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Abstract— This paper is concerned with the control of one
dimensional continuous time linear Gaussian systems over
additive white noise wireless fading channels subject to capacity
constraints. Necessary and sufficient conditions are derived, for
bounded asymptotic and asymptotic observability and stabiliz-
ability in the mean square sense, for controlling such systems.
For the case of a noiseless time-invariant system controlled
over a continuous time additive white Gaussian channel, the
sufficient condition for stabilizability and observability states
that the capacity of the channel, Ca, satisfies, Ca > [A]+, where
A is the system coefficient and [a]+ = a, if a ≥ 0 and [a]+ = 0, if
a < 0. Moreover, the necessary condition states that the channel
capacity must satisfy Ca ≥ [A]+. It is shown that a separation
principle holds between the design of the communication and
the control sub-systems, implying that the controller that would
be optimal in the absence of the communication channel is also
optimal for the problem of the controlling the system over the
communication channel.

I. INTRODUCTION

In recent years, there has been a significant activity in
addressing issues associated with the control of systems over
limited capacity communication channels. A typical example
is given in Fig. 1. In such control/communication systems,
the controlled system output is analogous to the source that
generates information, which has to be transmitted over a
communication channel, with feedback, for reliable com-
munication and control. Typical examples are applications
in which a single dynamical system sends information to
a distant controller via a communication link with finite
capacity.
Previous work on this subject focuses on the stabilizability
of discrete time systems, controlled over a discrete time
communication channel with finite capacity. Fundamental
results for stabilizability of such systems are derived in [1]-
[8].
The objective of this paper is to extend the above line of
research to continuous time systems driven by Brownian
motion. In particular, when the information is communicated
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to the controller via a finite capacity communication chan-
nel. First, we consider the problem of stabilizability of a
control/communication system, which consists of a linear
continuous time-invariant noiseless plant, which is controlled
over a continuous time AWGN channel with memory. By
using the Bode integral formula [9], a necessary condition
for the existence of a stabilizing controller is given by the
condition

Cah ≥ [A]+, (1)

where Cah is the capacity of AWGN channel with memory.
In the special case of AWGN channel (e.g., channel impulse
response h(t) = δ(t)), condition (1) is reduced to the
following condition

Ca ≥ [A]+, (2)

where Ca is the AWGN channel capacity. We then consider
a time-varying one dimensional linear stochastic Gaussian
plant driven by Brownian motion, which is controlled over
a flat fading wireless channel. Here, we assume complete
knowledge of the channel throughout the transmission, at the
transmitter and the receiver ends [10]. Under such assump-
tion, we derive optimal encoding and decoding strategies
which minimize the mean square decoding error, and achieve
the channel capacity. We further show that under certain
conditions, the proposed encoding and decoding strategies
yield bounded asymptotic, and asymptotic observability, in
the mean square sense. Furthermore, a sufficient condition
for bounded asymptotic and asymptotic stabilizability in the
mean square sense is derived. For the case of noiseless, time-
invariant systems controlled over continuous time AWGN
channel, the sufficient condition for asymptotic observability
and stabilizability is given by condition Ca > [A]+.
In this paper, it is also shown that a separation principle holds
between the design of the control and the communication
sub-systems.
The paper is organized as follows. In Section II, the problem
formulation is given. In Section III, a necessary condition for
stabilizability of control/communication system consisting a
linear continuous time-invariant noiseless plant controlled
over a continuous time AWGN channel with memory is
presented. In Section IV, the optimal encoding/decoding
scheme that ensures bounded asymptotic and asymptotic
observability in the mean square sense is presented. In
Section V, a stabilizing controller is designed by using a
linear quadratic pay-off.
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II. PROBLEM FORMULATION

Consider the block diagram of Fig. 1. As in any typical
communication system, the source which corresponds to the
controlled plant output is communicated via a flat fading
wireless AWGN channel. The encoder in addition of ob-
serving the plant output and the state of the channel, also
observes the control signals. This kind of encoder has been
discussed in [1], [2]. Thus, the encoder indirectly observes
the output of the decoder. That is, the information pattern of
the encoder, F , at time t is {(x(s), x̃(s), z(s, θ(s))); 0 ≤
s ≤ t} → F (t, x, x̃, θ)(= F (t) in compact notation),
where {z(s, θ(s)); 0 ≤ s ≤ t} is the Channel State In-
formation (CSI) (which dependents on the random process
{θ(s), 0 ≤ s ≤ t}). Moreover, the decoder has access to
the output of the channel, and to the state of the channel.
That is, the information pattern of the decoder x̃ at time t
is {(y(s), z(s, θ(s))); 0 ≤ s ≤ t} → x̃(t, y, θ)(= x̃(t) in
compact notation). Finally, the controller u at time t has
access to the output of the decoder at that time and the state
of the channel up to time t.
Next, we give the precise definition of the signals, and
blocks associated with Fig. 1. Let (Ω,F , P ) be a com-
plete probability space with a filtration {Ft}t≥0 and time

t ∈ [0, T ], T > 0. Let x
�
= {x(s); 0 ≤ s ≤ t ≤

T}, x(t) ∈ � denote the output of the controlled plant

(transmitted signal), u
�
= {u(s); 0 ≤ s ≤ t ≤ T},

u(t) ∈ � the control signal, y
�
= {y(s); 0 ≤ s ≤ t ≤ T},

y(t) ∈ � the output of the communication channel, z
�
=

{z(s, θ(s)); 0 ≤ s ≤ t ≤ T}, z(t, θ(t)) ∈ � the channel

state information, v
�
= {v(s); 0 ≤ s ≤ t ≤ T}, v(t) ∈ �

the channel noise, and w
�
= {w(s); 0 ≤ s ≤ t ≤ T},

w(t) ∈ � the plant process noise. Here, it is assumed that
z depends on the random process θ(t) ∈ �q. The plant
noise w, and the channel noise v are independent standard
Brownain motions, which are independent of the initial
state x(0). Let {Fx

0,t}t≥0, {F x̃
0,t}t≥0, {Fy

0,t}t≥0, {Fz
0,t}t≥0,

and {Fθ
0,t}t≥0 denote the complete filtration generated by

Fx
0,t

�
= σ{x(s); 0 ≤ s ≤ t}, F x̃

0,t
�
= σ{x̃(s); 0 ≤ s ≤ t},

Fy
0,t

�
= σ{y(s); 0 ≤ s ≤ t}, Fz

0,t
�
= σ{z(s); 0 ≤ s ≤ t},

and Fθ
0,t

�
= σ{θ(s); 0 ≤ s ≤ t}, respectively, which

are sub-sigma fields of {Ft}t≥0. Here, Fx
0,t, F x̃

0,t, Fy
0,t,

Fz
0,t, and Fθ

0,t are the Borel σ-algebras on the space of
continuous functions C([0, T ];�), C([0, T ];�), C([0, T ];�),
C([0, T ];�), and C([0, T ];�q) respectively. Next, the blocks
of Fig. 1 are defined.

Plant. The state of the plant is described by an one
dimensional continuous time, controlled diffusion process
given by the Itô equation

dx(t) = A(t)x(t)dt + B(t)u(t)dt + G(t)dw(t), x(0), (3)

where A : [0, T ] → �, B : [0, T ] → �, and G : [0, T ] → �
are Borel measurable and bounded, and x(0) is Gaussian
random variable x(0) ∼ N(x̄0, V̄0), which is independent of
w. The control u is square integrable, and {F0,t}t≥0 adapted.

Plant

Flat Fading 

AWGN
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),(tz

),(tz
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)(tx

)(tF

)(tu

)(ty
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Fig. 1. Control/communication system over flat fading AWGN channel

Throughout, we assume there exists a unique solution of

(3), such that x ∈ X , where X �
=

{
x ∈ C([0, T ];�); x

is {F0,t}t≥0 adapted and E
∫ T

0
|x(t)|2dt < ∞

}
(see [11]).

Encoder. The encoder, F , is a non-anticipative functional
of the state of the plant x, the decoder output x̃, and the chan-

nel state information z. Define Fx,x̃,θ
0,t

�
= Fx

0,t

∨F x̃
0,t

∨Fθ
0,t.

The set of admissible encoders is defined by Fad
�
={

F : [0, T ]×C([0, T ];�)×C([0, T ];�)×C([0, T ];�q) →
�;F is {Fx,x̃,θ

0,t }t≥0 adapted, and E
∫ T

0
|F (t, x, x̃, θ)|2dt <

∞
}

.

Channel. The communication channel is an AWGN, flat
fading, wireless channel z. The channel output y is defined
by the following stochastic differential equation

dy(t) = z(t, θ(t))F (t, x, x̃, θ)dt + dv(t),
y(0) = 0, 0 ≤ t ≤ T, (4)

where v is the Gaussian standard Brownian motion. Through-
out, we shall assume that (4) has a unique solution [11], and
for a fixed sample path θ

Prob
{∫ T

0

z2(t, θ(t))|F (t, x, x̃, θ)|2dt < ∞
}

= 1.

and

Eθ

∫ T

0

z2(t, θ(t))|F (t, x, x̃, θ)|2dt < ∞, (5)

where Eθ[.] denote expectation with respect to sample path
θ.

Decoder. The decoder denoted by x̃ is adapted to

{Fy,θ
0,t }t≥0, where Fy,θ

0,t

�
= Fy

0,t

∨Fθ
0,t. The set of admissible

decoders is denoted by Dad. The decoder plays the role of
a state estimator.

Controller. The controller u is a square integrable non-
anticipative functional of the output of the decoder and the
channel state information, e.g., u is {Fy,θ

0,t }t≥0 adapted. The
set of admissible controller is denoted by Uad.
The objective of this paper is to find necessary and suf-
ficient conditions for bounded asymptotic and asymptotic
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Fig. 2. Control/communication system over AWGN

observability and stabilizability of system (3), in the mean
square sense, over a continuous time (flat fading) AWGN
communication channel, defined as follows.

Definition 2.1: (Bounded Asymptotic and Asymptotic

Observability in the Mean Square Sense). Define E(t)
�
=

E[(x(t) − x̃(t, y, θ))2
∣∣∣Fy,θ

0,t ]. System (3), (4) is bounded
asymptotically (resp. asymptotically) observable, in the mean
square sense, if there exists an encoder and decoder such that
limt→∞ E(t) < ∞, P-a.s. (resp. limt→∞ E(t) = 0, P-a.s.).

Definition 2.2: (Bounded Asymptotic and Asymptotic
Stabilizability in the Mean Square Sense). System (3), (4) is
bounded asymptotically (resp. asymptotically) stabilizable, in
the mean square sense, if there exits a controller, encoder and
decoder, such that limt→∞ E[|x(t)|2

∣∣∣Fθ
0,t] < ∞, P-a.s.,(resp.

limt→∞ E[|x(t)|2
∣∣∣Fθ

0,t] = 0, P-a.s).

III. NECESSARY CONDITION FOR EXISTENCE OF

STABILIZING CONTROLLER

In this Section, we consider the time-invariant noiseless
analogue of system (3), that is the plant is given by

ẋ(t) = Ax(t) + Bu(t). (6)

The communication channel is a continuous time AWGN
channel (z = 1) with memory, that is the output of the
channel is given by

y(t) = o(t) + n(t), o(t) = h(t) ∗ F (t), y(t) ∈ �, (7)

where o is a stochastic process with power spectral density
So(ω), n is a Gaussian white noise process with the power
spectral density Sn(ω) = N0, (o, n) are independent, h(t)
is the channel impulse response with the corresponding
transfer function H(jw), and “ ∗ ” is the convolution op-
erator. Here the encoder, decoder and the controller are
linear time-invariant with transfer functions E(jw), D(jw)
and C(jw), respectively (see Fig. 2). Let Cah denote the
capacity of AWGN channel with memory. We shall show
that Cah ≥ [A]+ is a necessary condition for the existence

of a stabilizing controller.
In this Section, a controller is called stabilizable if the corre-
sponding closed loop sensitivity transfer function S(jw) =
Y (jw)
N(jw) , from n to y, is strictly stable or alternatively
limt→∞ E|y(t)|2 < ∞ or limt→∞ E|x(t)|2 < ∞.
Next, applying the Bode integral formula [9], the main result
of this Section is given in the following theorem. The Proof
and the extension to the vector case can be found in [12] or
[13].

Theorem 3.1: Consider the control/communication sys-
tem (6), (7) given in Fig. 2. A necessary condition for the
existence of a stabilizing controller is given by

Cah ≥ [A]+, (8)

where Cah is the capacity of the AWGN channel with
memory.

Remark 3.2: In the case of AWGN channel (e.g., h(t) =
δ(t)), the necessary condition (8) is reduced to the following
condition

Ca ≥ [A]+, (9)

where Ca is the AWGN channel capacity.
Please note that the analogue of condition (9) for control-
ling discrete time systems over discrete time noisy channel
(including discrete time AWGN channel) is given by [1]

C ≥ [log |A|]+. (10)
In Section V, we will recover (9) by constructing an encoder,
decoder and controller which stabilize the plant.

IV. OPTIMAL ENCODING/DECODING SCHEME FOR

OBSERVABILITY

In this Section, we design an optimal encoder/decoder
pair for the time-varying system defined by (3), (4) that
guarantees the observability condition defined in the sense
of Definition 2.1. The necessary and sufficient condition for
the existence of such an encoder/decoder pair is given in
terms of the capacity of the channel and the time-varying
coefficient A(t). The extension of the results of this Section
to the vector case can be found in [12] or [13].

A. Optimal Encoding/Decoding Scheme for Observability

In this Section, we first define the mutual information
between the state of the plant x and the channel output
y, when the channel state information z is known to the
transmitter and the receiver. Next, we introduce a power
constraint on the admissible encoders, and we compute the
flat fading continuous time AWGN channel capacity using
a variant of the methodology found in [11]. Even in our
case, it can be shown that the capacity is attained by a white
noise [11]. Further, we design an encoder which minimizes
the mean square decoding error, and achieves the channel
capacity. In particular, the mean square error is bounded if
G(t) is nonzero, and tends to zero asymptotically if G(t)
is zero. This can be explained by the fact that if G(t) is
nonzero, the state equation is driven by Brownian motion
which has unbounded variation. Thus, when G(t) is zero, the
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mean square error is asymptotically zero, implying that the
computed channel capacity represents the operational capac-
ity. Finally, we state the necessary and sufficient conditions
for bounded asymptotic and asymptotic observability in the
mean square sense.
The part of the results which are concerned with construction
of optimal encoding/decoding pair for the scalar case, first
appeared in preliminary form in [14].

1) Conditional Mutual Information and Capacity of Feed-
back Systems: Using a variant of the mutual information
expression of signals described by stochastic differential
equations driven by Brownian motion found in [15], we
derive the expression for the conditional mutual information
given in the next theorem.

Theorem 4.1: [14]. Consider the model given by (3), (4),
shown in Fig. 1. The mutual information between the state
of plant x, and the channel output y, conditional on the state
z is given by the following equivalent expressions

i) IT (x; y|θ) �
= Ex,y,θ

[
log

dPx,y|θ(x, y|θ)
dPx|θ(x|θ) × dPy|θ(y|θ)

]

ii) IT (x; y|θ) =
1
2
Eθ

∫ T

0

z2(t, θ(t))E
[
|F (t, x, x̃, θ)|2

−|F̂ (t, x̃, θ)|2
∣∣∣θ]dt

iii) IT (x; y|θ) =
∫

θ

IT (x, y|θ)dPθ(θ) (11)

where Ex,y,θ[.] represents expectation with respect to the
sample paths x, y, θ, Eθ[.] denote expectation with respect

to the sample path θ, and F̂ (t, x̃, θ) = E[F (t, x, x̃, θ)
∣∣∣Fy,θ

0,t ].
Next, the definition of the channel capacity for a Gaussian
flat fading channel, when the CSI is fully known is given.
Thereafter, an upper bound on the mutual information is
introduced, and subsequently it is shown that this upper
bound is the channel capacity (i.e., the upper bound is
attained by a certain transmitted signal).

Definition 4.2: Consider the model given by (3), (4). The
channel capacity (often called information capacity), when
the fading process z or θ is completely known to the
transmitter, and receiver, subject to the instantaneous power
constraint

E
[
|F (t, x, x̃, θ)|2

∣∣∣θ] ≤ P (12)

is defined by

Cf
�
= lim

T→∞
sup

(x,F )∈X×Fad

1
T

IT (x; y|θ). (13)

Here, the supremum is taken over all state processes x ∈
X which give strong solutions to (3) and over all encoding
functions F ∈ Fad that satisfy (12) (see [10], [11], [16]).

Lemma 4.3: [14]. Consider the model given by (3), (4).
Then,

1
T

IT (x; y|θ) ≤ 1
2T

P

∫ T

0

Eθ[z2(t, θ(t))]dt. (14)

Moreover, the channel capacity is given by

Cf = lim
T→∞

P

2T

∫ T

0

Eθ[z2(t, θ(t))]dt. (15)

Following the same methodology as in [11], it is shown
that the above upper bound determines the channel capacity.
Namely, the signal x that reaches the channel capacity is a
white Gaussian noise.

2) Optimal Encoding and Decoding: In this Section,
we design an encoding/decoding strategy that achieves the
channel capacity Cf . The proposed encoding/decoding strat-
egy is optimal in the sense that among all admissible
encoding/decoding schemes that satisfy condition (12), it
minimizes the mean square decoding error and at the same
time achieves the channel capacity. We then employ the
expression for the minimum mean square decoding error
to obtain necessary and sufficient conditions for bounded
asymptotic and asymptotic observability. In the subsequent
development, only linear encoders are considered, because
along the same lines of [11] it can be shown that linear
encoders achieve the channel capacity and the minimum
mean square decoding error.

Definition 4.4: The set of linear admissible encoders Lad,
where Lad ⊂ Fad, is the set of linear non-anticipative
functionals F with respect to (x, x̃, θ), which have the
following form

F (t, x, x̃, θ) = F0(t, x̃, θ) + F1(t, x̃,θ)x(t), (16)

in which for a fixed sample path of θ

Prob
{∫ T

0

|F0(t, x̃, θ)|2dt < ∞
}

= 1

and sup
{ξ∈C([0,T ];�),0≤t≤T}

|F1(t, ξ, θ)| < ∞.

Using linear encoders, the received signal y is given by

dy(t) = z(t, θ(t))[F0(t, x̃, θ) + F1(t, x̃, θ)x(t)]dt

+dv(t), y(0) = 0. (17)

Decoding. Because the decoded signal x̃ is a function of
the received signal y, and the channel z, the optimal decoder
minimizing the mean square decoding error is the conditional
expectation given by

x̃opt(t, y, θ) = x̂(t, y, θ) = E[x(t)
∣∣∣Fy,θ

0,t ]. (18)

The conditional error variance for the decoder defined by
(18) is

V (t, y, θ) = E[(x(t) − x̂(t, y, θ))2
∣∣∣Fy,θ

0,t ]. (19)

Moreover, the decoder x̂(t, y, θ) and the corresponding
conditional error variance V (t, y, θ) satisfy the following
Generalized Kalman Filtering equations.

dx̂(t, y, θ) = A(t)x̂(t, y, θ)dt + B(t)u(t)dt

+z(t, θ(t))V (t, y, θ)F1(t, x̃, θ)
.[dy(t) − z(t, θ(t))(F0(t, x̃, θ) + F1(t, x̃, θ)x̂(t, y, θ))
.dt], (20)
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V̇ (t, y, θ) = 2A(t)V (t, y, θ)
−z2(t, θ(t))F 2

1 (t, x̃, θ)V 2(t, y, θ) + G2(t), (21)

with initial conditions x̂(0) = x̄0, and V (0) = V̄0.
Encoding. From the point of view of the coding theorem,

an encoder is optimal if it operates near the channel capacity,
while ensuring a decoding error that tends to zero exponen-
tially fast, as the codeword length tends to infinity. In our
case, the choice of an optimal encoder (F0, F1) is directly
related to the expression for the conditional error variance
(21). By choosing (F0, F1) appropriately, the conditional
error variance is minimized, and the channel capacity Cf

is achieved.
Theorem 4.5: (Coding Theorem)[14]. Suppose the re-

ceived signal is defined by (4), and the source by (3).
Then the encoder, which achieves the channel capacity, the
optimal decoder, and the corresponding error variance, are
respectively, given by

F ∗(t, x, x̂∗, θ) =

√
P

V ∗(t, y, θ)
(x(t) − x̂∗(t, y, θ)) (22)

dx̂∗(t, y, θ) = A(t)x̂∗(t, y, θ)dt

+B(t)u(t)dt + z(t, θ(t))
√

PV ∗(t, y, θ)dy(t), (23)

V ∗(t, y, θ) = V ∗(0) exp{2
∫ t

0

A(s)ds

−
∫ t

0

z2(s, θ(s))Pds} +
∫ t

0

G2(s) exp{2
∫ t

s

A(u)du

−
∫ t

s

z2(u, θ(u))Pdu}ds, (24)

where x̂∗(0) = x̄0, and V ∗(0) = V̄0.
From (24), it follows that by employing the proposed optimal
encoding/decoding scheme the mean square estimation error
V ∗(t, y, θ) is independent of the control signal. Hence, under
certain conditions, the decoding error can be made arbitrary
small, regardless of control signals. This suggests that the
encoder and decoder, can be design independent of the
controller, or in other words, a separation principle holds
between the control, and the communication part of the
design.
Next, in the following theorem, we present a sufficient con-
dition for bounded asymptotic observability and asymptotic
observability, as a direct result of Theorem 4.5.

Theorem 4.6: i) When G(t) 
= 0, a sufficient condition for
bounded asymptotic observability in the mean square sense
is

P

2
z2(t, θ(t)) > [A(t)]+, a.e. − t ≥ 0, P − a.s. (25)

Moreover, a necessary condition for bounded asymptotic
observability is given by

P

2
z2(t, θ(t)) ≥ [A(t)]+ a.e − t ≥ 0, P − a.s. (26)

ii) When G(t) = 0, (25) is a sufficient condition for
asymptotic observability in the mean square sense, while,

when V̄0 
= 0, condition (26) is a necessary condition for
asymptotic observability in the mean square sense.

Remark 4.7: i) When G(t) = 0 and the channel is the
continuous time AWGN channel (z = 1), for which the
channel capacity is Ca = P

2 , it is easily shown that another
sufficient condition for asymptotic observability is

Ca =
P

2
> lim sup

t→∞
1
t

∫ t

0

A(s)ds. (27)

Moreover, a necessary condition for asymptotic observability
is

Ca ≥ lim sup
t→∞

1
t

∫ t

0

A(s)ds. (28)

ii) In the case of continuous time AWGN channel (z =
1), conditions (25) and (26) are reduced to the following
conditions respectively.

Ca > [A(t)]+, a.e. − t ≥ 0, (29)

Ca ≥ [A(t)]+, a.e. − t ≥ 0. (30)

while, for time-invariant plants, (29) and (30) are reduced to
Ca > [A]+ and Ca ≥ [A]+, respectively.

V. OPTIMAL CONTROLLER, SUFFICIENT CONDITION FOR

STABILIZABILITY

In this Section, we propose an output feedback controller
that minimizes a quadratic pay-off. The extension of the
results of this Section to the vector case can be found in
[12] or [13].
For a fixed sample path {z(s, θ(s)); 0 ≤ s ≤ T}, the output
feedback controller is chosen to minimize the quadratic pay-
off

J =
1
T

E{
∫ T

0

[|x(t)|2Q(t) + |u(t)|2R(t)]dt}, (31)

in the limit as T → ∞, while at the same time it stabilizes
the control/communication system given in Fig. 1. Here, the
scalar Q(t) > 0 and R(t) > 0, ∀t ∈ [0, T ). We assume
that the noiseless analogue of the system (3) (e.g., when
w(t) = 0) is completely controllable (controllable for the
time-invariant analogue) or exponentially stable. According
to the classical separation theorem of estimation and control,
the optimal controller that minimizes (31) subject to a
flat fading AWGN communication channel and the linear
encoder (16) is separated into a state estimator and a certainty
equivalent controller given by

u∗(t) = −K̄(t)x̂(t, y, θ), K̄(t) = R−1(t)B(t)P̄ (t), (32)

where x̂(t, y, θ) is the solution of (20) with the corresponding
observer Ricatti equation (21) and P̄ (t) is the steady-state
solution of the following regulator Riccati equation

−Ṗ (t) = Q(t) − P 2(t)B2(t)R−1(t) + 2A(t)P (t),
lim

T→∞
P (T ) = 0. (33)
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For a fixed sample path of the channel, it follows that if the
observer and regulator Ricatti equations have steady state
solution V̄ (t) and P̄ (t), respectively, the averaged criterion

J̄ = lim
T→∞

1
T

E{
∫ T

0

[|x(t)|2Q(t) + |u∗(t)|2R(t)]dt} (34)

can be expressed in the alternative form

J̄ = lim
T→∞

1
T
{
∫ T

0

[P̄ (t)G2(t) + V̄ (t)

.K̄2(t)R(t)]dt}, (35)

where for the time-invariant case, (e.g., G(t) = G, Q(t) =
Q, R(t) = R), (35) is reduced to

J̄ = lim
T→∞

1
T

E{
∫ T

0

[|x(t)|2Q + |u∗(t)|2R]dt}
= P̄G2 + V̄ K̄2R. (36)

From (24), it follows that the observer Riccati equation (21)
has a steady-state solution V̄ as t → ∞, if the optimal
encoding/decoding scheme proposed in Theorem 4.5 is used
and condition (25) holds. Moreover, the regulator Riccati
equation (33) has the steady state solution P̄ (t) as t →
∞, if the noiseless analogue of system (3) is completely
controllable or exponentially stabilizable.
Next, for a time-invariant analogue of system (3), we have
the following proposition for stabilizability defined in the
sense of Definition 2.2.

Proposition 5.1: [12]. Consider the time-invariant ana-
logue of system (3). Assume that the time invariant noiseless
analogue of the system (3) is controllable or exponentially
stabilizable, and that the sample path of the channel z is
completely known.
Then, for a fixed sample path of the channel, we have the
followings.
i) Assuming G 
= 0 and V (t, y, θ) → V̄ as t → ∞, by using
the optimal policy (32), E|x(t)|2 < ∞ and E|u(t)|2 < ∞,
as t → ∞.
ii) Assuming G = 0 and V (t, y, θ) → 0 as t → ∞, by using
the optimal policy (32), E|x(t)|2 = 0 and E|u(t)|2 = 0, as
t → ∞.
Next, using Theorem 4.6 and Proposition 5.1 the following
theorem for bounded asymptotic and asymptotic stabilizabil-
ity in the mean square sense is derived.

Theorem 5.2: Consider the time-invariant analogue of the
system (3). Assume the time-invariant noiseless analogue of
system (3) is controllable or exponentially stabilizable. Then
i) For the case G 
= 0, a sufficient condition for bounded
asymptotic stabilizability in the mean square sense is given
by

P

2
z2(t, θ(t)) > [A]+, a.e. − t ≥ 0, P − a.s. (37)

ii) For the case G = 0, (37) is also a sufficient condition for
asymptotic stabilizability in the mean square sense.

Remark 5.3: In the case of continuous time AWGN chan-
nel (z = 1), condition (37) is reduced to

Ca > [A]+, (38)

while from [3], it follows that for stabilizability of a discrete
time analogue system over a discrete time AWGN channel,
the sufficient condition is given by

Ca > [log |A|]+. (39)
Remark 5.4: As it was shown in this Section, a separation

principle holds between the design of the communication
and the control subsystems. The efficient encoding/decoding
scheme that minimizes the mean square estimation error and
achieves the channel capacity is given in Section IV, while
the optimal certainty equivalent controller that optimizes a
quadratic cost functional is given in (32). Although we de-
sign optimal encoder/decoder pair and controller separately,
the whole system is optimal since the separation principle
holds. The communication system also sends information at
capacity.
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