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Abstract— A computational procedure is presented for de-
signing configurations of a measurement network consisting
of a large number of stationary sensors collecting data for
parameter estimation of a distributed system. Two widely used
minimax criteria defined on the Fisher information matrix,
namely those of MV- and E-optimality, are considered here as
the measures of the estimation accuracy. The approach applied
here is to impose constraints on the sensor density in a given
spatial domain and to replace the worst-case criteria by their
convex smooth approximations. As a result, a fast iterative
procedure is obtained whose each step reduces to replacing
less informative sensor locations with points which furnish more
informaton about the parameters. This planning algorithms is
verified by a numerical example on a two-dimensional heat
equation.

I. INTRODUCTION

This work is focused on certain computational aspects of
sensor placement problems for distributed-parameter systems
(DPSs), i.e., systems with dynamics described by partial
differential equations (PDEs). We are interested in locating a
large number of discrete pointwise sensors so as to estimate
unknown parameters in the underlying mathematical models
as accurately as possible. This is an appealing problem since
in most applications sensor locations are not pre-specified
and therefore provide design parameters.

The importance of sensor planning has already been
recognized in many application domains. An example which
is particularly stimulating in the light of the results reported
in this note constitutes optimization of air quality monitoring
networks. One of the tasks of environmental protection
systems is to provide expected levels of pollutant concen-
trations. But to produce such a forecast, a smog prediction
model is necessary, which is usually chosen in the form
of an advection-diffusion partial differential equation. Its
calibration requires parameter estimation, e.g., the unknown
spatially-varying turbulent diffusivity tensor should be iden-
tified based on the measurements from monitoring stations.
Since measurement transducers are usually rather costly and
their number is limited, we are faced with the problem of
how to optimize their locations in order to obtain the most
precise model.

The sensor location problem was attacked from various
angles, cf. [1]–[5] for reviews. One of the most serious
problems, which complicate the selection of measurement
points, is sensor clusterization being a consequence of the
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assumption that the measurement noise is spatially uncor-
related. This means that in an optimal solution different
sensors often tend to take measurements at the same point,
which is most often unacceptable from the technical point of
view. Indeed, as pointed out in [6], [7], two special features
distinguish the spatial data collection schemes from classical
regression designs. First of all, spatial observations are often
affected by local correlations which are unaccounted for
by standard techniques of optimum experimental design.
What is more, there is usually no possibility of replicated
measurements, i.e., different sensors cannot take measure-
ments at one point without influencing one another. Anyway,
several sensors situated in the close vicinity of one another
usually do not give more information than a single sensor.
The assumption of independent observations is advantageous
from a theoretical point of view, since it allows for direct
use of sublime results of convex optimization, but it can
hardly be justified when in the optimal solution some sensors
are to take measurements near one another. This generates
interest in the so-called clusterization-free designs where the
distances between the sensors are long enough in order to
guarantee the independence of their measurements. This is
reminiscent of the idea of replication-free designs which have
emerged relatively late in the context of spatial statistics (see
the monograph [6], the survey [7], and the seminal work [8]).
It turns out that this idea can be adapted to the sensor location
problems for parameter estimation in DPSs with relative ease
[1]. However, some generalizations are still expected in this
aspect of the sensor location problem.

This paper extends the method of optimizing
clusterization-free sensor configurations presented in
[1] to include two widely used minimax criteria, namely
those of MV- and E-optimality. As is well-known, they
are nondifferentiable (in general, only their directional
derivatives exist) which highly complicates their use and
hinders direct application of the algorithms given in [1],
[2]. We propose an approach to overcome these difficulties,
which is based on a convex smooth approximation of
the original criteria. In spite of its somewhat abstract
assumptions, the resulting algorithm of exchange type is
very easy to implement.

II. OPTIMAL MEASUREMENT PROBLEM

Let y = y(x, t; θ) denote the scalar state of a given DPS at
a spatial point x ∈ Ω ⊂ R

d and time instant t ∈ T = [0, tf ],
tf < ∞. Here θ represents an unknown constant parameter
vector which must be estimated using observations of the
system.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuB12.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 3152



In what follows, we consider the observations provided by
N stationary pointwise sensors, namely

zj
m(t) = y(xj , t; θ) + ε(xj , t), t ∈ T, (1)

where zj
m(t) is the scalar output and xj ∈ X stands for the

location of the j-th sensor (j = 1, . . . , N ), X signifies the
part of the spatial domain Ω where the measurements can be
made and ε(xj , t) denotes the measurement noise.

It is customary to assume that the measurement noise is
zero-mean, Gaussian, spatial uncorrelated and white [4], [5],
[9], i.e.,

E
{
ε(xi, t)ε(xj , t′)

}
= σ2δijδ(t − t′), (2)

where σ > 0 is the standard deviation of the measurement
noise, δij and δ standing for the Kronecker and Dirac delta
functions, respectively.

Sensor positions which guarantee the best accuracy of the
least-squares estimates of θ are then found by choosing xj ,
j = 1, . . . , N so as to minimize some scalar measure of
performance Ψ defined on the average Fisher Information
Matrix (FIM) given by [9]

M =
1

Ntf

N∑
j=1

∫ tf

0

g(xj , t)gT(xj , t) dt, (3)

where g(x, t) = ∇θy(x, t; θ)
∣∣
θ=θ0 stands for the so-called

sensitivity vector, θ0 being a prior estimate to the unknown
parameter vector θ [3], [5], [10], [11]. Such a formulation
is generally accepted in optimum experimental design for
DPSs, since the inverse of the FIM constitutes, up to a
constant multiplier, the Cramér-Rao lower bound on the
covariance matrix of any unbiased estimator of θ [12]–[14].

As for Ψ, various choices exist for such a function [12]–
[14], including e.g., the following:

• the D-optimality (determinant) criterion:

ΨD(M) = − log det(M), (4)

• the A-optimality (trace) criterion:

ΨA(M) = trace(M−1), (5)

• The MV-optimality criterion

ΨMV (M) = max
1≤i≤m

dii(M), (6)

• The E-optimality criterion

ΨE(M) = λmax(M−1), (7)

where dii(M) stands for the i-th element on the diag-
onal of M−1, and λmax(M−1) denotes the maximum
eigenvalue of M−1.

A D-optimum design minimizes the volume of the uncer-
tainty ellipsoid for the estimates. In turn, an A-optimum
design suppresses the average variance of the estimates. In an
MV-optimum design, the maximal variance of the estimates
θ̂1, . . . , θ̂m is minimized. On the other hand, while mini-
mizing the E-optimality criterion, the length of the largest

principal axis of the uncertainty ellipsoid of the estimates is
suppressed.

The introduction of an optimality criterion renders it
possible to formulate the sensor location problem as an
optimization problem

Ψ
[
M(x1, . . . , xN )

] −→ min (8)

with respect to xj , j = 1, . . . , N belonging to the admissible
set X .

Owing to assumption (2), we admit of replicated mea-
surements, i.e., some values xj may appear several times in
the optimal solution (this is an unavoidable consequence of
independent measurements). Consequently, it is sensible to
distinguish only the components of the sequence x1, . . . , xN

which are different and, if there are � such components, to
relabel them as x1, . . . , x� while introducing r1, . . . , r� as the
corresponding numbers of replications. The redefined xi’s
are said to be the design or support points. The collection
of variables

ξN =
{

x1, x2, . . . , x�

p1, p2, . . . , p�

}
, (9)

where pi = ri/N , N =
∑�

i=1 ri, is called the exact design of
the experiment. The proportion pi of observations performed
at xi can be considered as the percentage of experimental
effort spent at that point.

On account of the above remarks, we rewrite the FIM in
the form

M(ξN ) =
�∑

i=1

pi
1
tf

∫ tf

0

g(xi, t)gT(xi, t) dt. (10)

Here the pi’s are rational numbers, since both ri’s and N are
integers. Removing this constraint by assuming that they can
be any real numbers of the interval [0, 1] such that

∑�
i=1 pi =

1, we may think of the designs as probability distributions
on X . But if so, we may attempt to take one more step
to widen the class of admissible designs a bit further, i.e.,
to all probability measures ξ over X which are absolutely
continuous with respect to the Lebesgue measure. Such an
extension of the design concept allows us to replace (10) by

M(ξ) =
∫

X

Υ(x) ξ(dx), (11)

where

Υ(x) =
1
tf

∫ tf

0

g(x, t)gT(x, t) dt

and the integration in (11) is to be understood in the Stieltjes-
Lebesgue sense. This leads to the so-called continuous
designs which constitute the basis of the modern theory of
optimal experiments [12], [14]. It turns out that such an
approach drastically simplifies the design.

Then we may redefine an optimal design as a solution to
the optimization problem

ξ� = arg min
ξ∈Ξ(X)

Ψ[M(ξ)], (12)

where Ξ(X) is the set of all probability measures on X .
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III. SENSOR NETWORK DESIGN FOR SMOOTH
CRITERIA

Let us make the following assumptions:

(A1) X is compact,
(A2) g ∈ C(X × T ; Rm),
(A3) Ψ is convex,
(A4) If M1 � M2, then Ψ(M1) ≥ Ψ(M2),
(A5) There exists a finite real q such that{

ξ : Ψ[M(ξ)] ≤ q < ∞}
= Ξ̃(X) 	= ∅,

(A6) For any ξ ∈ Ξ̃(X) and ξ̄ ∈ Ξ(X), we have

Ψ[M(ξ) + λ(M(ξ̄) − M(ξ))]

= Ψ[M(ξ)] + λ

∫
X

ψ(x, ξ) ξ̄(dx)

+ o(λ; ξ, ξ̄),

(13)

where lim
λ↓0

o(λ; ξ, ξ̄)/λ = 0.

As regards the notation in (A4), we adopt that of the
Loewner ordering of symmetric matrices, i.e., M1 � M2

iff M2 −M1 is non-negative definite. Note that (A6) simply
amounts to the existence of the directional derivative, but
for most practical criteria such a condition is not particularly
restrictive.

In fact, requiring Ψ to be differentiable with respect to
individual elements of its matrix argument, we get [1], [2]

ψ(x, ξ) = c(ξ) − φ(x, ξ), (14)

the functions c and φ being respectively defined as

c(ξ) = − trace
[ ◦
Ψ(ξ)M(ξ)

]
, (15)

φ(x, ξ) = − 1
tf

∫ tf

0

gT(x, t)
◦
Ψ(ξ)g(x, t) dt, (16)

where
◦
Ψ(ξ) =

∂Ψ(M)
∂M

∣∣∣∣
M=M(ξ)

.

For particular criteria we have, e.g.,

• the D-optimality criterion:
◦
Ψ(ξ) = −M−1(ξ), (17)

• the A-optimality criterion:
◦
Ψ(ξ) = −M−2(ξ). (18)

In order to avoid clustered sensor configurations, we
implement the idea of operating on the density of sensors
(i.e., the number of sensors per unit area), rather than on
the sensors’ locations, which is justified for a sufficiently
large total number of sensors N . In contrast to the classical
designs discussed in Section II, however, we impose the
crucial restriction that the density of sensor allocation must
not exceed some prescribed level. For a design measure
ξ(dx) this amounts to the condition

ξ(dx) ≤ ω(dx), (19)

where ω(dx) signifies the maximal possible ‘number’ of
sensors per dx [1], [2], [14] such that∫

X

ω(dx) ≥ 1. (20)

Consequently, we are faced with the following optimization
problem: Find

ξ� = arg min
ξ∈Ξ(X)

Ψ(ξ) (21)

subject to

ξ(dx) ≤ ω(dx). (22)

The design ξ� above is then said to be a (Ψ, ω)-optimal
design [14].

Apart from Assumptions (A1)–(A6), a proper mathemati-
cal formulation calls for the following proviso:

(A7) ω(dx) is atomless, i.e., for any ∆X ⊂ X there exists
a ∆X ′ ⊂ ∆X such that∫

∆X′
ω(dx) <

∫
∆X

ω(dx). (23)

In what follows, we write Ξ̄(X) for the collection of all
the design measures which satisfy the requirement

ξ(∆X) =

{
ω(∆X) for ∆X ⊂ supp ξ,

0 for ∆X ⊂ X \ supp ξ.
(24)

Given a design ξ, we will say that the function ψ( · , ξ)
defined by (14) separates sets X1 and X2 with respect to
ω(dx) if for any two sets ∆X1 ⊂ X1 and ∆X2 ⊂ X2 with
equal non-zero measures we have∫

∆X1

ψ(x, ξ)ω(dx) ≤
∫

∆X2

ψ(x, ξ)ω(dx). (25)

We can now formulate the main result which provides a
characterization of (Ψ, ω)-optimal designs.

Theorem 1 ([1], [2]): Let Assumptions (A1)–(A7) hold.
Then:

(i) There exists an optimal design ξ� ∈ Ξ̄(X), and
(ii) A necessary and sufficient condition for ξ� ∈ Ξ̄(X)

to be (Ψ, ω)-optimal is that ψ( · , ξ�) separates X� =
supp ξ� and its complement X \ X� with respect to
the measure ω(dx).

From a practical point of view, the above result means
that at all the support points of an optimal design ξ� the
mapping ψ( · , ξ�) should be less than anywhere else, i.e.,
preferably supp ξ� should coincide with minimum points of
ψ( · , ξ�) (let us note that for the D-optimality criterion this
can be expressed as the situation when φ( · , ξ�) is greater in
supp ξ� than in the complement of supp ξ�), which amounts
to allocating observations to the points at which we know
least of all about the system response.

If we were able to construct a design with this property,
then it would be qualified as an optimal design. This conclu-
sion forms a basis for numerical algorithms of constructing
solutions to the problem under consideration.
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As regards the interpretation of the resultant optimal
designs (provided that we are in a position to calculate at
least their approximations), one possibility is to partition X
into subdomains ∆Xi of relatively small areas and then to
allocate to each of them the number

N�(∆Xi) =
⌈
N

∫
∆Xi

ξ�(dx)
⌉

(26)

of sensors whose positions may coincide with nodes of some
uniform grid [14] (here �ζ� is the smallest integer greater
than or equal to ζ). Additionally, bear in mind that we must
also have ξ�(dx) = ω(dx) in X�.

Clearly, unless the considered design problem is quite
simple, we must employ a numerical algorithm to make the
outlined idea useful. Since ξ�(dx) should be non-zero in the
areas where ψ( · , ξ�) takes on a smaller value, the central
idea is to move some measure from areas with higher values
of ψ( · , ξk) to those with smaller values, as we expect that
such a procedure will improve ξk. This is embodied by the
iterative algorithm presented below:

Step 1. Guess an initial design ξ0 ∈ Ξ̄(X). Set k = 0.
Step 2. Set X1k = supp ξk and X2k = X \ X1k. Find

x1k = arg max
x∈X1k

ψ(x, ξk),

x2k = arg min
x∈X2k

ψ(x, ξk).

If ψ(x1k, ξk) < ψ(x2k, ξk)+ η, where η  1, then
STOP. Else, find two sets S1k ⊂ X1k and S2k ⊂
X2k such that x1k ∈ S1k, x2k ∈ S2k and∫

S1k

ω(dx) =
∫

S2k

ω(dx) = αk

(i.e., the measures of S1k and S2k must be identi-
cal) for some αk > 0.

Step 3. Construct ξk+1 such that

supp ξk+1 = X1,k+1 = (X1k \ S1k) ∪ S2k.

Increment k and to go Step 2.

Convergence is guaranteed if the sequence
{
α
}∞

k=0
satis-

fies the conditions [15]

lim
k→∞

αk = 0,
∞∑

k=0

αk = ∞. (27)

Within the framework of sensor placement, we usually
have ω(dx) = �(x)dx, where � is a density function. But
in this situation we may restrict our attention to constant �’s
(indeed, in any case we can perform an appropriate change
of coordinates). Moreover, while implementing the algorithm
on a computer, all integrals are replaced by sums over some
regular grid elements. Analogously, the sets X , X1k, X2k,
S1k and S2k then simply consist of grid elements. Conse-
quently, the above iterative procedure may be considered as
an exchange-type algorithm with the additional constraint
that every grid element must not contain more than one
supporting point and the weights of all supporting points
are equal to 1/N . In practice, αk is usually fixed and, what

is more, one-point exchanges are most often adopted, i.e.,
S1k =

{
x1k

}
and S2k =

{
x2k

}
, which substantially simpli-

fies implementation. Let us note, however, that convergence
to an optimal design is assured only for decreasing αk’s
and hence some oscillations in Ψ[M(ξk)] may sometimes be
observed. A denser spatial grid usually constitutes a remedy
for this predicament [6].

IV. MINIMIZATION OF THE MV-OPTIMALITY
CRITERION

The MV-optimality criterion

ΨMV (M) = max
{
d11(M), . . . , dmm(M)

}
. (28)

is not differentiable (this is because the max function is
nondifferentiable), which essentially complicates its mini-
mization.

The approach suggested here is to approximate ΨMV by a
smooth symmetric exponential penalty function [16, p. 248]

Ψε
MV (M) = ε ln

( m∑
i=1

edii(M)/ε
)
, (29)

where ε > 0 is a parameter.
It is a C∞ convex function and it is easy to check that it

possesses the following uniform approximation property to
ΨMV :

0 ≤ Ψε
MV (M) − ΨMV (M) ≤ ε ln(m). (30)

Indeed, we have

Ψε
MV (M) = ε ln

( m∑
i=1

edii(M)/ε
)

= ΨMV (M) + ε ln
( m∑

i=1

e(dii(M)−ΨMV (M))/ε
)
.

(31)

But

1 ≤
m∑

i=1

e(dii(M)−ΨMV (M))/ε ≤ m, (32)

which proves (30).
In this manner, we get

lim
ε↓0

Ψε
MV (M) = ΨMV (M), ∀M � 0, (33)

i.e., we have a family of smooth functions which are uniform
approximations to the largest eigenvalue function with the
accuracy controlled by the smoothing parameter ε. Conse-
quently, instead of operating on the criterion ΨMV (M), we
may work with its smoothed version Ψε

MV (M) for a fixed,
sufficiently small ε.

It follows that
∂Ψε

MV (M)
∂M

= −M−1A(M)M−1, (34)

where

A(M) =
( m∑

i=1

edii(M)/ε

)−1

× diag
[
ed11(M)/ε, . . . , edmm(M)/ε

]
.

(35)
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As indicated in [16, p. 249], it turns out that when ε is
set in the range of 10−2–10−6, Ψε

MV yields and excellent
approximation to ΨMV . However, care must be taken when
trying to implement a computer code, since the exponentials
may sometimes lead to numerical complications such as, e.g.,
problems with a highly ill-conditioned Hessian.

V. CASE OF THE E-OPTIMALITY CRITERION

The criterion (7) is nondifferentiable, either. In fact, if an
eigenvalue is repeated, then only its directional derivative
exists which is strongly nonlinear in the increment in M
(see, e.g., [17]). There appears to be no known specialized
algorithm for constructing E-optimum designs such as those
discussed in Section III for differentiable criteria. Some
attempts at adapting a bundle trust method were reported in
[18] and efficient algorithms of semidefinite programming
can be applied to find optimal designs for a fixed set of
support points, cf. [1, p. 61], but nevertheless the problem is
far from being satisfactorily solved.

From a practical point of view, a way out of this predica-
ment can be the reduction of the original minimax problem to
the minimization of its smooth convex approximation. Based
on the results of the previous section, after replacing the
minimization of λmax[M−1(ξ)] by the equivalent problem
of minimizing J(ξ) = λmax[−M(ξ)] (this is to avoid
matrix inversion), we can consider the smoothed convex
approximated design criterion

Ψε
E [M(ξ)] = ε ln

( m∑
i=1

e−λi[M(ξ)]/ε
)
, (36)

where λi[ · ] is the i-th eigenvalue of its matrix argument and
0 < ε  1 stands for a fixed parameter steering the accuracy
of such an approximation.

Then the exchange algorithm of Section III can be directly
employed to find approximated E-optimum designs. While
implementing this idea, it is necessary to use the information
provided by the gradient which has the following form:

∂Ψε
E(M)
∂M

= −
( m∑

i=1

e−λi(M)/ε

)−1

×
m∑

i=1

e−λi(M)/εvi(M)vT
i (M),

(37)

where vi(M) is the normalized eigenvector corresponding to
the eigenvalue λi(M).

VI. SIMULATION EXAMPLE

Having developed the approach for calculation of clus-
terization-free designs in the case of nonsmooth MV- and
E-optimality criteria, we go straight to a demonstrative ex-
ample. For this purpose, consider estimation of the spatially-
varying parameter κ = κ(x) in the heat-conduction process
through a thin flat isotropic plate whose flat surfaces are
insulated and which occupies the region Ω = [0, 1]2 \ D,
where D is the disc of radius 0.2 centred at point (0.5, 0.5),
with boundary ∂Ω along which heat was lost to the sur-
roundings. The unsteady state temperature y = y(x, t) over

the time horizon T = (0, 1) is described by a linear parabolic
equation of the form

∂y(x, t)
∂t

=
∂

∂x1

(
κ(x)

∂y(x, t)
∂x1

)
+

∂

∂x2

(
κ(x)

∂y(x, t)
∂x2

)
in Ω × T .

(38)

The initial and boundary conditions of (38) are

y(x, 0) = 5 in Ω, (39)

y(x, t) = 5(1 − t) on ∂Ω × T . (40)

In our simulation study, the following true parameter was
assumed:

κ(x) = θ1 + θ2x1 + θ3x2, (41)

where θ1 = 0.1, θ2 = θ3 = 0.3. On the basis of simulated
data generated with the specified κ, we tried to determine
designs over X = Ω̄ such that the approximated MV- and E-
optimality criteria for θ = (θ1, θ2, θ3) would be minimized.

In order to numerically solve the measurement location
problem, a computer programme was written in Matlab 7
(R14) using a low-cost PC (Pentium 4, 2.40 GHz, 512 MB
RAM) running Windows 2000. The state and sensitivity
equations (cf. [1], [2]) were first solved using the MATLAB

PDE toolbox [19] on a spatial grid consisting of 624 nodes.
The sensitivity coefficients were then stored in computer
memory, cf. [1, App. I]

The problem of locating N = 150 sensors was considered.
For that purpose, the above-mentioned finite-element grid
was used to approximate the design space and an initial
design was generated by randomly selecting its support
points. In order to calculate approximated MV- and E-
optimal designs, a simple one-point correction algorithm
was employed (after setting η = 10−2 and ε = 10−2)
which quickly produced (practically, in several seconds) the
solutions displayed in Figs. 1(b) and (c). For comparison,
the D-optimal design is shown in Fig. 1(a). In order to
prevent getting stuck in a local minimum, several restarts
were performed from different starting solutions.

In principle, the MV- and E-optimum configurations look
similar, and they involve a deployment of sensors over a
wider area (in the D-optimum configuration there are no
sensors in the top-right part of Ω). The computed values of
the optimality criteria are summarized in Table 1. The dif-
ferent designs are additionally compared there with respect
to all the employed design criteria (each row corresponds to
a configuration which is optimal in the sense of the criterion
given in the first column, and each box indicates the best
value of the criterion considered in the respective column).
Also note that, as expected, the symmetry imposed by (39)–
(41) is retained (cf. the axis of symmetry expressed by the
sloping dotted line).

VII. CONCLUDING REMARKS

The results contained in this paper show that the dif-
ficulties associated with the nondifferentiability of worst-
case design criteria used for determination of optimal sensor
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Fig. 1. Optimum sensor configurations: D-optimum design (a), approx-
imated MV-optimum design (b) and approximated E-optimum design (c).
Dots represent the grid points (these were potential sites where the sensors
could be placed, but at most one sensor at one point) and open circles
indicate the actual sensor positions.

TABLE I

COMPUTED VALUES OF THE DESIGN CRITERIA.

Criterion − ln det(M) λmax(M−1) max dii(M)

D-optimality −7.234 0.3730 0.2966

E-optimality −6.771 0.3097 0.2916

MV-optimality −6.947 0.3136 0.2705

locations can be overcome to a great extent by appro-
priately introducing their convex smooth approximations.
The approximation accuracy can be steered by selecting a
proper value of a scalar parameter. In order to avoid sensor
clusterization, we sought to find an optimal design, not within
the class of all designs, but rather in a restricted subset of
competing clusterization-free designs. As a consequence, this
led to a very efficient and particularly simple exchange-type
algorithm.

Although the numerical example presented here is clearly
not a real-world problem and its purpose is primarily to
illustrate our considerations in an easily interpretable manner,
it is complex enough to provide evidence for the effectiveness
of the proposed approache.
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