will work for Neumann boundary or mixed
boundary cases as long as the system and the model have
the same boundary values.

D. Hyperbolic case
Let us now set the controller input to

f(x, t) = r+ε0e+et+ηa1vxx+ηa2vx+ηbv+ηcvt, (33)

and introduce the controller parameter update laws as

úηa1 = úξa1 = εa1(et + e)vxx,

úηa2 = úξa2 = εa2(et + e)vx,

úηb = úξb = εb(et + e)v, úηc =
úξc = εc(et + e)vt.(34)

E. Well-deÞnedness of the closed loop system for hyperbolic
case

The system will be referred to as well-deÞned if it has a
weak solution as in DeÞnition 3. The following lemma will
be used to prove that the closed loop system is well deÞned
under proper conditions.

Lemma 2: Suppose a, b, c ∈ C1(Ū), f(x, t) ∈ L∞(UT ),
h(x) ∈ L2(U), d(x, 0) ∈ C1(Ū), and g(x) ∈ H1

0 (U). Then
there exists a unique weak solution u(x, t) of

utt = (a(x)ux)x + b(x)u+ c(x)ut − d(x, t)f(x, t),

∂d(x, t)

∂t
= ε(u+ ut)f(x, t), (x, t) ∈ UT ,

u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ U (35)

where ν ≥ a(x) ≥ θ > 0, b(x), c(x) ≤ 0, ε > 0. The proof
is omitted due to space limitations.

The following remarks about the weak solution of Lemma
2 will be used further.

Remark 2: Referring to the proof of Theorem 4.1 [7, p.
162], if

(A3) ft ∈ L∞(UT ),
then uxt = utx ∈ L∞(0, T ;L2(U)), utt ∈
L∞(0, T ;L2(U)).

Remark 3: If u is a weak solution of Lemma 8 and (A3)
holds,

ut ∈ L2(0, T ;H1
0 (U)), utt ∈ L2(0, T ;L2(U)) (36)

by the remark [4, p. 380] and C(0, T ;H−1(U)) ⊆
L2(0, T ;H−1(U)),

ut ∈ L2(0, T ;H1
0 (U)), utt ∈ L2(0, T ;H−1(U)) (37)

by Theorem 3 [4, p. 287], and

d

dt
kutk2L2 = 2(utt, ut) for a.e. 0 ≤ t ≤ T. (38)

Also by Corollary 4.1 [7, p. 164],

ux ∈ L2(0, T ;H1
0 (U)), uxt ∈ L2(0, T ;L2(U)). (39)

Similarly, d
dt kuxk2L2 = 2(uxt, ut) = 2(utx, ut) for a.e. 0 ≤

t ≤ T.
For well-deÞnedness of the closed loop system, the fol-

lowing conditions are assumed on the reference model and
reference input to guarantee the necessary regularity of v:
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a1, b1, c1 ∈ C∞(Ū),
g1 ∈ H4(U), h1 ∈ H3(U),

∂kr
∂tk

∈ L2(0, T ;H3−k(U)) (k = 0, ...,3)
with compatibility conditions
g1 ∈ H1

0 (U), h1 ∈ H1
0 (U),

r(·, 0) + (a1g1x)x + b1g1 + c1h1 ∈ H1
0 (U),

d
dtr(·, 0) + (a1h1x)x + b1h1 ∈ H1

0 (U).

If (A4) is satisÞed, by Theorem 6 [4, p. 391] the reference
model has a weak solution (v ∈ L∞(0, T ;H4(U))) such that
for C1, C2 <∞,

∂

∂x
v2xxt = 2vxxtvxxxt for a.e. UT , (40)

which is justiÞed by Theorem 5 [4, p. 280] and¯̄
v2xxt

¯̄ ≤ C1 + 2

Z
U

|vxxtvxxxt| dx

≤ C1 +

Z
U

v2xxtdx+

Z
U

v2xxxtdx < C2 for a.e. UT .

Similarly,¯̄
v2xt
¯̄
< C2,

¯̄
v2t
¯̄
< C2,

¯̄
v2tt
¯̄
< C2 for a.e. UT . (41)

(A4) will be assumed in Proposition 2 to make the forcing
terms, −ξa1vxx−ξa2vx−ξbv−ξcvt of the state error equation
below satisfy (A3).

Note that when applying Theorem 6 [4, p. 391],
c1(x)vt(x, t) term does not affect the validity of the theorem.
The term is energy dissipating with time invariant coefÞcient
that does not cause any additional complication for the
existence or the regularity of a weak solution, which can
be checked through the energy estimate in [4, p. 381] and
subsequent argument.

Proposition 2: If the controller input and the controller
parameter update laws are given as (34) and (34), conditions
(A4) and (A5) on plant parameters, initial conditions, and
controller parameter initial conditions are satisÞed, where

(A5)

 a, b, c ∈ C1(Ū),
g(x) ∈ H1

0 (U), h(x) ∈ L2(U),
ξa1(x, 0), ξa2(x, 0), ξb(x, 0), ξc(x, 0) ∈ C1(Ū),

then the closed loop system is well deÞned.
Proof: Lemma 2 can be used to prove well-deÞnedness of

error equation. Since

u = v − e, (42)

the closed loop system is well deÞned. ¥

F. Properties of the control algorithm for hyperbolic case
Let us now prove that the proposed controller makes the

system output follow that of the reference model.
Theorem 2: If the control input (33) and controller para-

meter update laws (34) are deÞned for (3) and (4), and (A4),
(A5) are satisÞed, the L2 norm of the output error e(x, t)
goes to zero asymptotically.

Proof: The same argument as in the proof of Theorem 1
completes the proof using the following Lyapunov function

V =
1

2
(et + e, et + e) +

1

2
(aex, ex)− 1

2
(be, e)

−1
2
(ce, e) +

ε0
2
(e, e)

+
1

2εa1
(ξa1, ξa1) +

1

2εa2
(ξa2, ξa2)

+
1

2εb
(ξb, ξb) +

1

2εc
(ξc, ξc). (43)

¥
The comment in Remark 1 also holds for this control

scheme.
Remark 4: The controller actually guarantees almost

everywhere convergence of tracking error, e to zero.
Proof: Since e(x, t) ∈ H1

0 (U) for a.e. t,

e2(x, t) =

Z x

0

2eexdx for a.e.UT , (44)

and by Hölder inequality

e2(x, t) ≤ 2 kekL2(U) kexkL2(U) . (45)

Since by Theorem 2, kexkL2(U) is bounded (actually goes to
zero) for a.e. t, L2 convergence implies convergence almost
everywhere. ¥

Remark 5: For U ⊆ Rd, d ≥ 2, establishing the a.e.
convergence of the tracking error from L2 convergence may
requires more regularity of the solution and a different
control scheme that guarantees L2 convergence of the higher
order spatial derivatives of tracking error.

III. SIMULATION

A. Parabolic case

The proposed control algorithm is simulated on the system
(1) and the model (2) deÞned earlier with the following
parameters. Plant and model parameters are deÞned for the
domain U = (0, 1) as

a = 0.1 + 0.2 sin(πx), a1 = 0.5,

b = −0.5− 0.4 sin(πx), b1 = −0.1. (46)

Initial conditions are

g(x) = sin(πx), g1(x) = 2 sin(πx), (47)

with the homogeneous Dirichlet boundary and the reference
input

r(x, t) = 20(sin(2πx) + sin(πx))(1 + sin(πt)). (48)

Fig. 3 shows asymptotic tracking when controller (17) is used
with the adaptive algorithm (18). Initial controller parameters
are deÞned as ηa1(x, 0) = −1, ηa2(x, 0) = −1, ηb(x, 0) = 0.
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Fig. 3. State error when adaptive control (17) is used.

B. Hyperbolic case
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Fig. 4. State error for the hyperbolic case with mixed boundary conditions.

The control algorithm for hyperbolic case is tested on the
system (3) and the model (4) with the modiÞed boundary
conditions. The plant and the model parameters are deÞned
for the domain U = (0, 1) as

a = a1 = 1, c = c1 = 0.

b = −1.2− sin(2πx), b1 = −1.2, (49)

Initial conditions are

u(0, t) = v(0, t) = 0, ux(1, t) = vx(1, t) = 0,

g(x) = sin(
3πx

2
), g1(x) = − sin(3πx

2
),

h(x) = h1(x) = 0, (50)

with homogeneous Dirichlet boundary at x = 0, Neumann -
at x = 1, reference input

r(x, t) = 15 sin(6πt) sin(4πx), (51)

and zero initial controller parameters. Asymptotic tracking
is shown in Fig. 4 when (33) and (34) are used.

IV. CONCLUSION

It is shown that the use of the feedback signals uxx in
MRAC of DPS can result in the closed loop system insta-
bility. The latter could be avoided in this case only through
utilizing the prior knowledge about the plant parameters to
set the controller parameters close to the perfect tracking
case. This, however, signiÞcantly limits the applicability of
such control laws. To address this problem, MRAC algo-
rithms that do not use spatial derivative of plant state have
been proposed for parabolic (1) and hyperbolic (3) plants
and demonstrated to provide stability under arbitrary initial
controller parameter setting. It has been also shown that
Neumann and mixed boundary conditions do not pose any
additional problems for the algorithms proposed.
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