
Abstract— Multiscale representation of data is a powerful 
data analysis tool, which has been successfully used to solve 
several data filtering problems. For nonlinear systems, which 
can be represented by a Takagi-Sugeno fuzzy model, several 
Fuzzy Kalman filtering algorithms have been developed to 
extend Kalman filtering for such systems. In this paper, a 
multiscale Fuzzy Kalman (MSFK) filtering algorithm, in which 
multiscale representation is utilized to improve the 
performance of Fuzzy Kalman filtering, is developed. The idea 
is to apply fuzzy Kalman filtering at multiple scales to combine 
its advantages with those of the low pass filters used in 
multiscale data representation. Starting with a fuzzy model in 
the time domain, a similar fuzzy model is derived at each scale 
using the scaled signal approximation of the data obtained by 
stationary wavelet transform (SWT). These multiscale fuzzy 
models are then used in fuzzy Kalman filtering, and the fuzzy 
Kalman filter with the least cross validation mean square error 
among all scales is selected as the optimum filter.  Finally, the 
performance of the developed MSFK filtering algorithm is 
illustrated through a simulated example.  

I. INTRODUCTION

UZZY systems have been widely used and are known to 
perform well in modeling nonlinear dynamical systems 

because of their accuracy and ability to incorporate pre-
defined knowledge into their estimation [1-6].  A fuzzy 
system is an approximator which consists of a set of IF-
THEN type rules, each of which has a premise and a 
consequent part. In standard fuzzy systems, the consequent 
part is a scalar.  A more general class of fuzzy systems 
includes the functional fuzzy systems, which are usually 
referred to as the Takagi-Sugeno (TS) fuzzy systems [1,7].  
In such systems, the consequent part is a crisp function, 
which gives the approximator the ability to incorporate 
knowledge about the model. 

Fuzzy models have been found very useful for control 
purposes due to their ability to describe complex systems in 
an efficient manner. However, in order to achieve good 
fuzzy control, reliable state estimation is essential.  The 
problem of state estimation in systems which can be 
described by fuzzy models has received little attention by 
researchers. For example, the authors in [8-10] have 
addressed the noise-free case of the fuzzy state estimation 
problem, in which the system is assumed to be unaffected by 
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noise. Also, they require a solution of set of Riccati 
equations, which sometimes are very challenging to solve.  
Other researchers dealt with the noise corrupted systems. 
For example, the author in [11] developed a TS fuzzy 
Kalman filtering algorithm, in which local Kalman filters are 
designed for all local sub-models, which are then 
interpolated to give the overall state estimate. Also, the 
authors in [12] developed a fuzzy version of the interval 
Kalman filter. Their developed algorithm, which they refer 
to as the fuzzy Kalman filter, provides scalar estimates of 
the states and possesses the same recursive mechanism as 
the standard Kalman filter.       

Unfortunately, the above fuzzy filtering techniques are 
single scale methods because they all assume that the 
measured process data only contain features with fixed 
contributions over time and frequency. In practice, however, 
measured data usually contain multiscale features. For 
example, a sudden change in the data spans a wide range in 
the frequency domain and a narrow range in the time 
domain, while a slow change spans a wide range in the time 
domain and narrow range in the frequency domain. Filtering 
such data using single scale methods is not very effective 
because they do not account for the multiscale nature of the 
data. Thus, effective filtering of multiscale data requires a 
multiscale filtering method. 

The objective of this paper is to develop a Multiscale Fuzzy 
Kalman (MSFK) filtering algorithm that combines the 
advantages of multiscale filtering with those of the Fuzzy 
Kalman filter to further improve its performance. The 
MSFK algorithm relies on applying fuzzy Kalman filtering 
at multiple scales using the scaling function coefficients of 
the data obtained using Stationary Wavelet Transform 
(SWT), and then selecting the optimum fuzzy Kalman filter, 
among all scales, which minimizes a cross validation 
estimation error criterion. The multiscale model used in this 
MSFK filtering approach is also derived using stationary 
wavelet transform, which is not restricted to any filter type. 

The rest of the paper is organized as follows. In Section II, 
the problem of multiscale fuzzy Kalman filtering is 
specifically stated for the TS fuzzy model. Then, in Section 
III, a brief description of the Fuzzy Kalman filter is 
presented, followed by an introduction to multiscale 
representation of data and a derivation of the multiscale 
fuzzy state space model in Section IV. Then, in Section V, a 
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derivation of the MSFK filter equations is presented, 
followed by an outline of the MSFK filtering algorithm. 
Then, the performance of the MSFK filter is demonstrated 
and compared to that of the standard fuzzy Kalman filter 
through a simulated example in Section VI, followed by few 
concluding remarks in Section VII. 

II. PROBLEM STATEMENT

In this paper, the problem of state estimation is addressed 
from a multiscale perspective for the nonlinear dynamic 
systems which can be described by the following Takagi-
Sugeno fuzzy state space model, whose ith rule is defined as: 

If kz1  is 1,1 r and kz2  is 2,2 r …and kz p  is 

rp,

Then, kwkuBkxAkx iiii 1 ,      

.)()( kkxCky ii    Mi ,...,1     (1) 

where, M  is the number of rules. Here, nkx )( ,
mku )( , pky )( , pRNk ,0~ , and 

nQNkw ,0~  are the actual state, process input, 
measured output, measurement noise, and process noise, 
respectively. The premise of each rule is defined such that 

rp,  is the rth linguistic value of the linguistic variable, 

kz p , defined over the universe of discourse, pU . The 

input to the fuzzy system, T
pzzzkz ,,, 21 , is a p-

dimensional vector that can be a function of past states, 
inputs, outputs, or any external input. On the other hand, the 
consequent part of each rule is a crisp function that is 
defined as a state space discrete time-invariant system. 
Assume that ))(( kzi  represents the certainty that the 
premise of the ith rule matches the input information. For 
simplicity, )(ki is used instead of ))(( kzi .  Assuming 

that Miki ,,2,1,1)(0 , and 0)(
1

M

i i k ,

then )(ki , which is the certainty of the ith rule, can be 

defined as,
M

i i

i
i

k

k
k

1
)(

)()( , where  .1)(
1

M

i
i k

With this in mind, the overall fuzzy model which can be 
thought of as nonlinear interpolator between M  linear 

systems such that 
M

i
ii kxkkx

1

 and  

M

i
ii kykky

1

. Hence, the Takagi-Sugeno fuzzy 

system can be expressed as,  

M

i
iiii kwkuBkxAkkx

1
1

M

i
ii kkxCkky

1
)( ,       (2)                

or equivalently,                         
kwkkukBkxkAkx )()()(1

kkxkCky )()( ,                             (3) 

where,
i

M

i
i AkkA

1
)()(  ,

i

M

i
i BkkB

1
)()( ,

i

M

i
i CkkC

1
)()( , and   

i

M

i
i kk

1
)()( .

III. FUZZY KALMAN (FK) FILTERING

Several approaches have been used to derive the Kalman 
filter equations for nonlinear systems represented by fuzzy 
models [11,12].  In this section, the fuzzy Kalman filtering 
equations are derived for the Takagi-Sugeno fuzzy state 
space model defined in equation (3). The system represented 
by equation (3) can be thought of as a time-varying linear 
state space model, for which the matrices, ,,, CBA ,
are time varying since they depend on the local or sub-
models certainties ki . Therefore, the derivation of the 
fuzzy Kalman filter equations can follow a similar approach 
to that used for linear time invariant (LTI) systems. The 
basic idea is that the Kalman filter recursively estimates the 
state at any time instant in two steps (prediction and 
correction) such that the trace of the estimation error 
covariance matrix is minimized.  In the prediction step, the 
state space model shown in equation (3) is used to predict 
the state at time instant 1k  given the estimated state at 
the previous time instant as follows, 

kukBkxkAkx ˆ1 .      (4) 
In the second step, the estimated state shown in equation (4) 
is corrected using the following correction equation, 

111111ˆ kxkCkykKkxkx   (5) 

where, 1ky  is the measured process output, 1kK
is the Kalman filter gain, which can be determined by 
minimizing the trace of the estimation error covariance 
matrix.  Defining the estimation error vector as, 

11ˆ1 kxkxke ,       (6) 
its covariance matrix can be written as, 

]11[1 kekeEkP T ,     (7) 
which can be easily expressed as, 

T
kCkKIkPkCkKIkP 111111

TkRKkK 11 ,         (8) 

where,   ]11[1 TkekeEkP
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and,  111 kxkxke .

Taking the partial derivative of the trace of 1kP  with 
respect to the Kalman filter gain and then setting it to zero 
gives the following expression for the Kalman filter gain, 

1
111111 RkCkPkCkCkPkK TT .    (9) 

Substituting equation (9) into equation (8), the following 
update equation for the error covariance matrix is obtained, 

1]1~1[1 kPkCkKIkP .       (10) 

Thus, the fuzzy Kalman filtering algorithm can be outlined 
as follows, 

1. Prediction Step (given kx̂  and kP  ): 
a. Predict the state ahead using equation (4). 
b. Project the error covariance matrix as follows, 

TT kQkkAkPkAkP 1 .

2. Correction Step (given 1ky ):
a. Compute the FK filter gain using eq. (9). 
b. Correct the state vector estimate using eq. (5). 
c. Update the estimation error covariance matrix 

using equation (10). 
d. Set 1kk  and go to step 1. 

IV. MULTISCALE DATA AND FUZZY STATE SPACE MODEL
REPRESENTATIONS

Real system measurements are usually multiscale in nature, 
which means that they contain features with varying 
contributions over time and frequency. Therefore, a proper 
analysis of such measurements requires their representation 
at multiple scales, which can be achieved by expressing the 
data as a weighted sum of orthornomal basis functions, such 
as wavelets. In this section, some of the wavelet 
representation algorithms are introduced [13,14]. 

A. Discrete Wavelet Transform (DWT) 
A discrete dyadic signal can be represented at multiple 
resolutions by decomposing it on a family of wavelet and 
scaling functions. For example, a coarser approximation 
(also called the scaled signal) of a signal tx , at any scale, 
can be computed by projecting that signal on a set of 
orthonormal scaling functions of the form, 

ktt jj
jk 22 , or equivalently by filtering the 

signal using a low pass filter of length r ,

rhhhh ..21 , derived from the scaling 
functions. On the other hand, the difference between the 
original signal and its coarser approximation (also called the 
detail signal), can be computed by projecting the signal on a 
set of wavelet basis functions of the form, 

ktt jj
jk 22 , or equivalently by filtering the 

original signal using a high pass filter of length r ,

rgggg ..21 , derived from the wavelet basis 
functions. Repeating the process to any scale, J , the 
original signal can be represented as the sum of all detail 
signals and the last scaled signal as follows, 

J

j

n

k
jkjk

n

k
JkJk

jJ

tdxtxtx
1

2

1

2

1

,    (11) 

where, j , k  , J , and n  are the dilation parameter, 
translation parameter, maximum number of scales, and the 
length of the original signal, respectively. Fast wavelet 
transform algorithms of nO  complexity for a discrete 
signal of dyadic length have been developed [13]. 

B. Stationary Wavelet Transform (SWT) 
In the DWT algorithm described above, the length of the 
scaled and detail signals decreases dyadically (by half) with 
scale, due to the down-sampling of the convoluted scaled 
signal. This can become a problem in certain applications 
which require large data sets, such as image processing. 
Also, DWT is time-variant, which means that in some cases, 
the multiscale representation of a certain feature in the 
original signal depends on the location of that feature in 
time. A general solution, which results in both time-
invariant and fixed length decomposition at all scales, is the 
stationary wavelet transform (SWT) [14]. SWT does not use 
down-sampling as in DWT. Instead, it up-samples the low 
pass and high pass filters at every subsequent coarser scale 
before convoluting the filter with the data. Therefore, the 
filter length increases dyadically at coarser scales, but the 
lengths of the scaled and detail signals stay the same at all 
scales.

As an example to illustrate the SWT algorithm, consider the 
following time domain discrete signal, 

nxkxkxxxX oooooo .1.21    (12) 
Assume that the original low pass and high pass filters are of 
length ( r ), as in DWT, i.e., rhhhh ..21 , and 

rgggg ..21 .  Then, the filters that are used to 
obtain the SWT scaled and detail signals at scale ( j ) from 
the scaled signal at scale ( 1j ), are of length rp j 12 ,
because of the up-sampling of the filters at each subsequent 
coarser scale. For example, the low pass and high pass filter 
used to obtain the second scale SWT coefficients from the 
first scale coefficients are of length ( r2 ), and are of the 
form, 

r

pp

hhh

hhhhhh

0..00

...

21

22
1

2
3

2
2

2
1

2

    (13) 

and,
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r

pp

ggg

gggggg

0..00
...

21

22
1

2
3

2
2

2
1

2

   (14) 

respectively, where the superscript "2" denotes the second 
scale, 2j . Now, these filters can be used to compute the 
SWT scaling function coefficients at scale ( j ) at time steps 

k  and 1k , kx j  and 1kx j , as follows, 

kxh

pkxhpkxhkx

j
j

p

j
j

j
j

j

1

1211

...

21
,     (15) 

and,
1...

321

1

1211

kxh

pkxhpkxhkx

j
j

p

j
j

j
j

j .     (16) 

The notation used in this SWT wavelet decomposition 
algorithm will be used in the derivation of SWT-based 
multiscale state space models in the next section.  

C. State Space Modeling using SWT 
In this section, a multiscale version of the Takagi-Sugeno 
fuzzy state space model relating the scaled signal 
approximations of the data at any scale ( j ) is derived using 
SWT given the state space model in the time domain. 
Starting with the individual ith local model given in eq. (1),   

kwkuBkxAkx oioioioi 1, ,

.)()(, kkxCky ooioi ,      (17) 

where, QNkwo ,0~ , RNko ,0~ , and the 
subscript " o " denotes scale zero or the time domain, it can 
be shown that the above model can also be used to relate the 
scales signal approximations of the data obtained using 
SWT as stated in the following Theorem. 

Theorem 1: 
If the ith sub-model shown in equation (17) can be used to 
relate the time domain data, then the scaled signal 
approximations of the data obtained using SWT at any scale 
( j ) can be related by the following state space model, 

kwkuBkxAkx jijijiji 1, ,

.)()(, kkxCky jjiji ,

where,   QNw j ,0~ , and RNj ,0~ .    (18) 

Theorem 1, which can be proved by substituting equation 
(18) into equation (16) for the ith model, shows that if the 
time domain data are related by a discrete forced linear state 
space model, then the same state space model will be valid 
at all scales. 

Now since all individual state space models used in the TS-
fuzzy systems are valid at all scales, then these individual 
models can be used to define a new fuzzy model whose ith

rule has the following form, 
If kz j,1  is jr ,1,1 and kz j,2  is jr ,2,2 ..and kz jp,  is jrp ,,

Then, kwkuBkxAkx jijijiji 1, ,

.)()(, kkxCky jjiji Mi ,...,1   (19) 

The above TS-fuzzy model can also be written similar to 
equation (3) as follows,  

kwkkukBkxkAkx jjjjjjj )()()(1

kkxkCky jjjj )()( ,                            

where, i

M

i
jij AkkA

1
, )()( , i

M

i
jij BkkB

1
, )()( ,

i

M

i
jij CkkC

1
, )()(   , and i

M

i
jij kk

1
, )()( .    (20) 

Note that since the data are transformed at multiple scales, 
the sub-models certainties, ji , , are different from those of 

the time domain fuzzy model. However, the multiscale TS-
fuzzy model shown in equation (20) has the same form as 
the time domain TS-fuzzy model, and thus can be directly 
used to derive the MSFK filter as in the case of the 
conventional or time domain fuzzy Kalman filter. 

V. MULTISCALE FUZZY KALMAN (MSFK) FILTERING

In this section, the multiscale TS-fuzzy model derived in 
Section IV.C is used to develop a multiscale fuzzy Kalman 
filtering algorithm that combines the advantages of the 
conventional time-domain fuzzy Kalman filter with those of 
multiscale representation of data to further enhance its state 
estimation accuracy. The MSFK filtering algorithm relies on 
decomposing the data at multiple scales using SWT, and 
then using the scaled signal approximations of the data 
along with the multiscale state space models derived earlier 
to obtain estimates of the plant states at each scale. The 
estimated states are then reconstructed to the time domain, 
and the states obtained from the scale that minimizes a cross 
validation mean square error criterion are taken as the 
optimum estimates. 

A. Derivation of the MSFK Equations 
In this section, the MSFK filter equations are derived using 
the SWT scaled signal approximations of the data ( jx , jy ,

and ju ) and the multiscale TS-fuzzy model, relating these 

variables at scale ( j ). Since the multiscale TS-fuzzy model 
has the same form as the time domain fuzzy model, it is 
expected that the MSFK filter equations to be very similar to 
the time domain ones.  For the prediction step, the predicted 
state at scale ( j ) can be computed as follows, 
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kukBkxkAkx jjjjj ˆ1 .      (21) 

Then, the predicted state is updated using the SWT scaling 
coefficient of the measured output at scale ( j ) as follows, 

111111ˆ kxkCkykKkxkx jjjjjj (22)

where, 1kK j  is the fuzzy Kalman filter gain at scale 

( j ).  Let the estimation error covariance matrix at scale ( j )
be defined as, 

]11[1 T
jjj kekeEkP ,    (23) 

where,  11ˆ1 kxkxke jjj .

Then, the fuzzy Kalman filter gain at scale ( j ) can be 

determined by taking the partial derivative of 1kPj

and setting it to zero, which gives, 
1

111111 RkCkPkCkCkPkK T
j

T
jj .(24)

where,  ]11[1 T
jjj kekeEkP

and    111 kxkxke jjj .

B. MSFK Algorithm 
The MSFK filtering algorithm can be outlined as follows, 
1) Decompose the input, output, and state data at multiple 

scales using the wavelet and scaling function filter of 
choice.

2) At each scale, apply Kalman filtering as follows: 
a) Given previously estimated states and measured 

output, compute the time-varying system matrices, 
{ kAj , kB j , kC j , and kj } using 

equation (20).  
b) Prediction step (given kx j  and kPj ) : 

i) Predict the state ahead using equation (21). 
ii) Project the error covariance matrix as follows, 

QkAkPkAkP T
jjjj 1

c) Correction step (given 1ky j ) : 

i) Compute the Kalman filter gain using eq. (24). 
ii) Correct the state vector estimate using eq. (22). 
iii) Update the estimation error covariance matrix 

as follows, 
1]1[1 kPkCkKIkP jjjj

iv) Set 1kk  and go to step (a). 
3) Reconstruct the estimated state and output vectors, jx̂

and jŷ , from all scales. 

4) Compute the output cross validation mean square error 
at each scale ( j ) as follows [23]: 

n

k

kykynjCVMSE
1

2* ˆ/1 ,            (25) 

where,  112/1* kykyky .
5) Select the MSFK filter with the minimum cross 

validation mean square error as the optimum filter.  

Note that in the above algorithm, the optimum filtering scale 
is selected such that the estimated output minimizes a cross 
validation mean square error with respect to a pre-smoothed 
output signal (not the measured one), which is suggested in 
[15]. The rational behind this choice is that the optimum 
MSFK filter should minimize the output mean square error 
with respect to the noise-free data, regardless of the 
measurement noise content.  

VI. ILLUSTRATIVE EXAMPLE

The fuzzy model used in this simulated example represents 
the rotation of a human leg that pivots from the hip joint. 
The nonlinear dynamical model describing the human leg 
can be expressed by the following differential equation [16], 

)()](sin[
2
1)()(

2

2

tTtMgL
dt

td
D

dt
td

J m
,       (26) 

which relates the output angular rotation about the hip joint, 
)(t , to the applied input muscular torque, )(tTm .  Also, 

the parameters, D, J, M, L, and g represent the viscous 
damping at the hip joint, the inertia around the hip joint, the 
mass of the leg, the length of the leg, and the gravitational 
acceleration, respectively. 

Here, it is assumed that the state vector 
])()([])()([)( 21 tttxtxtxT , the input 

)()( tTtu m , and the output )()( tty . By linearizing 
the system at the following three operating conditions, 

0],00[ 0101 uxT , 0],04/[ 0202 uxT , and 

0],04/[ 0303 uxT , and then discretizing it with a 

sampling time, sTs 1.0 , two linear discrete-time models 
are obtained.  Assuming the following model parameters: 

smND ..20 , 2.5 mkgJ , kgM 10 , mL 5.0 , and 
2/8.9 smg , the overall fuzzy model can be written as, 

kwkkukBkxkAkx )()()(1
kkxkCky )()( ,               (27) 

where the matrices ,,, CBA  are defined as in eq. (3). 
The state space matrices are found to be: 

0.65150.4006-
0.08180.9785

1A ,
0.0164
0.0009

1B , 011C ,

0.65700.2839-
0.08190.9848

2A ,
0.0164
0.0009

2B , and 012C .    (28) 
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Also, both of the matrices, 1 and 2 , are assumed to be, 
I01.0 , and the membership function certainties are: 

)](15exp[1
1

)](15exp[1
11)(

8181
1 xx

x  ,

and,   ).(1)( 12 xx                (29) 

In this example, it is desired to estimate the angular rotation, 
which is the first state ( 1x ), given measurement of the 
output, which also represent the same variable. The data 
used in this simulation are generated by applying a pseudo 
random binary sequence (PRBS) changing between -10 and 
10 as an input to the fuzzy model described above to 
generate an output, which is assumed to be noise-free. Then, 
this noise-free output is contaminated with zero-mean 
Gaussian noise of variance R, representing the output 
measurement noise. Different measurement noise variances 
are used ( R 0.01, 0.05, and 0.1, which correspond to 
output signal to noise ratios of 18, 3.6, and 1.8, respectively) 
to test the robustness of the MSFK filtering algorithm under 
different levels of noise. 

For statistically valid comparisons between the fuzzy 
Kalman and multiscale fuzzy Kalman filters, a Monte Carlo 
simulation of 100 realizations is performed. Table I, which 
lists the estimation means square errors with respect to their 
noise-free values shows that the MSFK filter outperforms 
the Fuzzy Kalman filter for all noise levels, especially for 
the state of interest (first state), which represents the angular 
rotation. This advantage can be clearly seen from Figure 3, 

which compares the filtered states for the case where R
0.05.
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Fig. 3. Comparison of the state estimation by the Fuzzy and multiscale 

fuzzy Kalman filters for the case where R  0.05.

VII. CONCLUSIONS
 This paper presents a multiscale fuzzy Kalman (MSFK) 
filtering algorithm, which enhances the performance of the 
conventional fuzzy Kalman filter by its application at 
multiple scales using the scaled signal representations of the 
data obtained from stationary wavelet transform (SWT).  
First, multiscale fuzzy models are derived at each scale 
given the time domain fuzzy model representation of the 
system. Then, these models are used to implement fuzzy 
Kalman filtering at all scales, and the filter that minimizes a 
cross validation mean square error criterion is selected as the 
optimum filter. The MSFK filtering algorithm is shown to 
outperform the conventional fuzzy Kalman filter through a 
simulated example, and the reason behind this enhancement 
is that MSFK filtering combines the advantages of both 
fuzzy Kalman filtering and multiscale data smoothing. 
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TABLE I
COMPARISON OF THE MEAN SQUARE ERRORS OF THE ESTIMATED

STATES USING THE FUZZY KALMAN AND MSFK FILTERS

01.0e 05.0e
1.0e

1x 2x 1x 2x 1x 2x
FK  5.3 2.9 10.5 9.3 13.0 11.9 

MSFK 2.6 2.8 4.8 4.5 6.3 9.4 
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