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Abstract— Stability of the nonlinear filtering equation is
revisited in the case, when the signal is a finite state space
Markov chain with slow transitions rate. The derived formulae
reveal surprising properties of the stability exponent.

I. INTRODUCTION

This paper deals with stability of the nonlinear filtering
equation with respect to initial condition. Suppose that a
discrete time Markov chain X = (Xn)n≥0 with values in a
finite real alphabet S = {a1, ..., ad}, transition probabilities
λij = P(Xn = aj |Xn−1 = ai) and initial distribution
νi = P(X0 = ai) is observed via white noise observations,
generated by

Yn =
d∑

i=1

ξn(i)1{Xn=ai}, n ≥ 1, (1)

where ξ = (ξn)n≥1 is a sequence of i.i.d. random vectors
in R

d with independent entries, sampled according to the
probability laws

P
(
ξn(i) ≤ x

)
=

∫ x

−∞
gi(u)ϕ(du), n ≥ 1, i = 1, ..., d,

where ϕ is a σ-finite measure on R and gi(u) are probability
densities with respect to ϕ. The sequences X and ξ are
defined on a complete probability space (Ω,F , P) and are
assumed to be independent. This statistical setup is usually
referred as Hidden Markov Model (HMM) and is used in a
variety of applications (see the recent survey [10]).

One of the basic problems related to HMM is filtering, i.e.
estimation of current state of the chain on the basis of past
observations. For a fixed function f : S �→ R, the optimal
in the mean square sense filtering estimate of f(Xn) given
FY

n = σ{Y1, ..., Yn} is the conditional expectation

E
(
f(Xn)|FY

n

)
=

d∑
i=1

f(ai)P(Xn = ai|FY
n ).

The (column) vector πn of conditional probabilities πn(i) =
P(Xn = ai|FY

n ) satisfies the filtering recursion (n ≥ 1)

πn =
G(Yn)Λ∗πn−1∣∣G(Yn)Λ∗πn−1

∣∣ , π0 = ν, (2)

where Λ∗ is the transposed matrix of transition probabilities,
G(y), y ∈ R is a scalar matrix with the entries gi(u),
i = 1, ..., d on the diagonal and |x| denotes the �1-norm,
i.e. for x ∈ R

d, |x| =
∑d

i=1 |x(i)|. As usual the probability
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distributions on S are identified with the column vectors in
the simplex Sd−1 = {x ∈ R

d : xi ≥ 0,
∑d

i=1 xi = 1}.
Suppose that the recursion (2) is started from a probability

distribution ν̄ different from ν. This of course makes sense
only if the filtering equation remains well defined P-a.s.,
in which case the pair of distributions (ν, ν̄) is said to
be admissible. A simple admissibility condition is ν � ν̄
(holds e.g. if all the entries of ν̄ are positive), which is
assumed hereafter. Denote by π̄n the solution of (2) subject
to π̄0 = ν̄. The filter is asymptotically stable with respect to
an admissible pair (ν, ν̄) if∣∣πn − π̄n

∣∣ n→∞−−−−→ 0, P − a.s. (3)

and is exponentially stable if the stronger convergence holds

γ := lim
n→∞

1
n

log
∣∣πn − π̄n

∣∣ < 0, P − a.s. (4)

Existence of the limit in (4) follows from the Oseledec
multiplicative ergodic theorem (MET), if the noise densities
are sufficiently regular (see Theorem 2.1 below). In fact
the stability exponent γ can only take a finite number of
values, depending on (ν, ν̄) (see Section IV). It is easy to
see that the convergence in (3) can be superexponential in
general, though no evidence is available at this point for a
subexponential convergence.

The problem of stability is to specify the conditions in
terms of Λ, gi’s and (ν, ν̄) so that (3) or (4) holds. Having
inspired much research in the last decade (see [3] for an up to
date reference list), this problem still remains unresolved in
many aspects. Being the simplest genuine nonlinear filter, the
equation (2) yet exhibits much of the problem complexity.

Probably the most counterintuitive issue is that (3) is not
implied in general by ergodicity of X . Recall that X is
ergodic if the limits µi := limn→∞ P(Xn = ai) exist, are
positive and do not depend on ν. The latter holds if and
only if Λ is primitive, i.e. all the entries of Λq are positive
for some integer q ≥ 1. If ergodicity is viewed as a form of
signal ”stability”, it is tempting to think that the filter cannot
be ”less stable” than the signal itself.

Another closely related question is whether the filtering
πn, considered as a measure valued Markov process, has a
unique invariant measure. This was conjectured to hold by
D.Blackwell in [4], provided X is ergodic and Yn = h(Xn)
with h : S �→ R and was found false by T.Kaijser in [11]. A
simple counterexample in fact appeared already in [4], but
was used originally to demonstrate other intriguing features
of filtered Markov chains. Later it was revisited/reinvented in
[11], [9], [3] and [7] to expose different instability properties
of the filter (2).
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Independently H.Kunita [12] considered a more general
filtering setting, with a Feller-Markov signal process, evolv-
ing on a general state space, and additive Gaussian white
noise observations. The main result of [12] claimed that the
filtering process has a unique invariant measure, if the signal
X is ergodic and its tail σ-algebra ∩t≤0FX

t is P-a.s. empty.
A serious gap was revealed recently in the proof of this
statement (see [3]) and its validity remains a challenging
open question.

It turns out that stability of the filter requires either
stronger ergodic property of X (as e.g. strong mixing) or
sufficient regularity of the observation noise densities gi,
i = 1, ..., d. For example, if all the transition probabilities
are positive λij > 0, then (see [2], [13], [8])

∣∣πn − π̄n

∣∣ ≤ C

(
1 − λmin

λmax

)n

, n ≥ 1,

with λmin = minij λij and λmax = maxij λij and a constant
C, depending on ν and ν̄. If only minj λij > 0 for some
row i and the chain is ergodic, then ([7])

lim
n→∞

1
n

log
∣∣πn − π̄n

∣∣ ≤ − λ∗
λmax

,

with λ∗ :=
∑d

i=1 µi minj λij . The latter is the weakest
known assumption on X for (4) to hold regardless of gi’s.

On the other hand, ergodicity of X guarantees exponential
stability, if the noise densities are bounded and have the
same support. In particular, the authors of [2] considered
the additive Gaussian observation model

Yn = h(Xn) + σξn,

where h is a S �→ R function, σ > 0 is a constant and ξn

is a standard sequence of i.i.d Gaussian random variables.
Among other interesting results, the following upper bound
was derived

lim
σ→0

σ2γσ ≤ −1
2

d∑
i=1

µi min
j �=i

(
h(ai) − h(aj)

)2
. (5)

Roughly speaking it suggests that the stability exponent γσ ,
viewed as a function of σ, decreases as σ → 0, improving
stability of the filter, if the image of S under h has at least
one unique point.

In this paper we address asymptotic behavior of γ as a
function of a parameter, controlling the transitions rate of
the chain. This is precisely formulated in Section II, along
with the continuous time analogous setting. In Section III
several surprising (at the first glance) consequences of the
main results are discussed and Section IV outlines the main
idea of the proof.

II. MAIN RESULTS

A. Discrete time setup

For a fixed ε ∈ (0, 1), let Xε = (Xε
n)n≥1 be the slow

Markov chain on S with transition probabilities

λε
ij := P

(
Xε

n = aj |Xε
n−1 = ai

)
={

1 − ε
∑

��=i λi�, i = j

ελij , i �= j

and initial distribution ν. Clearly ε controls the transitions
rate of the chain, preserving however its invariant distribution
µ. The corresponding observation process Y ε is generated by
(1) with X replaced by Xε and the filtering processes πε and
π̄ε solve (2), driven by Y ε instead of Y and with Λ replaced
with the matrix Λε of the ”slow” transition probabilities λε

ij .
Theorem 2.1: Assume

a1) X is ergodic
a2) the densities gi(u) are bounded and all the correspond-

ing measures are equivalent. Moreover∫
R

gi(u) log gj(u)ϕ(du) > −∞, ∀i, j

Then for an admissible (ν, ν̄),

lim
n→∞

1
n

log |πε
n − π̄ε

n| ≤

−
d∑

i=1

µi min
j �=i

D(gi ‖ gj) + o(1), ε → 0, (6)

where1

D(gi ‖ gj) =
∫

R

gi(u) log
gi

gj
(u)ϕ(du)

are the Kullback-Leibler divergences. In the two dimensional
case d = 2 the asymptotic of (6) is precise

lim
n→∞

1
n

log |πε
n − π̄ε

n| =

− µ1D(g1 ‖ g2) − µ2D(g2 ‖ g1) + o(1), ε → 0. (7)

�

B. Continuous time setup

Let X = (Xt)t≥0 be a continuous time Markov chain with
values in S = {a1, ..., ad}, transition intensities matrix Λ and
initial distribution ν. Note that the same notation is used
for transition intensities in continuous time and transition
probabilities in discrete time. Recall that the chain is ergodic
if and only if exp(Λ) has positive entries, in which case the
invariant distribution µ is the solution of Λ∗µ = 0, µ ∈ Sd−1.

The observation process is generated by

Yt =
∫ t

0

h(Xs)ds + σWt, t ≥ 0, (8)

where h : S �→ R is a fixed function, σ > 0 is a constant
and W = (Wt)t≥0 is a Wiener process, independent of X .

1as usual 0 log 0 = 0 is understood and all random (in)equalities are
claimed to hold P-a.s.
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The vector of the conditional probabilities πt(i) =
P(Xt = ai|FY

t ), where FY
t = σ{Ys, s ≤ t}, satisfies the

Shiryaev-Wonham filtering Itô equation ([15], [16])

dπt = Λ∗πtdt +
(
diag(πt) − πtπ

∗
t

)
h
(
dYt − π∗

t hdt
)
, (9)

subject to π0 = ν, where diag(x) denotes a scalar matrix
with x ∈ R

d on the diagonal and h is the column vector
with entries h(a1),...,h(ad). It is not difficult to see that (9)
has a unique strong solution if started from π0 = ν̄, which
is denoted by π̄t.

In the continuous time case the slow chain is obtained by
the time scaling Xε

t := Xtε, which is again a Markov chain
with generator εΛ. Let Y ε satisfy (8) with X replaced by
Xε and πε

t and π̄ε
t be the solutions of (9), driven by Y ε and

with Λ replaced by εΛ, subject to ν and ν̄ respectively.
Theorem 2.2: If X is ergodic, then

lim
t→∞

1
t

log |πε
t − π̄ε

t | ≤

− 1
2σ2

d∑
i=1

µi min
j �=i

(
h(ai) − h(aj)

)2 + o(ε), ε → 0. (10)

For telegraphic signal d = 2

lim
t→∞

1
t

log |πε
t − π̄ε

t | = −(λ12 + λ21)ε−
1
2
(∆h)2 + (∆h)2

∫ 1

0
q(x)x(1 − x)dx∫ 1

0
q(x)dx

(11)

where ∆h =
(
h(a1) − h(a2)

)
/σ �= 0 and

q(x) =
exp

(
− 2λ21ε

(∆h)2x(1−x) + 2(λ12−λ21)ε
(∆h)2

(
log x

1−x + 1
1−x

))
x2(1 − x)2

.

In particular,

lim
t→∞

1
t

log |πε
t − π̄ε

t | = −1
2
(∆h)2+(

1 + o(1)
)
ε log ε−1 4λ12λ21

λ12 + λ21
, ε → 0. (12)

�
Remark 2.3: Notice the similarity between (10) and (5).

In fact in continuous time both asymptotics σ → 0 and ε → 0
are related by an appropriate time scaling. The quadratic rate
in (5) stems from the Gaussian distribution of the observation
noise.

III. SURPRISING BEHAVIOR

The results of Theorems 2.1 and 2.2 reveal some inter-
esting and surprising details, which are best demonstrated if
compared to the linear Kalman-Bucy setting. Consider the
linear filtering problem for the signal Xt solving

Xt = X0 −
∫ t

0

Xsds + Wt,

subject to a standard Gaussian r.v. X0. The slow signal
Xε

t := Xtε satisfies

Xε
t = X0 − ε

∫ t

0

Xε
t ds +

√
εW̃t,
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Fig. 1. Different behavior of the stability exponent for linear and nonlinear
filter

where W̃t := ε−1/2Wtε is a Wiener process. Note that X
and Xε have the same stationary invariant measure. Now
define

Y ε
t =

∫ t

0

Xε
sds + Vt

with V being a Wiener process, independent of W and X0.
For a Gaussian X0, the conditional distribution πε

t (dx) of
Xε

t given FY ε

t , is Gaussian with the mean Mε
t and variance

P ε
t , satisfying the Kalman-Bucy equations (e.g. [14])

dMε
t = −εMε

t dt + P ε
t

(
dY ε

t − Mε
t dt

)
Ṗ ε

t = −2εP ε
t dt + ε − (

P ε
t

)2
,

(13)

subject to Mε
0 = 0 and P ε

0 = 1. Suppose that the ”incorrect”
initial density is also Gaussian with mean 1 and unit variance.
Then the incorrect density π̄ε

t (dx) remains Gaussian as well
with the mean M̄ε

t , satisfying (13) subject to M̄ε
0 = 1 and

the same variance P ε
t . The total variation distance

|πε
t − π̄ε

t | =
∫

R

|πε
t (x) − π̄ε

t (x)|dx

is governed by ∆ε
t := |Mε

t − M̄ε
t | in this case, given by

∆ε
t = exp

(
−

∫ t

0

(ε + P ε
s )ds

)
and hence

γε := lim
t→∞ t−1 log |πε

t − π̄ε
t | ∝ −ε − P ε ε→0−−−→ 0

where P ε = limt→∞ P ε
t = −ε +

√
ε2 + ε.

Note the following differences between the stability expo-
nent behavior as a function of ε (plotted at Figure 1) in the
linear and nonlinear cases

1) Slowing down the diffusion signal in the Kalman-
Bucy case leads to loss of exponential stability (0 =
γ0 = γ0+), while the nonlinear filter remains stable
γ0+ < 0 for arbitrary small ε > 0 if at least one of
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the summands in (10) is positive. This also means that
γε is discontinuous at ε = 0 for the nonlinear filter.
Indeed, in the limit model (X0, Y 0), corresponding to
ε = 0, the signal X0 is just a random variable with
values in S and distribution ν, which can be formally
seen as a non-ergodic Markov chain. The filter is the
equation with Λ ≡ 0 and is easily seen to be unstable:
suppose h(a1) = ... = h(ad−1) �= h(ad) and that both
ν and ν̄ have positive entries. The states a1,...,ad−1

cannot be distinguished from the observations on the
set {X0 �= ad}:

lim
t→∞

π̄t(i)∑d−1
j=1 π̄t(j)

=
ν̄i∑d−1

j=1 ν̄j

, i �= d

which implies never vanishing dependence on ν̄. So
γ0 = 0 with positive probability, while

γ0+ ≤ − 1
2σ2

µd(h(ad) − h(a1))2 < 0.

2) While γε is monotonous for the linear filter, it exhibits
a maximum for the Shiryaev-Wonham filter. In other
words, slowing down the signal may improve stability!

Strict positivity of γ0+ can be intuitively explained as
follows: when the chain occupies a state ai, having a unique
image under h, the vectors πε

t and π̄ε
t tend to concentrate

the probability mass at the i-th entry, thus ”synchronizing”
between πε

t and π̄ε
t . One can verify that the distance |πε

t −π̄ε
t |

does not increase as a function of time and so it decays
at least when the ”synchronizing” states are revisited. The
occupation time for these states increases as ε → 0, but the
time between revisits decreases, so that on average the filter
spends the same proportion of time in the ”synchronizing”
states and so stability is preserved. The stabilization for
diffusions is essentially different: note, for example, that
the filtering error corresponding to estimation of a constant
Gaussian signal decreases linearly, while for a constant
random signal taking finite number of values it decreases
exponentially. This provides at least partial intuition for (1).

The property (2) seems to be the manifestation of the
interplay between two different stabilizing mechanisms: the
ergodicity of the signal vanishes as ε → 0, stripping the
aforementioned ”synchronizing” effect of the observations.

IV. SKETCH OF THE PROOF

The proof implements the Lyapunov exponents approach
suggested by R.Atar and O.Zeitouni in [2]. The main
novel technical element in this paper is application of the
Furstenberg-Khasminskii stability approach, which simplifies
the derivations and gives an additional insight into the
problem. We give a sketch of the proof in discrete time,
leaving out the technical details, fully developed in [6] and
[5].

The key idea of the method in [2] is to study the two
point motion stability of the equation (2) via the linear Zakai
equation for unnormalized conditional distribution ρn:

ρn = G(Yn)Λ∗ρn−1, ρ0 = ν. (14)

As is well known (and easily verified by induction in this
case) πn = ρn/|ρn| and π̄n = ρ̄n/|ρ̄n|, where ρn and ρ̄n

are the solutions of (14), subject to ρ0 = ν and ρ̄0 = ν̄
respectively. Moreover

1
2
|ρn ∧ ρ̄n|
|ρn||ρ̄n| ≤ |πn − π̄n| ≤ |ρn ∧ ρ̄n|

|ρn||ρ̄n| , (15)

where a∧ b denotes the exterior product of a, b ∈ R
d, which

is identified with the d × d matrix with entries aibj − ajbi.
Thus

lim
n→∞

1
n

log |πn − π̄n| = lim
n→∞

1
n

log |ρn ∧ ρ̄n|−

lim
n→∞

1
n

log |ρn| − lim
n→∞

1
n

log |ρ̄n|,
provided the limits in the right hand side exist and are finite.
Note that it suffices to verify existence of the limits under
stationary distribution of (X, Y ), i.e. when ν := µ, since by
Markov property ν � µ implies Qν � Qµ, where Qν and
Qµ denote the measures induced by (X, Y ), when X0 ∼ ν or
X0 ∼ µ respectively. This allows to work with the stationary
pair (X,Y ) and thus to appeal to the Oseledec MET (see
e.g. [1]), which, roughly speaking, states that the product of
stationary random d × d matrices An with E log+ |A1| <
∞ grows exponentially, so that for any x ∈ R

d, the limit
limn→∞ n−1 log |An...A1x| exists and may take one of d
values −∞ ≤ λd ≤ ... ≤ λ1 < ∞, called the Lyapunov
exponents corresponding to A = (An)n≥1.

With bounded gi’s and stationary X , the assumptions
of MET hold and as shown in [2], the solution of (14),
corresponding to any initial condition ν̄ ∈ Sd−1, always
”picks up” the top (largest) Lyapunov exponent:

λ1 := lim
n→∞

1
n

log |ρn| = lim
n→∞

1
n

log |ρ̄n|, P − a.s.

It is easy to see that the matrix process ρn∧ ρ̄n also satisfies
a linear equation (as e.g. (23) below) and thus is in the scope
of MET: limn→∞ 1

n log |ρn ∧ ρ̄n| exists and may take one
of a finite number of values. In fact, another consequence of
the Oseledec MET:

lim
n→∞

1
n

log |ρn ∧ ρ̄n| ≤ λ1 + λ2,

where λ2 is the second Lyapunov exponent of (14), implies
that

γ = lim
n→∞

1
n

log |πn − π̄n| ≤
λ1 + λ2 − λ1 − λ1 = λ2 − λ1 ≤ 0, P − a.s., (16)

which means that the stability exponent of the filter (2) is
controlled by the Lyapunov spectral gap of (14). The results
claimed in Section II are obtained by estimating λ1 and λ1+
λ2.

An additional insight on the structure of λ1 can be gained
by applying the following argument due to H.Furstenberg
and R.Khasminskii (see e.g. [1])

|ρn| =
∣∣G(Yn)Λ∗ρn−1

∣∣ =
∣∣∣G(Yn)Λ∗ ρn−1

|ρn−1|
∣∣∣|ρn−1| =∣∣G(Yn)Λ∗πn−1

∣∣|ρn−1|, (17)
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which implies

λ1 = lim
n→∞

1
n

log |ρn| = lim
n→∞

1
n

n∑
m=1

∣∣G(Ym)Λ∗πm−1

∣∣.
Though by virtue of MET the limit always exists, it is not
a priori clear that it is realized by averaging with respect
to a unique stationary measure of (Y, π) (or equivalently of
(X, ξ, π)) in the spirit of the law of large numbers. In fact
(Y, π) may have several invariant measures, which average
|G(y)Λ∗π| to the same number. This is exactly what happens
in the aforementioned Blackwell’s example. Under (a1) and
(a2) of Theorem 2.1 the law of large numbers does hold:

Lemma 4.1: (Lemma 4.1 in [5]) Under the assumptions
of Theorem 2.1

lim
n→∞

1
n

log |πn − π̄n| < 0, P − a.s., (18)

Moreover (X, π) is a Feller-Markov process with the unique
stationary invariant measure Ψ(dx, du) on S×B(Sd−1), such
that for any continuous and bounded f

lim
n→∞

1
n

n∑
m=1

f(Xm, πm) = lim
n→∞Ef(Xn, πn) =

∫
Sd−1

d∑
i=1

uif(ai, u)Ψπ(du) (19)

where Ψπ(du) =
∑d

i=1 Ψ({ai}, du) is the π-marginal. �
Proof: (sketch) First (18) is established by means of

another approach, introduced in [2], based on the fact that
the positive stochastic flow generated by (14) is a contraction
with respect to the Hilbert projective metric for measures.
The process (X,π) is shown then to be Markov and Feller
and as such to have at least one invariant measure. Next,
using (18), the uniqueness is verified and the standard argu-
ments lead to the Birkhoff-Khintchine type of the law of large
numbers, i.e. the first equality in (19). The second equality
follows, since Ef(Xn, πn) = E

∑d
i=1 1{Xn=ai}f(ai, πn) =

E
∑d

i=1 πn(i)f(ai, πn).
Using this lemma one obtains the Furstenberg-

Khasminskii formula for λ1:

λ1 = Es

d∑
i=1

π1|0(i)
∫

R

gi(u) log
∣∣G(u)π1|0

∣∣ϕ(du) (20)

where Es denotes the expectation with respect to Ψπ(du)
and π1|0 := Λ∗π0.

At this point we return to the asymptotic problem at hand:
it turns out that the Lyapunov exponent λε

1 corresponding to
ρε

n, has a simple asymptotic expression as ε → 0, which is
the consequence of the following concentration property of
the stationary conditional law of π0:

Lemma 4.2: (Lemma 4.3 in [5]) Under the assumptions
of Theorem 2.1

Ps- lim
ε→0

∑
ai∈Jj

πε
0(i) = 1{X0∈Jj} (21)

for all j = 1, ..., d, where Jj =
{
a� : D(gj ‖ g�) = 0

}
. �

Proof: (The main idea) The limit (21) basically claims
that those states of the chain, which are not ”merged” by
identical noise densities, can be determined precisely as ε →
0.
Combination of (20) and (21) leads to

λε
1 =

d∑
i=1

µi

∫
R

gi(u) log gi(u)ϕ(du) + o(1), ε → 0 (22)

The matrix process Zε
n = ρε

n∧ ρ̄ε
n satisfies linear recursion

Zε
n = G(Y ε

n )Λ∗
εZ

ε
n−1ΛεG(Y ε

n ), Zε
0 = ν ∧ ν̄,

and evolves in the space of antisymmetric matrices (with
zero diagonal). In particular we have for i �= j

Zε
n(i, j) =

∑
1≤k �=�≤d

gk(Y ε
n )λε

kiZ
ε
n−1(k, �)λε

�jg�(Y ε
n ). (23)

Similarly to (17), with Πε
n := Zε

n/|Zε
n| and a fixed integer

r ≥ 1

|Zε
n| = |Zε

n−r|
( ∑

i �=j

|Πε
n−r(i, j)|·

n∏
m=n−r+1

gi(Y ε
m)gj(Y ε

m) + Cr,nε
)
≤

|Zε
n−r|

(
max
i �=j

n∏
m=n−r+1

gi(Y ε
m)gj(Y ε

m) + Cr,nε
)
, n ≥ r

where Cr,n is a random sequence, independent of ε > 0 and
growing not faster then linearly with r. Iterating the latter
recursion and taking ε → 0 on gets

lim
n→∞

1
n

log |ρn ∧ ρ̄n| = lim
n→∞

1
n

log |Zε
n| ≤

d∑
�=1

µ�Emax
i �=j

1
r

r∑
m=1

log gi

(
ξm(�)

)
gj

(
ξm(�)

)
+ o(ε). (24)

Finally by the law of large numbers and uniform integrability
of the summands, one gets

Emax
i �=j

1
r

r∑
m=1

log gi

(
ξm(�)

)
gj

(
ξm(�)

) r→∞−−−→

max
i �=j

∫
R

g�(u) log
(
gi(u)gj(u)

)
ϕ(du) (25)

Then the upper bound (6) is obtained by inserting (22) and
(24), (25) into (16).

In the special case of d = 2, the equation (23) is one
dimensional, for which precise limit is obtained, leading to
(7). The continuous time case is treated in a similar way. The
closed form expression in (11) is found, using the explicit
formula for the stationary distribution of π, obtained by
solving the appropriate Kolmogorov equation (see the details
in [5]).
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