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Abstract— A general approach to the optimization of the
observation horizon of moving sensor trajectories for parameter
estimation of distributed systems is presented. Two problems
are formulated here. The first consists in maximizing the de-
terminant of the information matrix for a specified duration of
observations and an open initial time, and the other constitutes
its generalization to the case where the elapsed observation
time is minimized subject to a guaranteed D-efficiency of
the experiment. The approach is to convert the problem to
an optimal control one in Mayer form, in which both the
control forces of the sensors and the initial sensor positions are
optimized in addition to the limits of the observation horizon.

I. INTRODUCTION

One of the most challenging problems in the design of
measurement for a distributed parameter system (DPS) is
to select sensor locations so as to collect the most valuable
information for estimating unknown parameters or system
states. This topic has been widely investigated for the last
forty years, cf. surveys in [1]–[4], and has found special
interest in many areas, e.g., air quality monitoring systems,
groundwater-resources management, recovery of valuable
minerals and hydrocarbon, model calibration in meteorology
and oceanography, hazardous environments and emerging
smart material systems. Although the details of the ap-
proaches differ, in essence the underlying idea is to select
those locations that lead to the best estimates of the process
states and/or parameters. The optimality of the locations
is judged by an appropriate measure of the estimate-error
covariance matrix.

The sensor location problem was attacked from various
angles, but the results are rather limited to the selection of
stationary sensor positions. A generalization which imposes
itself is to apply sensors which are capable of tracking points
providing at a given time moment best information about
the parameters. A possibility of using moving observations
does arise in a variety of applications, e.g., air pollutants in
the environment are often measured using data gathered by
monitoring cars moving in an urban area and atmospheric
variables are measured using instruments carried in a satel-
lite. However, communications in this field are rather limited.
Rafajłowicz [5] considers the determinant of the Fisher
Information Matrix (FIM) associated with the parameters to
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be estimated as a measure of the identification accuracy and
looks for an optimal time-dependent measure, rather than for
the trajectories themselves. On the other hand, Uciński [2],
[3], [6], [7] develops some computational algorithms based
on the FIM. He reduces the problem to a state-constrained
optimal-control one for which solutions are obtained via
the methods of successive linearizations which is capable
of handling various constraints imposed on sensor motions.

The optimal design of moving sensor trajectories is in-
creasingly attracting attention in the context of sensor net-
works which play a role of importance in the research
community [8], [9]. Technological advances in communica-
tion systems and the growing ease in making small, low
power and inexpensive mobile systems now make it feasible
to deploy a group of networked vehicles in a number of
environments [10]. Applications in various fields of re-
search are being developed and interesting ongoing projects
include extensive experimentation based on testbeds. Our
work on one of such experimental platforms, namely the
MAS-net lab testbed being a distributed system equipped
with two-wheeled differentially driven mobile robots capable
of sensing the states of DPSs described by diffusion and
wave equations [11], [12], revealed numerous deficiencies
of the existing techniques of sensor location and commanded
attention to aspects which, on one hand, are of paramount
practical importance and, on the other hand, have been
neglected in the literature so far. These, in turn, lead to non-
trivial theoretical problems which still call for solutions.

This work is intended as an attempt to properly formulate
and solve one of such problems, namely the time-optimal
problem for moving sensors which observe the state of a DPS
so as to estimate some of its parameters. Motivations come
from technical limitations imposed on the time span of the
measurements. These are inherent to mobile platforms carry-
ing sensors, which are supplied with power from batteries. A
common approach to the problem of optimum experimental
design for dynamic systems is to fix the initial and terminal
times for observations, since additional measurements can
only improve the accuracy of the estimates. Consequently,
the researchers’ attention is predominantly focused only on
the achieved precision while neglecting the problem of a
proper selection of the observation horizon which is consid-
ered difficult. Our main objective has been to produce results
which can be useful when the duration of the observations
is a crucial factor. Two formulations are thus proposed: the
first for a specified duration and an open initial time, and
the other for the case in which the elapsed observation time
constitutes a decision variable.
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II. OPTIMAL SENSOR LOCATION PROBLEM

Consider the scalar (possibly non-linear) DPS
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x ∈ Ω, t ∈ [α, β], (1)

with initial and boundary conditions of the general form

y(x, 0) = y0(x), x ∈ Ω, (2)

E(x, t, y, θ) = 0, x ∈ ∂Ω, t ∈ [α, β], (3)

where Ω ⊂ R
2 is a fixed, bounded, open set with sufficiently

smooth boundary ∂Ω, the points of which will be denoted
by x = (x1, x2), F and E are some known functions, y0

is a given initial state, t stands for time, α and β are fixed
numbers, and y = y(x, t) signifies the state variable with
values in R.

In what follows we assume that y depends on the vector
θ ∈ R

m of unknown parameters to be estimated from
measurements made by N moving pointwise sensors over
an observation horizon [t0, t0 + T ] ⊆ [α, β]. Let xj :
[t0, t0 + T ] −→ Ωad be the trajectory of the j-th sensor,
where Ωad ⊂ Ω stands for the region where measurements
can be made. The observations are assumed to be of the form

z(t) = ym(t) + εm(t), t ∈ [t0, t0 + T ], (4)

where

ym(t) = col[y(x1(t), t), . . . , y(xN (t), t)],

εm(t) = col[ε(x1(t), t), . . . , ε(xN (t), t)],

z(t) is the N -dimensional observation vector and ε = ε(x, t)
is a zero-mean white Gaussian noise process.

In this framework, the parameter identification problem is
usually formulated as follows: Given the model (1)–(3) and
the outcomes of the measurements z along the trajectories
xj , j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being
the set of admissible parameters) which minimizes the output
least-squares fit-to-data functional given by [13], [14]

J (θ) =
1
2

∫ t0+T

t0

‖z(t) − ŷm(t; θ)‖2 dt (5)

where ŷ(x, t; θ) denotes the solution to eqns. (1)–(3) cor-
responding to a given parameter θ and ‖ · ‖ stands for the
Euclidean norm.

Clearly, the parameter estimate θ̂ depends on the sensors’
trajectories xj and we wish to select them so as to obtain best
estimates of the system parameters. Thus a logical approach
is to choose a quantitative measure related to the expected
accuracy of the parameter estimates to be obtained from
the data collected. Such a measure is usually based on the
concept of the Fisher Information Matrix (FIM) [5], [15]
whose inverse constitutes an approximation of the covariance
matrix for the estimate of θ [16]–[18].

For simplicity of notation, let us write

s(t) = (x1(t), x2(t), . . . , xN (t)), ∀ t ∈ [t0, t0 + T ] (6)

and set n = dim(s(t)). Here, the FIM is [19]

M(s) =
N∑

j=1

∫ t0+T

t0

g(xj(t), t)gT(xj(t), t) dt, (7)

where g(x, t) = ∇θy(x, t; θ)
∣∣
θ=θ0 denotes the vector of the

so-called sensitivity coefficients, θ0 being a prior estimate to
the unknown parameter vector θ [2], [6]. In the sequel, we
require g to be continuously differentiable.

Optimal sensor trajectories can be found by choosing s so
as to minimize some scalar function Ψ of the information
matrix. Several choices exist for such a function [16]–[18]
and the most popular one is the D-optimality criterion

Ψ(M) = − log det(M), (8)

which minimizes the volume of the confidence ellipsoid for
the estimates. It will be adopted here as the measure of the
information content of the observations.

III. CONSTRAINTS ON SENSOR MOVEMENTS

We assume that the sensors are conveyed by vehicles
which are described by equations of motion of the form

ds

dt
(t) = f(s(t), u(t)) a.e. on [t0, t0 + T ], s(0) = s0

(9)
where a given function f : R

n ×R
r → R

n is required to be
continuously differentiable, s0 ∈ R

n defines an initial sensor
configuration, and u : [t0, t0 + T ] → R

r is a measurable
control function which satisfies

ul ≤ u(t) ≤ uu a.e. on [t0, t0 + T ] (10)

for some constant vectors ul and uu.
We assume that all sensors should stay within an admis-

sible region Ωad (a given compact set) where measurements
can be made. In what follows, it is convenient to choose a
quite general form

Ωad = {x ∈ Ω : bi(x) ≤ 0, i = 1, . . . , I} (11)

where the bi’s are given continuously differentiable func-
tions. Accordingly, the conditions

hij(s(t)) = bi(xj(t)) ≤ 0, ∀ t ∈ [t0, t0 + T ] (12)

must be fulfilled, where 1 ≤ i ≤ I and 1 ≤ j ≤ N . To
shorten notation, after relabelling, we rewrite constraints (12)
in the form

γ�(s(t)) ≤ 0, ∀ t ∈ [t0, t0 + T ], (13)

where γ�, � = 1, . . . , ν tally with (12), ν = IN .

IV. PROPOSED TIME-OPTIMAL FORMULATIONS

A. Trajectory Design with Open Initial Time and Fixed
Duration of Observations

In some situations we are interested in constraining the
time for making measurements to have a prescribed value
and choosing the remaining factors, including the initial time
t0, so that the information provided by the experiment is
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maximized. The goal in such an optimal measurement prob-
lem is to determine, in addition to t0, the forces (controls)
applied to each vehicle conveying a sensor, which minimize a
design criterion Ψ[M(s)] defined on the set of all real-valued
information matrices of the form (7) under the constraints
(10) on the magnitude of the controls and induced state
constraints (13). In order to increase the degree of optimality,
in our approach we will regard s0 as a control parameter
vector to be chosen in addition to the control function u.

Since sensor trajectories s are unequivocally determined as
solutions to the state equation (9), the above control problem
can be interpreted as an optimization problem over the set
of feasible triples

P1 =
{
(s0, u, t0) | s0 ∈ ΩN

ad, α ≤ t0 ≤ β − T,

u : [t0, t0 + T ] → R
r is measurable,

ul ≤ u(t) ≤ uu a.e. on [t0, t0 + T ]
}

(14)

This leads to the following formulation:
Problem 1: Given a duration T , find the triple

(s0, u, t0) ∈ P1 which minimizes

J1(s0, u, t0) = Ψ[M(s)] (15)

subject to the constraints (13).

B. Minimum-Time Trajectories with Guaranteed Efficiency

Intuitively, it is clear that the longer observation horizon,
the more information we get about the estimated parameters.
This is perfectly reflected by the performance index Ψ.
Given an initial time t0 and duration T producing an FIM
M(s), an extension of the observations beyond the limit
t = t0 + T results in a perturbed FIM M + ∆M , where
∆M is nonnegative definite. But for all performance indices
of practical importance we then have Ψ[M +∆M ] > Ψ[M ]
provided that ∆M 	= 0. Thus the naive modification of
Problem 1 by just making T an additional design parameter
would inevitably result in the optimal values t�0 = α and
T � = β − α.

On the other hand, the time duration is sometimes a critical
factor. It is so especially in automated inspection in static and
active environments, or in hazardous environments, where
trial-and-error sensor planning cannot be used and the time
allowed for observations must be as short as possible. It
is also of concern in the context of a cooperative mobile
sensor network formed from a number of wheeled mobile
robots (e.g., differential drives, synchronous drives, etc.), if a
major problem in the design is the power consumption by the
robots. Such a limited energy budget raises the question of
when to start and terminate sensor motions so as the elapsed
time be short while guaranteeing an acceptable level of the
information content of the collected observations.

The compromise proposed here relies on the notion of
the D-efficiency which quantifies the suboptimality of given
trajectories. Just as in the classical optimum experimental
design [16], [18], we define it here as follows:

ED(s) =
{

det(M(s))
det(M(ŝ))

}1/m

, (16)

where ŝ stands for the D-optimal trajectories obtained for
the observations over the entire feasible time interval [α, β],
i.e., for t0 = α and T = β−α. The value of det(M(ŝ)) can
be determined beforehand, and setting a reasonable positive
threshold η < 1, we can introduce the constraint relation

ED(s) ≥ η, (17)

which guarantees a suboptimal yet reasonable solution. It is
easily seen that (17) is equivalent to the constraint

Ψ[M(s)] ≤ C, (18)

where C = Ψ[M(ŝ)] − m log(η).
Consequently, defining the set of feasible quadruples

P2 =
{
(s0, u, t0, T ) | s0 ∈ ΩN

ad, [t0, t0 + T ] ⊆ [α, β],
u : [t0, t0 + T ] → R

r is measurable,

ul ≤ u(t) ≤ uu a.e. on [t0, t0 + T ]
}
, (19)

we can now formulate the following minimum-time gener-
alization of Problem 1:

Problem 2: Find the quadruple (s0, u, t0, T ) ∈ P2 which
minimizes

J2(s0, u, t0, T ) = T (20)

subject to the constraints (13) and (18).
The above problem in which both initial and terminal

times are free is slightly more difficult than Problem 1.
Therefore, in what follows, we shall fix our attention on
Problem 2 only, as Problem 1 can be addressed in much the
same way.

V. EQUIVALENT CANONICAL OPTIMAL
CONTROL PROBLEM ON A FIXED TIME

INTERVAL

This section discusses the conversion of Problem 2 into
a canonical optimal control problem with a fixed time
interval, inequality-constrained trajectories and an endpoint
cost [20]. Such a transcription makes it possible to employ
existing software packages for numerically solving dynamic
optimization and optimal control problems.

To simplify notation, consider the function svec :
Sym(m) → R

m(m+1)/2, where Sym(m) denotes the sub-
space of all symmetric matrices in R

m×m, that takes the
lower triangular part (the elements only on the main diagonal
and below) of a symmetric matrix A and stacks them into a
vector a:

a = svec(A)
= col[A11, A21, . . . , Am1, A22, A32, . . . , Am2, . . . , Amm].

(21)

Similarly, let A = Smat(a) be the symmetric matrix such
that svec(Smat(a)) = a for any a ∈ R

m(m+1)/2.
To set forth our basic idea, define first the matrix-valued

function

Π(s(t), t) =
N∑

j=1

g(xj(t), t)gT(xj(t), t). (22)
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Setting r : [t0, t0 + T ] → R
m(m+1)/2 as the solution of the

differential equations

dr

dt
(t) = svec(Π(s(t), t)), r(t0) = 0, (23)

we have

M(s) = Smat(r(t0 + T )), (24)

i.e., minimization of Ψ[M(s)] thus reduces to minimization
of a function of the terminal value of the solution to (23).

Introducing a new variable τ , called the nominal time,
which is related to the real time t by t(τ) = t0 + Tτ ,
where τ ∈ [0, 1], we obtain an optimal control problem with
the fixed time interval [0, 1], and the initial-moment term t0
and the duration scale factor T treated as parameters to be
adjusted during optimization. Consequently, the equation of
sensor dynamics (9) now becomes

dς

dτ
(τ) = Tf(ς(τ), υ(τ)), ς(0) = s0, (25)

where ς(τ) = s(t0 +Tτ) and υ(τ) = u(t0 +Tτ). Similarly,
the equation (23) which is used to construct the information
matrix becomes

d

dτ
(τ) = T svec(Π(ς(τ), t(τ))), (0) = 0, (26)

where (τ) = r(t0 + Tτ).
Parameters t0 and T are easily incorporated into the

usual optimal control formulation by augmenting the system
dynamics with two additional states being the solutions of
the Cauchy problems

dt

dτ
(τ) = T, t(0) = t0, (27)

and

dT̄

dτ
(τ) = 0, T̄ (0) = T, (28)

respectively.
Define

q(τ) =

⎡
⎢⎢⎣

ς(τ)
(τ)
t(τ)
T̄ (τ)

⎤
⎥⎥⎦ , q0 = q(0) =

⎡
⎢⎢⎣

s0

0
t0
T

⎤
⎥⎥⎦ . (29)

Then the equivalent fixed time interval optimal control prob-
lem consists in finding a pair (q0, υ) ∈ P̄2 which minimizes
the performance index

J̄2(q0, υ) = T (30)

subject to
⎧⎪⎪⎨
⎪⎪⎩

dq

dτ
(τ) = ϕ(q(τ), υ(τ)), q(0) = q0,

φ(q(1)) ≤ C,

γ̄�(q(τ)) ≤ 0, ∀ τ ∈ [0, 1],

(31)

where

P̄2 =
{
(q0, υ) | s0 ∈ ΩN

ad, [t0, t0 + T ] ⊆ [α, β],
υ : [0, 1] → R

r is measurable,

ul ≤ υ(t) ≤ uu a.e. on [0, 1]
}
, (32)

and

ϕ(q, υ) =

⎡
⎢⎢⎣

Tf(ς(τ), υ(τ))
T svec(Π(ς(τ), t(τ)))

T
0

⎤
⎥⎥⎦ , (33)

φ(q(τ)) = Ψ[Smat((τ))], γ̄�(q(τ)) = γ�(ς(τ)). (34)

The problem formulated in this way can be solved using
existing packages for numerically solving dynamic optimiza-
tion problems, such as RIOTS 95 [21], DIRCOL [22] or
MISER [23]. We employed the first of them, i.e., RIOTS 95,
which is designed as a MATLAB toolbox. The implemented
numerical methods are supported by the theory outlined in
[20]. The software automatically computes gradients for all
functions with respect to the controls (they are represented as
splines) and any free initial conditions. There are three main
optimization routines, and the most general is based on SQP
methods (it was also used in our computations reported in
the next section).

VI. NUMERICAL EXAMPLE

To validate the proposed approach, consider the two-
dimensional diffusion equation

∂y

∂t
= ∇ · (κ∇y) + F (35)

for x ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to subject
to homogeneous initial and Dirichlet boundary conditions,
where F (x, t) = 20 exp(−50(x1−t)2). The optimum exper-
imental design in context consists in optimally recovering the
constant coefficients θ1, θ2 and θ3 in the diffusion coefficient

κ(x) = θ1 + θ2x1 + θ3x2. (36)

As regards the forcing term in our model, it approximates the
action of a line source whose support is constantly oriented
along the x2-axis and moves with constant speed from the
left to the right boundary of Ω. Our purpose is to estimate κ
(i.e. the parameters θ1, θ2 and θ3) as accurately as possible
based on the measurements made by three moving sensors.

The determination of the information matrix requires the
knowledge of vector of the sensitivity coefficients g =
col[g1, g2, g3] which is computed at nominal values θ0

1 = 0.1,
θ0
2 = −0.05 and θ0

3 = 0.2. It can be obtained by solving the
following system of PDEs [2], [3]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂y

∂t
= ∇ · (κ∇y) + F,

∂g1

∂t
= ∇ · ∇y + ∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) + ∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) + ∇ · (κ∇g3),

(37)
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in which the first equation constitutes the original state equa-
tion and the second, third and fourth equations result from
its differentiation with respect to θ1, θ2 and θ3, respectively.
The initial and Dirichlet boundary conditions for all the
four equations are homogeneous. The solution to (37) is
found numerically using the MATLAB PDE toolbox [24],
cf. Appendix I in [2] for details.

In the optimal control problem which is going to be
solved in the sequel, we will need values of g along sensor
trajectories. Therefore, we store their values interpolated at
the nodes of a rectangular grid in a four-dimensional array
(we applied uniform partitions using 21 grid points per
each spatial dimension and 31 points in time). Since the
solving of (23) requires values of g at points which are not
necessarily nodes of that grid, the relevant interpolation is
thus performed using cubic splines in space (to this end,
MATLAB’s procedure interp2 was used) and linear splines
in time. Since, additionally, the derivatives of g with respect
to spatial variables and time are required, these derivatives
are approximated numerically using the central-difference
formula.

The next step consists in using RIOTS 95 to determine
time-optimal sensor trajectories. We adopt the simple model

ds

dt
(t) = u(t), s(t0) = s0

Moreover, we impose the following constraints on u:

|ui(t)| ≤ 0.7, ∀ t ∈ [t0, t0 + T ], i = 1, . . . , 6

As for technicalities, in order to numerically solve the
measurement location problem, a partition was formed on
the nominal time interval [0, 1] by choosing 41 evenly spaced
points and then considering the components of the control υ
in the class of piecewise linear splines. The system dynamics
was integrated using the classical fourth-order Runge-Kutta
method.

The computations were performed using a low-cost PC
(Pentium 4, 2.40 GHz, 512 MB RAM) running Win-
dows 2000 and Matlab 7 (R14). In order to avoid getting
stuck in a local minimum, computations were repeated
several times from different initial solutions. Each run took
from three to thirty five minutes. Figures 1 and 2 present
the results obtained for Problems 1 and 2. For comparison,
Fig. 1(a) shows the D-optimum trajectories obtained for the
observation horizon which coincides with the longest feasible
interval [0, 1]. As for Problem 1, after setting the duration
of the observation horizon as T = 0.5, the optimal moment
for starting measurements was obtained at t0 = 0.5, i.e.,
observations at the end of the evolution of the DPS provide
best information about the parameters to be estimated. For
Problem 2, we set the guaranteed efficiency at the level of
η = 0.8 and obtained the optimal values t�0 = 0.4692 and
T � = 0.5308.

Let us note that the diffusion coefficient values in the upper
left of Ω are greater than those in the lower right. This means
that the state changes during the system evolution are quicker
when we move up and to the left (on the other hand, the

system would have reached the steady state there earlier).
This fact explains the form of the obtained trajectories—the
sensors tend to measure the state in the regions where the
distributed system is the most sensitive with respect to the
unknown parameter κ, i.e. in the lower right.

VII. CONCLUSION

We have indicated possible ways of optimizing the obser-
vation horizon while designing moving sensor trajectories in
experiments related to parameter estimation of DPSs. Two
formulations have been proposed: the first for a specified
duration and an open initial time, and the other for the case
in which the elapsed observation time constitutes a decision
variable. We have shown that they can be transcribed into
equivalent optimal control problems with fixed initial and
final times in Mayer form, and that they can be then
efficiently solved by the MATLAB toolbox RIOTS 95, a
high-performance tool for solving optimal control problems,
combined with the Partial Differential Equation Toolbox.
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Fig. 1. Optimal sensor trajectories: D-optimum criterion for the time limits fixed at t0 = 0 and T = 1 (a), Problem 1 for T = 0.5 (b), and Problem 2
for the guaranteed D-efficiency value set as 0.8. The initial sensor positions are marked with open circles, and the sensors positions at the consecutive
points of the time grid are denoted by discs.
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Fig. 2. Optimal controls: Problem 1 (a) and Problem 2 (b).
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