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Abstract—This paper considers minimax problems, in
which the control minimizes the pay-off induced by a measure
which maximizes the pay-off over the class of measures
described by a relative entropy set between the uncertain
and the true measure. We present several basic properties
of the relative entropy on infinite dimensional spaces, and
then we apply them to an uncertain system described by a
Stochastic Differential inclusion on Hilbert space.

I. Introduction

The theory and contributions of this paper are devel-
oped at two levels of generality; the abstract level and
the application level. At the abstract level, a general
framework is put forward in which the basic ideas
are explained, and the fundamental results are derived.
At this level, systems are represented by measures on
measurable spaces, energy signals by functionals on the
space of measures, and uncertainty by sets described by
bounded relative entropy between the true measure and
the nominal measure. The objective of the abstract level
formulation is the derivation of existence of the minimax
strategies on general spaces. At the application level,
the results are applied to infinite dimensional systems
described by evolution equations involving unbounded
operators. In this set up, an explicit computation of the
maximizing measure is derived in terms of the nominal
measure, which is described by an evolution equation on
Hilbert spaces.
The problem formulation is related to the one con-
sidered in [5] and [6,7,8]. However, the aim of this
paper as described above and the result obtained are
fundamentally different from the results found in these
papers, in both the abstract level and at the application
level. Specifically, at the abstract level, existence and
of minimax strategies is shown for nonlinear functionals
of the uncertain measure, while at the application level
the results are applied to stochastic evolution equations
on Hilbert spaces with unbounded operators. More-
over, at the application level, the worst case measure
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is computed explicitly, as a function of the a priori
conditional nominal measure. Most papers dealing with
partially observable problems are concerned with linear-
Quadratic-Gaussian problems in which the disturbance
is a stochastic process.
Let X be a Polish space, in particular a complete
separable metric space and let BX the sigma algebra of
Borel sets generated by the metric topology. Let M1(X)
denote the space of countably additive regular probabil-
ity measures defined on BX . We assume throughout the
paper that M1(X) is furnished with the weak topology.
It is well known that the weak topology is metrizable
with the Prohorov metric which makes it a complete
metric space. We shall denote this metric by dP . Thus a
net µα w−→ µo if and only if dP (µα, µo) −→ o. Since the
weak topology and the metric topology are equivalent we
note the following facts. A set Γ ⊂ M1(X) is compact
with respect to the weak topology, if and only if, it
is compact with respect to the metric topology dP . A
functional g : M1(X) −→ R is weakly continuous,if and
only if, it is continuous with respect to the Prohorov
metric dP .
Let ν, µ ∈ M1(X) and suppose ν is absolutely continuous
with respect to the measure µ, to be denoted by ν ≺ µ.
Then the Radon-Nikodym derivative of ν with respect
to µ exists and this is given by an h ∈ L1(X, µ) such
that

dν = hdµ.

We note that, given that ν ≺ µ, the RND is unique. If
further, h log h ∈ L1(X, µ), then the entropy of ν relative
to the measure µ, known as relative entropy, is defined
and it is given by

H(ν|µ) ≡
∫

X

h log hdµ =
∫

X

{
log(dν/dµ)

}
dν. (1)

The basic problem we wish to study can be stated as
follows.
Basic Problem: Let η : M1(X) −→ [−∞,∞), be an
extended real valued continuous function. Let M0 ⊂
M1(X) denote the set of measures induced by a con-
trolled stochastic system under the assumptions that the
system is perfectly known (system operators and other
parameters and coefficients etc. are all perfectly known).
In other words M0 denotes the set of attainable mea-
sures on X associated with an unambiguously defined
(perfectly known) controlled stochastic system. However
in the real world situation, the system parameters are not
entirely known to the controller. This introduces some
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degree of uncertainty in the system dynamics around
the nominal controlled system and hence the set of
measures induced by the true system may differ from
those represented by the set M0. For each fixed r > 0
and µ ∈ M0 ⊂ M1(X), define the set

Ar(µ) ≡ {ν ∈ M1(X) : H(ν|µ)) ≤ r}. (2)

This set represents the set of true measures induced
by the actual physical system given that the nominal
controlled system induces the measure µ. This is the set
of uncertainty about the system measured in terms of
relative entropy, relative to the measure µ. Thus the set
of measures induced by the uncertain controlled system
is given by

Mr ≡
{⋃

(Ar(µ)), µ ∈ M0

}
.

Clearly M0 ⊂ Mr for all r ≥ 0 and limr↓0 Mr = M0.
Since the relative entropy is nonnegative, the parameter
r determines the degree of uncertainty. Thus the larger
the r is, the greater is the uncertainty.
The problem is to find a µo ∈ M0 that minimizes the
functional

Fr(µ) ≡ sup{η(ν); ν ∈ Ar(µ)} (3)

over the set M0. In other words we wish to find a solution
to the min-max problem

(Pis) : inf
µ∈M0

sup{η(ν) : ν ∈ Ar(µ)} (4)

In the following section we investigate the question of
existence of solution to the basic problem (Pis).

II. Existence of Solution to Problem (P)

Lemma 2.1 Let η : M1(X) −→ [−∞, +∞) be an upper
semi continuous function and strictly concave. Then, for
every µ ∈ M0 ⊂ M1(X), there exists a unique νo ∈
Ar(µ) at which η attains its supremum.
Proof. Found in [9].

Lemma 2.2 Suppose the assumptions of Lemma 2.1
hold. Then the graph G(Ar) of the multifunction Ar

is sequentially closed and the function Fr as defined by
(3) is lower semi continuous.
Proof. Here we outline the prove. By definition the
function Fr is given by

Fr(µ) ≡ sup{η(ν); ν ∈ Ar(µ)}.
By virtue of the previous lemma, for every µ ∈ M0,
there exists a unique ν ∈ Ar(µ) so that

Fr(µ) = η(ν) ≡ η(ν(µ)),

that is, the maximizer ν is uniquely determined by µ.
Thus Fr is a well defined single valued functional. Hence,
the derivation proceeds by showing that the graph of the
multifunction µ −→ Ar(µ) given by

G(Ar) ≡ {(ν, µ) ∈ M1(X) ×M1(X) : ν ∈ Ar(µ)}

is closed, and that Fr is lower semi continuous.

Theorem 2.3 Consider the problem (Pis) and suppose
that η : M1(X) −→ [−∞, +∞) is upper semi continuous
and strictly concave and the set M0 is compact with
respect to the Prohorov topology. Then the problem (Pis)
has a solution.
Proof. The proof follows from Lemma 2.2. Indeed, by
virtue of Lemma 2.2, the map µ −→ Fr(µ) is lower semi
continuous and by assumption M0 is compact. Hence Fr

attains its minimum on M0. •.
Example. We present an example illustrating the pre-
ceding results.

(Target seeking Problem): Let µd ∈ M1(X) be a desired
measure, and suppose we wish to find a µ ∈ M0

(the attainable set) that approximates µd as closely
as possible. Clearly the obvious choice of the objective
functional is the Prohorov metric giving

η(ν) ≡ dP (µd, ν).

Since dP is a metric, the functional η as defined is
continuous. If one disregards the uncertainty, one would
be willing to minimize this functional on the attainable
set of the perfect system given by M0. By our assump-
tion this set is compact and since η is continuous it
attains its minimum on it. Let µo ∈ M0 be a minimizer.
Then η(µo) ≤ η(µ), µ ∈ M0. But since the system is
uncertain, the actual law (true measure) in force may be
any element from Ar(µo) and one may face the worst
situation,

η(ν∗) ≡ sup{η(ν), ν ∈ Ar(µo)} = Fr(µo).

Clearly η(ν∗) ≥ η(µo) with H(ν∗|µo) ≤ r. So instead
of choosing µo, we may choose one that minimizes the
maximum distance. That is, we choose an element µ∗ ∈
M0 so that

Fr(µ∗) = inf{Fr(µ), µ ∈ M0}
where

Fr(µ) ≡ sup{η(ν) ≡ dP (µd, ν) : ν ∈ Ar(µ)}.
Clearly

Fr(µ∗) ≤ Fr(µo) = η(ν∗).

Thus we conclude that the inf-sup strategy is closer to the
desired goal than the strategy based on the deterministic
dynamics with attainable set M0. Additional examples
are found in [9].

III. Uncertain Stochastic Control System

In this section we wish to apply the results of the
previous section to a class of stochastic control problems.
Consider the controlled stochastic system

dx = Axdt + fo(x, u)dt + B(x)dW, x(0) = x0,

t ∈ I ≡ [0, T ], (5)

1777



on a separable Hilbert space H, with A being the
infinitesimal generator of a C0 semigroup S(t), t ≥ 0, on
H , f0 : H×U −→ H and B : H −→ L(H) suitable maps
and W a cylindrical Brownian motion adapted to the
filtered probability space (Ω,F ,Ft ↑, P ). It is assumed
that all the parameters {A, f0, B, x0} defining the system
are perfectly known. Very often the system parameters,
possibly based on noisy estimates, are not exactly known.
In this case the true physical system may be described
by a perturbed version of (5) as follows,

dx = Axdt + fo(x, u)dt + f̃(x)dt + B(x)dW,

t ∈ I ≡ [0, T ], x(0) = x0, f̃(x) ∈ F̃ (x), x ∈ H,

(6)

where f̃ is any measurable selection of a Borel measur-
able multifunction F̃ representing the uncertainty in the
nominal drift f0. Note that F̃ may absorb any bounded
perturbation of the unbounded operator A and those
associated with the nominal drift. We identify the system
(5) as the nominal system and system (6) as the true
physical system with parametric uncertainty as described
above.

In general a non parametric model may cover a wider
class of uncertain stochastic control systems provided
the uncertainty is measured in terms of Prohorov metric
topology. But for a fairly large class of physical systems,
relative entropy (though it is not a metric) provides
a good and mathematically convenient measure of un-
certainty. This is the measure that we use throughout
the paper. Let X denote a Polish space, BX the Borel
algebra of subsets of the set X, and M1(X) the space
of probability measures defined on BX . This is the state
space. Let Uad denote the class of admissible controls.
The perfect system can be described by the single valued
map,

Φ : Uad −→ M1(X),

that assigns a unique element µ ∈ M1(X) corresponding
to each choice of control policy u giving Φ(u) = µ.
Clearly, the attainable measures, denoted by the set

M0 ≡ {Φ(u), u ∈ Uad},
describes the power of the control system in the sense of
its capacity to produce a wider variety of probability
measures (possibly with different support properties)
guaranteeing more freedom of maneuver. The model for
the uncertain system may be chosen as follows: for any
choice of µ ∈ M0 and any real number r > 0, define the
set valued map as before by

Ar(µ) ≡ {ν ∈ M1(X) : H(ν|µ) ≤ r}.
Clearly this set is always non empty,since it contains
µ itself. Then the uncertain system is governed by the
multi valued map

Φr(u) = Ar(Φ(u)),

with range given by

Mr ≡
⋃

{Φr(u), u ∈ Uad} =
⋃

{Ar(µ); µ ∈ M0}.
The min-max problems studied in section II directly
applies to this later class of uncertain systems. In this
section we consider a control problem for the system (6)
which is described by parametric uncertainty.

Admissible Controls: Let U be a closed subset of another
Polish space and Uad the class of admissible controls
taking values from U. More detailed information on
the structure of the class of admissible controls will be
presented later.

Existence of Solutions, Properties of Attainable Mea-
sures: Standard assumptions imposed on {f0, B} guar-
anteeing the existence of mild solutions are as stated
below [3] . There exist constants K, L > 0, such that for
all v ∈ U , f0 and B satisfy the following Lipschitz and
growth properties:

‖ f0(x, v) ‖2 + ‖ B(x) ‖2
H.S≤ K(1+ ‖ x ‖2), ∀ x ∈ H

‖ f0(x, v) − f0(y, v) ‖2 + ‖ B(x) − B(y) ‖2
H.S

≤ L ‖ x − y ‖2, ∀ x, y ∈ H,

(7)

where ‖ B(x) ‖H.S denotes the Hilbert-Schmidt norm
of the operator B(x). Under the above assumptions,
it is well known [3] that for each control u ∈ Uad the
(nominal) system (5) has a unique Ft-adapted mild
solution x with the properties

(p1): supt∈I E ‖ x(t) ‖2
H< ∞ and (p2): x ∈

C(I, H) P − a.s.
In case controls are based on state feedback, the

Lipschitz property imposed on the drift f0 is rather
restrictive and may be lost. Thus it is necessary to
generalize this. This can be done by accepting martingale
solution (weak solution).
Lemma 3.1 Consider the system

dx = Axdt + B(x)dW, x(0) = x0, (8)

and suppose A generates a C0-semigroup S(t), t ≥ 0, on
H , B satisfy the assumptions (7) and that E ‖ x0 ‖2< ∞.
Then (8) has a unique mild solution with sample paths
x ∈ C(I, H) P -a.s satisfying E{supt∈I ‖ x(t) ‖2

H} < ∞.

Proof See Da Prato- Zabczyk [ 3, Chapter 7].
Lemma 3.2 Consider the control system

dx = Axdt + f0(x, u)dt + B(x)dW, x(0) = x0. (9)

Suppose A and B satisfy the assumptions of Lemma 3.1
and further there exists a finite positive number γ such
that

sup{‖ B−1(x)f0(x, v) ‖H , (x, v) ∈ H × U} ≤ γ (10)

and f0 satisfy the growth assumption (7), and that E ‖
x0 ‖2< ∞. Then for any given control u ∈ Uad, the
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system (9) has a martingale solution uniquely determined
by the solution of (8) and the control u ∈ Uad.

Proof Under the given assumption (10) it follows from
Theorem 10.14 (see also Proposition 10.17) [3] that the
process

Ŵ (t) ≡ W (t) −
∫ t

0

B−1(x(s))f0(x(s), us) ds (11)

evaluated along the mild solution of equation (8) is a
cylindrical Brownian motion on an extended (Skorohod
extension) probability space (Ω̂, F̂ , F̂t ↑, P̂ ). Thus on
this probability space the mild solution of (8) is in fact
the martingale solution of (9) driven by the Brownian
motion Ŵ . By Girsanov theorem [3, Da Prato-Zabczyk,
Theorems 10.14, 10.18, p290], the probability measure
induced by the controlled process governed by (9) is
absolutely continuous with respect to that induced by the
process governed by (8). More precisely, let X ≡ C(I, H)
denote the space of continuous functions on I with
values in H. Furnished with the standard sup norm
topology this is a Banach space. Let BX denote the
Borel algebra of subsets of the set X making (X,BX) a
measurable space. This is the canonical sample space, a
Borel measurable space (X,BX), on which we may define
different measures. Let µ0 denote the measure induced
by the system (8) on BX and µu the one induced by
the system (9). Then by virtue of Girsanov theorem as
mentioned above, we have µu ≺ µ0 and the RND is given
by

(dµu/dµ0) =

exp

{∫ T

0

(B−1f0, dW ) − (1/2)
∫ T

0

‖ B−1f0 ‖2
H ds

}

≡ Λ(u). (12)

This means that the martingale (or weak) solution of (9),
described in terms of the probability measure it induces
on the path space X, is uniquely determined by the
measure induced by (8) and the control u ∈ Uad through
the relation

dµu = Λ(u)dµ0. (13)

This completes the proof. •
Remark The assumption (10) is satisfied if f0 satisfies the
growth condition (7) and the operator B(x) is surjective
satisfying

‖ B(x)z ‖H≥ c(1+ ‖ x ‖q) ‖ z ‖H , q ≥ 1, (14)

for a constant c > 0.

Theorem 3.3 Consider the control system (9) and suppose
the assumptions of Lemma 3.2 hold, and the set Drnd ≡{
Λ(u), u ∈ Uad

}
is a closed bounded subset of L1(X, µ0)

satisfying

lim
µ0(Γ)→0

∫
Γ

Λ(u)dµ0 = 0 uniformly with respect u ∈ Uad.

Then the set of attainable measures M0, induced by the
control system (9), is compact in the Prohorov topology.

Proof. The proof is a direct consequence of the celebrated
Dunford-Pettis theorem [4, pp.93]. •

Perturbed System. The uncertain system described by
(6) is essentially a stochastic differential inclusion

dx ∈ Axdt + f0(x, u)dt + F̃ (x)dt + B(x)dW,

x(0) = x0, t ∈ I. (15)

We assume throughout that F̃ : H −→ 2H \ ∅ is a
measurable multifunction in the sense that for every
Γ ∈ BH the set {x ∈ H : F̃ (x) ∩ Γ �= ∅} ∈ BH .
Let c(H) ⊂ 2H \ ∅ denote the class of nonempty closed
subsets of H . The following result relates the uncertain
system (15) to the nominal system (9) in terms of relative
entropy (information distance).

Theorem 3.4 Consider the system (15) and suppose
{A, f0, B} satisfy the assumptions of Lemma 3.2. Fur-
ther, suppose that F̃ is a measurable multifunction
mapping H to c(H) and there exists a finite positive
number β such that

sup
{
‖ B−1(x)h ‖H , h ∈ F̃ (x)

}
≤ β ∀ x ∈ H. (16)

Then for each fixed u ∈ Uad, the system has a nonempty
set of martingale solutions denoted by MF̃ ,u ⊂ M1(X)
and that each member ν of MF̃ ,u is absolutely con-
tinuous with respect to the corresponding martingale
solution µu of the nominal (or perfect) system (9).
Further, there exists a finite positive number r such that

H(ν|µu) ≤ r, ∀ ν ∈ MF̃ ,u u ∈ Uad.

Proof. Since H is a separable Hilbert space, it is also
a Polish space with respect to its standard topology.
Clearly (H,BH) is a measurable space and by our
assumption F̃ : H −→ c(H) is measurable. Thus it
follows from standard selection theorem [ see 2, Theorem
2.1,pp.154] that F̃ has a nonempty set of measurable
selections which we may denote by SF̃ . Let f̃ ∈ SF̃ and
consider the system

dx = Axdt + f0(x, u)dt + f̃(x)dt + B(x)dW,

x(0) = x0, t ∈ I. (17)

For any u ∈ Uad, let µu ∈ M1(X) be the measure
corresponding to the martingale solution of (15). Then
following identical arguments as in the proof of Lemma
3.2, one can verify that ρ̃ given by

ρ̃ ≡ Exp

{∫
I

(B−1f̃ , dW ) − (1/2)
∫

I

‖ B−1f̃ ‖2
H dt

}

(18)

is the RND of the measure ν̃u ∈ M1(X), associated
with the martingale solution of (17), with respect to the
measure µu, associated with the martingale solution of
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(9). Computing the entropy of ν̃u relative to µu, we find
that

H(ν̃u|µu) = (1/2)
∫

X

ϕ̃(ξ)dνu(ξ) (19)

where

ϕ̃(x) ≡
∫

I

‖ B−1(x(t))f̃ (x(t)) ‖2
H dt , x ∈ X ≡ C(I, H).

By our assumption (16), it follows from (19) that

H(ν̃u|µu) ≤ (1/2)β2T ≡ r. (20)

Since (20) holds for all selections f̃ ∈ SF̃ , and every
admissible control u, we conclude that H(ν̃u|µu) ≤ r for
all u ∈ Uad. •
Pay-Off Functional. Let (U, d) be a compact metric space
and Bρ(H, U) denote the class of Borel measurable func-
tions from H to U furnished with the metric topology

ρ(f, g) ≡ sup
x∈H

d(f(x), g(x)), f, g ∈ Bρ(H, U).

Let Uo denote the class of measurable functions on I with
values in the metric space Bρ(H, U). We may introduce
a metric on it as follows.

γ(u, v) ≡ λ{t ∈ I, ρ(ut, vt) �= 0},
where λ denotes the Lebesgue measure on I. With
respect to this topology, (U0, γ) is a complete metric
space. Let Uad ⊂ U0 denote the class of admissible
controls assumed to be compact with respect to the γ
topology. Thus this class of controls represent a class of
compact Markovian feedback controls. Now consider the
classical control problem (Pc) : Find a control uo ∈ Uad

at which the following inf-sup is attained

Jo ≡ inf
u∈Uad

sup
ν∈MF̃ ,u

Eν

(∫
I

	(t, x, u)dt + Ψ(x(T ))
)

,

(21)

where Eν(·) denotes integration with respect to the
measure ν, a martingale solution of (15) corresponding
to a given Markovian control u and a given measurable
selection f̃ ∈ SF̃ . Defining

ψu(x) ≡
∫

I

	(t, x(t), u(t, x(t)))dt + Ψ(x(T )),

our problem can be compactly presented as follows: Find
u ∈ Uad that minimizes the functional Jo(u) given by

Jo(u) ≡ sup
ν∈MF̃ ,u

∫
X

ψu(x)dν(x). (22)

In other words,

Jo ≡ inf
u∈Uad

Jo(u). (23)

Clearly this is a particular case of the general problem
studied in section II. In view of the discussions of section
III, this problem can be formulated as the original

problem studied in section II. For this problem one has to
choose η,M0, and the multifunction Ar as given below:

η(ν) ≡
∫

X

ψu(x)dν(x), ν ∈ MF̃ ,u

M0 ≡ {µ ∈ M1(X) : dµ = gdµo, g ∈ Drnd}
Ar(µ) ≡ {ν ∈ M1(X) : H(ν|µ) ≤ (1/2)β2T ≡ r},
µ ∈ M0.

(24)

The min-max problem (Pc) has a solution as stated in
the following corollary.

Corollary 3.5 Consider the control problem (Pc) for the
uncertain system described by the SDI(stochastic dif-
ferential inclusion) (15) and suppose the assumptions of
Theorem 3.3 and 3.4 hold and that 	 and Ψ are bounded
away from −∞. Let {η,M0,Ar} be as described by (24).
Then the problem (Pc) has a min-max strategy uo ∈ Uad.

Proof. The proof is similar to that of Theorem 2.3.

The Worst Case Measure. This section is concerned with
reformulating the constrained optimization of (22), as
an unconstrained optimization using duality theory (La-
grange functionals), and then showing the equivalence of
the two problems.
For every s ∈ �, define the Lagrangian

Js,r(u, νu) = Eνu

(ψu(x)) − s
(
H(νu|µu) − r

)
, s ∈ �

and its associated dual functional

Js,r(u, ν∗,u) = sup
νu∈M1(X)

Js,r(u, νu) (25)

In addition, define the quantity

ϕs∗
(u, r) = inf

s≥0
Js,r(u, ν∗,u) (26)

Next, the equivalence between the unconstrained func-
tional and the constrained problem is established using
[8], pp. 224-225.

Theorem 3.6 Suppose u ∈ Uad is given, ψu(x) a measur-
able function bounded from below.
Then

J(u, ν∗,u) = sup{
νu∈M1(X);H(νu|µu)≤r

}
∫

X

ψu(x)dνu

= inf
s∈�

sup
νu∈M1(X)

{
Eνu

ψu − s
(
H(νu|µu) − r

)}

= inf
s∈�

Js,r(u, ν∗,u) (27)

Proof. Follows from [8], page 224-225.

Lemma 3.7 For a given u ∈ Uad, for some s ∈ �
such that ψu(x)

s a measurable function bounded from
below, e

ψu(x)
s ∈ L1(µu), H(νu|µu) < ∞ the following

statements hold.
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1) The dual functional Js,r(u, ν∗,u) is related to the
cumulant generating function of ψu(x) with respect to
µu ∈ M1(X) via

Js,r(u, ν∗,u) = s sup{
νu∈M1(X);H(νu|µu)<∞

}
{1

s

∫
X

ψu(x)dνu − H(νu|µu)
}

+ sr

= s log
∫

X

e
ψu(x)

s dµu + sr = sΨµu(
1
s
) + sr (28)

Moreover, if ψu(x)e
ψu(x)

s ∈ L1(µu) the supremum in is
attained at ν∗,u ∈ M1(X) and it is given by

dν∗,u =
e

ψu(x)
s dµu

∫
X

e
ψu(x)

s dµu
(29)

In addition,∫
X

ψu(x)dν∗,u(x) = s log
∫

X

e
ψu(x)

s dµu

+sH(ν∗,u|µ), s ∈ (0,∞) (30)

2) If for any η > 0, ψu(x)eηψu(x) ∈ L1(µu) and
(ψu(x))2eηψu(x) ∈ L1(µu) then the infimum of the
functional Js,r(u, ν∗,u) over s > 0 is uniquely attained
at

H(ν∗,u|µu)|s=s∗ = r (31)

Moreover,

d

ds
s log

∫
Σ

e
ψu(x)

s dµu = log
∫

X

e
ψu(x)

s dµu

−1
s
Eν∗,u{ψu(x)} = −H(ν∗,u|µu) (32)

3) Under the assumptions of 2), the relative entropy
H(ν∗,u|µu) is a non-increasing function of s > 0, that is,

0 ≤ H(ν∗,u|µu)|s=s2 ≤ H(ν∗,u|µu)|s=s1

≤ H(ν∗,u|µu)|s=s∗ = r, 0 < s∗ ≤ s1 ≤ s2 (33)

Proof. This is similar to the one found in [7].

Evolution of the Worst Case Measure. As stated above,
in the linear functional case the worst case measure is
given by

dνu,∗ =
exp{ 1

sψu}dµu.∫
X

exp{ 1
sψu}dµu

However, this measure is defined on the path space
C(I, H) ≡ X.
It will be desirable to have this measure defined on H .
This is considered in [9], where it is shown that

sup
νu∈M1(X)

{∫
X

ψu(x)dνu − s
(
H(νu|µu) − r

)}

= sup
χu∈M1(H)

{∫
H

Ψ(z)dχu(T, z|x)

−s
(
H(χu(T, z|x)|πu(T, z|x)) − R

)}

where R is a real number which depends on the control
and {πu

t (φ)(x); 0 ≤ s ≤ T } is a solution of the evolution
equation

πu
t (φ)(x) = πu

s (φ)(x) +
∫ t

s

πu
τ (L(u(τ))φ)(x)dτ

+
1
s

∫ t

s

πu
τ (	(u(τ))φ)(x)dτ (34)

where L(u) is the operator associated with the nominal
model.
Hence, we observe that the problem can be transformed
into an uncertain problem in the space on measures on H ,
in which the nominal measure is the conditional measure
on H , namely, πu(T, z|x) which satisfies (34).
Clearly, again by the duality, the worst case measure is
given by

dχu,∗(T, z|x) =
exp{ 1

sΨ(z)}dπu(T, z|x).∫
H

exp{ 1
sΨ(z)}dπu(T, z|x)

Additional details and results are given in [9].
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