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Abstract— In this paper we consider the problem of comput-
ing sets of observable states for discrete-time, piecewise affine
systems. When the maximal set of observable states is full-
dimensional, we provide an algorithm for reconstructing it up
to a zero measure set. The core of the method is a quantifier
elimination procedure that, in view of basic results on piecewise
linear algebra, can be performed via the projection of polytopes
on subspaces. We also provide a necessary condition on the
minimal length of the observability horizon in order to expect a
full-dimensional set of observable states. Numerical experiments
highlight that the new procedure is considerably faster than the
one proposed in [1].

I. INTRODUCTION

In the last ten years there has been a significant progress
in the study of Piece-Wise Affine (PWA) Systems and
various algorithms for checking their structural properties
have been proposed. In particular, some research focused
on exploiting the PWA structure in order to derive verifi-
able conditions for observability. For continuous-time PWA
systems, observability tests have been proposed in [2]. Much
richer is the literature on observability for discrete-time PWA
systems. To our knowledge, the first contribution to this
topic has been given by Sontag in the eighties [3]. By
exploiting tools of Piecewise Linear (PL) algebra [4] he
discussed the existence of observers for PWA models. He
also showed that observability over an infinite time-horizon
is undecidable while observability over a finite time-horizon
is decidable [3], although NP-complete [5]. These results
promoted the interest in computational methods for checking
the latter property 1. Algorithms for testing the observability
of PWA systems have been proposed in [6]. In particular, by
exploiting the equivalence between PWA and Mixed Logic-
Dynamical (MLD) models, methods based on Mixed-Integer
Linear Programming (MILP) have been given for checking if
a set of states is observable or not. Some algebraic conditions
for observability of piecewise linear autonomous systems
have been derived in [7].

Note that the papers [6] and [7] focus on algorithms for
checking if all admissible states (or the states in a prescribed
set [6]) of a PWA system are observable, thus providing a
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1For sake of conciseness, in the sequel “observability” will be used
instead of “observability on a finite horizon”.

yes/no answer. A different problem is the computation of
observability regions, i.e. subsets of state space composed by
observable states. As recalled in Section II-C, the maximal
observability region ŌT (on a horizon of T steps) can be
defined through a sentence in the language of PL algebra
and this implies that it is a finite union of possibly non
closed polytopes. A first algorithm for computing ŌT has
been proposed in [1] where, under some minor assumptions,
it has been shown that ŌT can be reconstructed by solving a
suitable multi-parametric MILP (mp-MILP). However, this
procedure presents some drawbacks, in terms of computa-
tional time, inherent to the use of multi-parametric program-
ming.

The present paper proposes a new algorithm for computing
ŌT , when it is full-dimensional, for discrete-time PWA
systems. The method combines results from PL algebra with
ad hoc observability sub-tests for reconstructing ŌT up to a
zero measure set. At the implementation level our procedure
relies on three basic algorithms: one for projecting polyhedra
over a subspace (see [8] for a review of various methods),
one for checking the rank of a matrix and one for computing
the set difference between collections of polytopes [9]. Given
the availability of methods for performing these operations,
the overall algorithm can be easily coded.

The paper is structured in three main parts. The first one
(Section II) presents some basic results on PWA systems,
observability theory and PL algebra. In Section III, we detail
our algorithm. Finally, in Section IV we illustrate the com-
putational advantages of the procedure through numerical
examples. In particular, we show that the new algorithm is
considerably faster than the one proposed in [1].

II. THEORETICAL BACKGROUND

A. Piecewise affine systems

Consider the following discrete-time PWA system

x(t +1) = Aix(t)+Biu(t)+ai
y(t) = Cix(t)+Diu(t)+ ci

if [x′,u′]′ ∈ Qi (1)

where x ∈ R
n is the state, u ∈ R

m is the input, y ∈ R
p is

the output, Ai, Bi, ai, Ci, Di and ci are matrices of suitable
dimensions and Qi ⊂ R

n+m, i ∈ Ir ⊂ N
+ are disjoint, full di-

mensional and not necessarily closed polytopes. Apparently,
states and inputs of (1) are subject to the constraints

x ∈ X =
⋃

i

Projx(Qi) and u ∈ U =
⋃

i

Proju(Qi) (2)

where Projx(Qi) (resp. Proju(Qi)) denotes the projection of
Qi on the x−coordinates (resp. the u−coordinates). Note that
the sets X and U are not necessarily connected.
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To a discrete-time vector-valued signal w(t) and a time
horizon T > 0, we associate the capitalized vector W =[
w(0)′ . . . w(T −1)′

]′
that collects the samples of w. In

the sequel, we will occasionally use the notation X(x,U)
and Y(x,U) for highlighting the dependence of X and Y on
the initial state x and the inputs U. The system evolution is
blocked at time t if x(t +1) /∈ X. When the system evolution
is blocked at some t ≤ T − 1, the definition of X(x,U) and
Y(x,U) are meaningless. Then, we say that X(x,U) and
Y(x,U) are well-defined if x and U are such that the evolution
of system (1) is not blocked at any time t ≤ T −1. This leads
to the introduction of the T -step feasibility set X

∗
T

X
∗
T = {x ∈ X : ∃U ∈ U

T s.t. X(x,U) ∈ X
T} (3)

By using results from [4] (see also [7] for the case of
autonomous piecewise linear systems), it is easy to prove that
the function {[x′, U′]′ : Y is well defined} �→ Y is piecewise
affine, i.e. it can be written as

Y = Cix+DiU+ fi if
[
x′ U′

]′
∈ Pi, i ∈ M ⊂ N

+ (4)

where Ci, Di and fi are suitably defined matrices and the
regions Pi ⊂ X×U

T , are disjoint, full dimensional and not
necessarily closed polytopes. Apparently, the set P =∪i∈M Pi
coincides with the set {[x′, U′]′ : Y is well defined}.

Moreover, the T-step feasible set X
∗
T defined in (3) can be

written as as
X
∗
T =

⋃
i∈M

Projx(Pi)

A possible way for computing the matrices and the regions
in (4) is to resort to the MLD representation of system (1)
and then use an algorithm based on mode enumeration.

As illustrated in [6], if the regions Qi are closed, we can
represent system (1) in the MLD form [10]

x(t +1) = Ax(t)+B1u(t)+B2δ (t)+B3z(t) (5a)

y(t) = Cx(t)+D1u(t)+D2δ (t)+D3z(t) (5b)

g(δ (t),z(t),u(t),x(t)) ≤ 0 (5c)

g(δ ,z,u,x) = E2δ (t)+E3z(t)−E1u(t)−E4x(t)−E5 (5d)

where δ ∈ {0,1}r� , z ∈ R
rc represent auxiliary binary and

continuous variables, respectively, and A, C, Bi, Di, i =
1, . . . ,3, E j, j = 1, . . . ,5 are matrices of suitable dimensions.
The map g : {0,1}r� ×R

rc ×R
m ×R

n → R
q defines q linear

constraints through (5c).
Using the linearity of (5), the state trajectory of an MLD

system over a time window of length T can be written in
compact form as [10]

X = Ãx+ B̃1U+ B̃2∆+ B̃3Z (6a)

Ẽ2∆+ Ẽ3Z ≤ Ẽ1U+ Ẽ4x+ Ẽ5 (6b)

U ∈ U
T ,X ∈ X

T (6c)

where Ã, B̃1, B̃2, B̃3 and Ẽ j, j = 1, . . . ,5 are suitable matrices
and x is the initial state. Analogously, the output trajectory
can be represented by (6) complemented with the equation

Y = C̃x+ D̃1U+ D̃2∆+ D̃3Z (7)

where C̃, D̃1, D̃2, D̃3 are suitably defined.

B. Mode enumeration

In order to represent the vector Y appearing in (7) as
a piecewise affine function of x and U, we adopt a mode
enumeration procedure inspired by the algorithms for solving
mp-MILPs (see Section 1.5 in [11]). The key idea is to
enumerate all the vectors ∆ of binary variables that verify
(6). To this purpose, let us define the following mixed-integer
feasibility problem

P : find
[
U′ Z′ ∆′ x′

]′
subject to (6b) and (6c)

Mode Enumeration Algorithm
i) Solve problem P

ii) If P is feasible, let ∆i be a feasible combination of
binary variables. Else Stop the procedure;

iii) Deduce the expression of Z from (6b). Actually, for
∆ = ∆i, it is possible to extract from the constraints (6b)
a set of equalities expressing Z as an affine function
zi of x and U (see [10] for further details);

iv) Define the polytopic region Pi ⊂ X×U
T by replacing

Z with zi(x,U) in the non active inequalities in (6b)
and (6c);

v) By using Z = zi(x,U) and ∆ = ∆i in (7) the output can
be expressed as Y = Cix+DiU+ fi for [x′, U′]′ ∈ Pi;

vi) Add the constraints Mi∆ ≤ Ni in the definition of
problem P , where Mi is a 1×T nl vector with elements
that

Mi( j) =

{
1 if ∆i( j) = 1

−1 if ∆i( j) = 0

and Ni = ∑ j ∆i( j) − 1. The constraint Mi∆ ≤ Ni is
equivalent to imposing ∆ 
= ∆i in problem P . Go to
step (i).

At the end of the procedure one gets the collection of disjoint
polytopes Pi ⊂ X×U

T , i ∈ M = {1, . . . ,Nr} and the affine
expression of Y given in (4). The integer Nr is the total
number of the regions found before that the termination
condition in step (ii) is fulfilled.

C. Observability Theory

We recall some basic notions of observability theory that
we specialize to PWA systems.

Definition 2.1: Two states x, x̂ ∈ X are indistinguishable
in T steps if there exists an admissible input sequence U ∈
U

T such that [x′, U′]′ ∈ P, [x̂′, U′]′ ∈ P and the system (1)
produces the same output sequence over the horizon T , i.e.
Y(x,U) = Y(x̂,U).

We use the notation RT (x, x̂) for denoting that x and x̂
are indistinguishable. Note that RT defines a relation over
X×X, but, differently from the case of linear systems, it may
not be an equivalence relation because the transitive property
may not hold [1].

For a state x ∈ X
∗
T , it is clear that RT (x,x) and thus the

graph of the relation RT covers the set X
∗
T ×X

∗
T . Next, we

provide the definition of observable states and observable
regions.

Definition 2.2: A state x ∈ X is observable in T steps if
for all x̂ ∈ X and for any input sequence U ∈ U

T such that
[x′, U′]′ ∈ P, [x̂′, U′]′ ∈ P, x is distinguishable from x̂ ∈ X,
i.e.
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∀x̂ ∈ X,∀ U ∈ U
T (

[x′, U′]′ ∈ P, [x̂′, U′]′ ∈ P,

Y(x,U) = Y(x̂,U)) ⇒ x = x̂
(8)

Definition 2.3: A set OT ⊆ X is an observability region
(in T steps) for the PWA system (1) if all states x ∈ OT are
observable. The maximal observability region (in T steps)
ŌT is the union of all the observability regions. i.e.

ŌT = {x ∈ X : (8)} (9)

Remark 2.1: The finiteness of the parameter T has a
practical meaning. In fact, T is the horizon over which output
data must be collected before being able to reconstruct the
initial state. Then, in a realistic scenario it is reasonable to fix
a maximal horizon of interest Tmax and classify states that are
observable for T > Tmax as practically unobservable [6]. We
also highlight that Definition 2.2 is slightly different from the
definition of incremental observability given in [6] because a
minimum level of distinguishability between different states
is not required.

Remark 2.2: Definition 2.2 of observability tailored to the
use of observers together with a regulator for PWA systems.
Indeed, a state x must be observable not only for a given input
sequence U ∈ U

T but for all admissible input sequences in
U

T .

D. Piecewise Linear Algebra

In this section we briefly review relevant definitions and
results of PL algebra [4], [3]. Definitions are given over R

n,
but remain valid over any finite dimensional real vector space
V.

Definition 2.4: PL sets [4] A PL set of R
n is the union

of a finite number of relatively open polyhedra, i.e. of sets
defined by finitely many linear equations f (x) = a and linear
inequalities f (x) < a.
Note that, in the above definition, the component polyhedra
are not necessarily full dimensional.

A general way of constructing PL sets is the following
one. Let L be the first order language over an alphabet having
the following terms : constant symbols r, free variables x,
unary function symbols r.( ), binary function symbol + and
relational symbols < and =.

Lemma 2.1: [4] For every sentence S in L with free
variables x1, . . . ,xn the set:

Dom(S) � {(x1, . . . ,xn) ∈ R
n|S(x1, . . . ,xn)}

is a PL set. Conversely, for every PL set P in R
n there exists

a sentence S in L such that P = Dom(S).
Moreover, if S1(x,y) and S2(x,y) are sentences in L with free
variables x ∈ R

n1 , y ∈ R
n2 , n = n1 +n2, then

Dom(¬S1) = R
n\Dom(S1) (10a)

Dom(S1 & S2) = Dom(S1)∩Dom(S2) (10b)

{x : ∃y, S(x,y)} = Projx(Dom(S)) (10c)

Formulae (10a) and (10b) allow to relate the basic Boolean
operators appearing in sentences to set operations. Note also
that (10c) performs the elimination of the ∃ quantifier. Then,
a consequence of Lemma 2.1 is that any set defined using

existential and universal quantifiers can also be defined using
only propositional connectives [4]. Moreover, as highlighted
by Sontag [4], formula (10c) shows the central role played by
the projection of polyhedra in quantifier elimination. Finally,
from Lemma 2.1, one can include in L terms for sets already
known to be PL sets.

We can now define the set of unobservable states for
system (1) via sentences in L. Let S(x, x̂,U) be the sentence:[
x′,U′

]′
∈ P,

[
x̂′,U′

]′
∈ P, x 
= x̂ and RT (x, x̂). Let S1(x) be

the sentence : ∃x̂, ∃U s.t. S(x, x̂,U). In view of Definition
2.3, the maximal set of observable states ŌT is given by

ŌT = Dom(¬S1)

Since S1 is a sentence in L, from Lemma 2.1 it follows that
ŌT is a PL set and hence the union of finitely many, possibly
non closed polytopes. The main purpose of the paper is to
provide an algorithm for computing ŌT . To this purpose,
from (10a) and (10c) one obtains

ŌT = X
∗
T\Dom(S1) = X

∗
T\Projx(Dom(S)) (11)

The next problem is to express Dom(S) as the union of
finitely many polytopes. Quoting Sontag [3], if Ŝ is a
generic sentence in L, Dom(Ŝ) can be found “via three basic
algorithms: one for projecting polyhedra on hyperplanes,
another for checking feasibility of a linear program and a
standard Boolean table”. However, this observation does not
prevent from using ad-hoc computational tools for speeding
up the computation of Dom(Ŝ) for a specific sentence Ŝ. In
the next section we provide an efficient algorithm for the
computation of the set Projx(Dom(S)).

III. COMPUTATION OF OBSERVABILITY REGION

For computing Projx(Dom(S)) we proceed in two steps:
first, we establish a list I of possibly observable regions.
This list is created by checking if there exist pairs of
indistinguishable states in the same polytope Pi. This test
will be performed using a rank condition on the matrices Ci.
Once the list I is obtained, we look for indistinguishable
states in different, possibly observable regions.

For detecting if a region Pi is possibly observable we
exploit the following Lemma, inspired by the results in [7].

Lemma 3.1: Let Pi be a not necessarily closed, full di-
mensional polyhedron and Int(Pi) be its interior.

i) If rank (Ci) < n, then ∀ [x′,U′]′ ∈ Int(Pi), ∃ [x̂′,U′]′ ∈
Int(Pi) such that x 
= x̂ and RT (x, x̂).

ii) If rank(Ci) = n, there is no pair of vectors [x′,U′]′ and
[x̂,U′]′ in Pi such that x 
= x̂ and Y(x,U) = Y(x̂,U).

Proof : for two vectors [x′,U′]′ and [x̂′,U′]′ in Pi, formula (4)
shows that RT (x, x̂) is equivalent to Ci(x− x̂) = 0.

i) Let B([x′,U′]′) be a ball of center [x′,U′]′ in-
cluded in Pi. If we suppose that rank(Ci) < n, then
Ker([Ci,0T m])∩B([x′,U′]′) 
= /0. The proof is concluded
by noting that it is always possible to choose a point
[x̂′,U′]′ ∈ B([x′,U′]′) verifying x− x̂ ∈ Ker(Ci) and x 
=
x̂. This is a consequence of the full dimensionality of
B([x′,U′]′).

ii) Suppose that rank(Ci) = n, and that there exists two
states x and x̂ and a control sequence U such that,
[x′,U′]′, [x̂′,U′]′ ∈ Pi and Ci(x− x̂) = 0. Since Ci is full
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column rank then, x = x̂. We conclude that there is no
pair of indistinguishable states in Projx(Pi). �

Remark 3.1: For autonomous piecewise linear systems,
the rank condition in point (ii) of Lemma 3.1 matches the
condition (19) of Theorem 2 in [7]. At first sight, it may be
surprising that Theorem 2 in [7] provides a necessary and
sufficient condition for observability while we use the same
test just for determining if a region is possibly observable.
The difference is that we do not assume that the sequence of
switches over the observability horizon is known beforehand.

By using the condition rank(Ci) < n for checking if all
states in Projx(Pi) are unobservable, some possibly observ-
able parts of the boundary of Projx(Pi) will be wrongly clas-
sified. Our algorithm will thus produce a set of observable
states which differs from the maximal observability region
by a set of zero Lebesgue measure.

From Lemma 3.1, we deduce that the maximal observabil-
ity region has zero Lebesgue measure if all the matrices Ci,
i ∈ M have rank less than n. This enforces a condition on
the minimal length of the observation horizon.

Lemma 3.2: A necessary condition for having a full di-
mensional set of observable states is that T verifies

T p ≥ n (12)
Proof : Ci are T p×n matrices and, apparently, condition (12)
is necessary for having rank(Ci) = n.

Let I ⊆ M be the set collecting all indexes of possibly
observable regions (i.e. k ∈ I ⇔ rank (Ck) = n). In the
second step of our algorithm we test the indistinguishability
of pair of states belonging to different regions. For i ∈ I

and for j ∈ M \{i} let

Ri j � {(x, x̂,U) :

[
x
U

]
∈ Pi and

[
x̂
U

]
∈ Pj and RT (x, x̂)}

(13)
Note that the definition of Ri j mimics the sentence S given
at the end of Section II-D. Moreover, since Pi are polytopes
and the map Y(x,U) is affine on each Pi, the constraints in
(13) are linear. We also highlight that the constraint x 
= x̂ is
implicit in the definition of Ri j. Indeed, the same vector U is
used in the conditions [x′, U′]′ ∈ Pi and [x̂′, U′]′ ∈ Pj. Then,
x 
= x̂ follows from Pi ∩Pj = /0.

If the region Ri j is non empty (a fact that can be
checked through a single linear program) a subset of un-
observable states can be computed by projecting Ri j on the
x−coordinates. This is a consequence of formula (10c). In
order to discover all possible full dimensional regions of
unobservable states the sets Ri j must be computed for all
i ∈ I and for all j ∈ M \{i}.

Let OT be defined as

OT = X
∗
T\{

( ⋃
i/∈I

Projx(Pi)
)⋃( ⋃

i∈I

⋃
j∈M \{i}

Projx(Ri j)
)
}

(14)
In view of formula (11), an on the basis of the previous
discussion, one has that OT differs from ŌT by a set of zero
measure. Since all the sets appearing in the right hand side of
(14) are polytopes, the set difference can be computed easily
[9]. In particular, free software for computing the closure of
OT exists [12].

Remark 3.2: Note that we did not compute the set Ri j
for i = j. This case has to be treated separately, i.e. using
the rank test given in Lemma 3.1. Indeed, since RT (x,x),
∀ x ∈ X

∗
T and since the constraint x 
= x̂ does not appear in

(13), it follows that Projx(Rii) = Projx(Pi), ∀ i. Then, from
(14), one would always obtain OT = /0.

IV. NUMERICAL EXAMPLES

We first demonstrate, through toy examples, the compu-
tational advantages of our algorithm (termed “projection-
based”) with respect to the one proposed in [1] and based
on mp-MILP. The results are compared both in term of
computational time and solution complexity, i.e. the number
of polytopes used to describe the observability region. We
highlight that theoretical results on the worst-case computa-
tional complexity of mp-MILP algorithms and algorithms
for projecting polyhedra on subspaces are available (see
[13] and [8], respectively). However, their use for making
a rigorous comparison of the projection-based method with
the one given in [1] is far from being trivial. Secondly, we
present the results of the projection-based algorithm on a
more complex example (a vehicle powertrain with backlash)
for which the maximal observability region is not obvious.
All the experiments have been performed on a Pentium 4 2.4
Ghz running Matlab 6.5.1. Consider the following academic
examples
Example 1:

x(t +1) =

{
x(t) if |x(t)| ≤ 2
1
2 x(t) if |x(t)| ≥ 2+ ε (15a)

y(t) =

{
x(t) if |x(t)| ≤ 2
0 if |x(t)| ≥ 2+ ε (15b)

Example 2:

[
x1
x2

]
(t +1) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 0
1 1

][
x1
x2

]
(t) if x1(t) ≥ x2(t)+ ε[

0.5 1
0 1

][
x1
x2

]
(t) if x1(t) ≤ x2(t)

(16a)

y(t) =

{
x1(t) if x1(t) ≥ x2(t)+ ε
x2(t) if x1(t) ≤ x2(t)

(16b)

where ε is a small tolerance that had been set to 0.1 in [1].
Tables I and II summarize the computational performance of
the two algorithms for different lengths of the observation
horizon. The computational times of the projection-based
procedure include also the running time of the mode enu-
meration algorithm presented in Section II-B.

T 3 4 5 6
mp-MILP
based
algorithm

28s/ 5 reg 108s/ 7 reg 429s/ 9 reg 1217s/ 11 reg

Projection-
based
algorithm

0.28s/ 5 reg 0.70s/ 7 reg 2.10s/ 9 reg 5.41s/ 11 reg

TABLE I

COMPARISON OF RESULTS FOR THE EXAMPLE 1

The tables highlight that the projection-based algorithm
is considerably faster than the one based on mp-MILP,
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T 3 4 5 6
mp-MILP
based
algorithm

27s/ 6 reg 92s/ 9 reg 191s/ 6 reg 329s/ 5 reg

Projection-
based
algorithm

0.27s/ 5 reg 0.42s/ 7 reg 0.45s/ 6 reg 0.49s/ 5 reg

TABLE II

COMPARISON OF RESULTS FOR THE EXAMPLE 2

especially for large horizons. The results also show that
the complexity of the projection-based algorithm is always
equal or less than the complexity of the other algorithm.
To give an idea of the simplification capabilities (in term of
solution complexity) of our algorithm we plot in figure 1
the polytopes composing the observability region O4 for the
example 2 found by the two methods.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.4

0.6

0.8

1

x
1

x 2

(a) Projection-based Algorithm
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−0.4
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0.2

0.4

0.6

0.8

1

(b) mp-MILP based Algorithm

Fig. 1. The Observability region O4 for Example 2

Example 3 : Vehicle Powertrain
In the sequel, we compute the maximal observability region
for a simplified model of a vehicle powertrain with backlash
reported in [14]. The powertrain, represented in figure 2, is

Fig. 2. Powertrain Model

modeled as a two mass system⎧⎨
⎩

θ̇ = τωm −ωl
Jmω̇m = Tm − τTw −βmωm
Jlω̇l = Tw −βlωl

(17)

where the input Tm is the engine torque, ωm is the engine
speed, τ is the gear box ratio, ωl is the wheel speed, θ is the
twist angle and Tw = kDα(θ) is the torque due to the shaft
elasticity. Moreover, Dα(.) is the dead zone operator defined
as:

Dα(θ) =

⎧⎨
⎩

θ −α if θ > α
0 if |θ | ≤ α
θ +α if θ < −α

All the parameters values used can be found in Appendix A
of [14]. Bounds on system states are

[
0,500

]
rad/s−1 for

ωm,
[
−50,50

]
rad/s−1 for ωl and

[
−2,2

]
rad for θ . The

engine torque takes values in
[
0,200

]
N ·m. The discrete-time

PWA model is obtained through the discretization scheme
ẋ � (xk+1 − xk)/Ts, where Ts is the sampling period, chosen
equal to 1ms. The measured output is y = ωm.

Fig. 3. Observability region for the powertrain example with T = 3

We first apply our algorithm with T = 3. By Lemma 3.2,
this is the minimal length of the observation horizon that
may produce a full dimensional observability region. The
region OT is expected to contain states such that the twist
angle lies and stays out of the backlash during the whole
observation horizon and for all admissible inputs. Actually,
if |θ | ≤ α one has Tw = 0 and from (17) it follows that
the dynamics of ωm and ωl are decoupled. It is apparent
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that in this case the wheel speed cannot be estimated from
the measure of the engine speed. Figure 3 shows the results
produced by the projection-based algorithm. If we increase
the horizon length to T = 5, the maximal observability
region (plot in figure 4) becomes larger since more initial
states that “lie in the backlash domain” (i.e. with |θ | ≤ α)
will evolve out of it within the observation horizon, thus
becoming observable. This phenomenon is emphasized in

Fig. 4. Observability region for the powertrain example with T = 5

figure 5 where the observability regions computed for T = 3
(figure 3) and T = 5 (figure 4) are projected over the twist
angle θ .
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Fig. 5. Projection of O3 and O5 on θ for the powertrain example

V. CONCLUSIONS

In this paper we proposed an algorithm for computing the
maximal observability region of a piecewise affine system.
Our method hinges on results from PL algebra and exploits
polyhedral computation algorithms for finding the polytopes
composing ŌT (up to a zero-measure set). In particular, the
projection of polytopes on suitable subspaces is used as a tool
for performing quantifier elimination. The procedure appears
to be computationally very efficient and this fact is partially
motivated by the use of the rank test given in Lemma 3.1. We

also derived a necessary condition on the minimal length of
the observability horizon in order to have a full-dimensional
maximal observability region.

The maximal observability region usually has a non trivial
structure. Nevertheless, as remarked in [1], its knowledge
might play a key role in the synthesis of state observers and
output-feedback controllers for PWA systems.
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