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Abstract— The problem of sampled-data state reconstruction
in linear time invariant systems is considered. A new full
order observer structure that can generate intersample state
estimation is introduced. The observer synthesis is carried out
using the H∞ framework and is shown to have some important
advantages over the classical lifting technique.

I. INTRODUCTION

The observer design problem is a very important problem
that has various applications such as output feedback control,
system monitoring, process identification and fault detection.
The classical approach to the solution of this problem is by
using the Luenberger observer structure [6] in the determin-
istic case, or the well known Kalman filter [4] in the special
case of stochastic noise and disturbances. The concept of
unknown input observer (UIO) has also been introduced
by Wang [12] to decouple the effect of an unknown input
from the observer error. This approach was later extended
in a series of papers [1] to the cases of modeling errors,
plant disturbances as well as system faults. Optimization
techniques have also been widely used in fault detection
observers to minimize the disturbance effect and maximize
the fault effect when complete decoupling is not possible [3],
[1]. All of these works, however, consider the continuous-
time (or the discrete-time) problem in which a continuous
(discrete)-time observer is designed to observe the state of a
continuous-time (discrete-time) plant. In this paper, our inter-
est is the sampled-data observer (SDO) design problem. It is
the problem of reconstructing the states of a continuous-time
plant using a discrete-time observer, which can operate with a
rate higher than the sample and hold devices connected to the
plant. An important advantage of this sampled-data frame-
work is the possibility to provide intersample estimation
and, therefore, better piecewise approximate reconstruction
of the continuous-time states of interest. Such information is
very useful for observer applications but is, however, hard
to obtain given the fact that the output information is only
available at the slow rate of the sample device.

A classical approach used for the SDO design problem
mainly in control applications is the inferential control
approach where primary measurements of inputs and outputs
are used to estimate the effect of secondary measurements
(these may include unmeasured states, disturbances, etc.) and
then a standard control system is used to adjust the control
effort [13]. The most important part of this technique is
the design of an estimator that minimizes the estimation
error of inferred measurements at fast sampling points where
an actual measurement is unavailable [10]. In most cases,

however, inferential control methods are restricted to specific
types of control schemes or processes. Besides, the issues
of practical importance (such as model uncertainty, system
dynamics, restrictions on the controller structure) are not
incorporated [5].

This encouraged much research to be done in the area of
sampled-data control and one of the successful approaches
that has been introduced is the lifting technique [2], [8].
The main idea of the lifting technique is to generate slow
rate control inputs that depend on fast rate information of
the reference input, controlling an augmented output which
represents the fast rate error signal. Design of the controller
can then be done within the multirate digital control frame-
work. This technique can also be used for the dual SDO
design problem. However, the lifting technique has important
drawbacks such as the increased dimensional complexity
and the time lag problem [10]. This can have negative
performance implications in real time observer applications.

In this paper, we study the sampled-data observer design
problem using a novel approach. An observer design based
on the fast rate plant model is introduced. In order to
achieve intersample state estimation using this observer, we
proceed as follows: two signals are fed to the observer;
namely, the plant input and the plant output. The plant
input is constant during the intersample, owing to the hold
device and is therefore fed to the observer at the fast rate.
The output is only available at the sampling instants and
is therefore fed at the slow rate of the sample device.
To obtain a robust estimate with respect to this unknown
intersample output information, we formulate the problem as
an H∞ optimal control problem, making use of the dynamic
observer structure introduced in [7]. We then show that
the proposed H∞ problem is equivalent to a modified H∞
problem which satisfies the standard assumptions. A design
procedure solvable using commercially available software is
then presented. The proposed H∞ approach is also compared
to the classical lifting approach through simulations and is
shown to have some important advantages over the lifting
technique when applied to a fast rate fault detection problem.

II. PRELIMINARIES AND NOTATION

Our attention is focused on the sampled-data observer de-
sign (SDO) design problem for sampled-data systems shown
in Fig. 1 where the sample and hold devices are operating
with the speed 1/hs (hs being the sampling time). The
objective of the SDO design is to provide state estimates at a
faster rate 1/hf using the available input-output information.
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Fig. 1. Sampled-data observer (SDO) design problem.

In the sequel, we consider the model of the plant P to be a
known LTI system Σ of the form (1) with (A,C) observable.

Σ :
{

ẋ(t) = A x(t) + B u(t), A ∈ Rn×n, B ∈ Rn×m

y(t) = C x(t) + D u(t), C ∈ Rp×n,D ∈ Rp×m

(1)

Knowing hs and hf , it follows that the two systems Σs

and Σf (seen as the exact discretizations of Σ at the sampling
rates 1/hs and 1/hf respectively) are known and given by
the following step-invariant transformations [2]:

Σs :
{

xs(k + 1) = As xs(k) + Bs us(k)
ys(k) = C xs(k) + D us(k) (2)

Σf :
{

xf (k + 1) = Af xf (k) + Bf uf (k)
yf (k) = C xf (k) + D uf (k) (3)

where for i = (s, f): Ai = ehiA, Bi =
∫ hi

0
eτAdτB and

where xi(k) � x(khi), ui(k) � u(khi) and yi(k) � y(khi).
The sampling times hs and hf are assumed to satisfy:
(i) hf is strictly less than hs and the ratio between them

is an integer number, i.e:

r =
hs

hf
, where r ∈ Z+ and r > 1 (4)

(ii) The sampling time hf is non-pathological, i.e, no two
eigenvalues of A differ by (j.k 2π

hf
), k ∈ Z, k �= 0.

Assumption (i) is a technical assumption that guarantees that
the slow rate data is a proper subset of the fast rate data.
Assumption (ii) implies that the observability assumption is
preserved for the pair (Af , C) [2].

Luenberger observers for Σs and Σf will be denoted by
Ψs and Ψf respectively and have the following structure [6]:

Ψi :
{

x̂i(k + 1)= Aix̂i(k) + Biui(k) + Li [yi(k) − ŷi(k)]
ŷi(k) = Cx̂i(k) + Dui(k)

(5)

where i = (s, f) and where Li (the observer gain) is a static
n by p matrix designed to ensure that all of the eigenvalues
of the matrix (Ai − LiC) lie in the open left half complex
plane. Throughout the paper, we will also make use of the
following definitions and notations:

Definition 1: (L2 Space) The space L2 consists of all
Lebesque measurable functions u : Z+ → Rq, having
a finite L2 norm ‖u‖L2 , where ‖u‖L2

∆=
√∑∞

k=0 ‖u(k)‖2,
with ‖u(k)‖ as the Euclidean norm of the vector u(k).

For a discrete-time system G : L2 → L2, we will
represent by γ(G) the L2 gain of that system given by
γ(G) = supu

‖Gu‖L2
‖u‖L2

. In the case of a linear time-invariant

system G : L2 → L2 with a stable transfer matrix Ĝ(z),
γ(G) is equivalent to the H∞ norm of Ĝ(z) defined as:

γ(G) ∆= ‖ Ĝ(z) ‖∞= max
θ∈[0,2π]

σmax(Ĝ(e−jθ))

where σmax(.) represents the maximum singular value
of Ĝ(e−jθ). We will use small letters to represent scalar
variables and vectors, capital letters for matrices, and
capital bold letters for operators and systems. S and H
will be used to represent the sample and hold operators
with slow sampling time hs, while Sf and Hf will be
used for the same operators with fast sampling time hf .
We will use the matrices In, 0n and 0nm to represent
the identity matrix of order n, the zero square matrix
of order n and the zero n by m matrix respectively.
The symbol T̂yu(z) represents the z-transform transfer
matrix from the input u to the output y. The partitioned

matrix K =
[

A B
C D

]
(when used as an operator from

u to y, i.e, y = Ku) represents the state space representation
(ξ(k + 1) = A ξ(k) + B u(k); y(k) = C ξ(k) + D u(k)),
and in that case the transfer matrix is K̂(z) =
C(zI − A)−1B + D. And finally, in all the block
diagrams used in this paper, solid and dashed lines represent
continuous-time and discrete-time signals respectively.

III. A LIFTING FORMULATION FOR SAMPLED-DATA

OBSERVER DESIGN

In this section, we formulate the sampled-data observer
(SDO) design problem using the classical Lifting technique.
We first give a brief introduction to this technique, then we
present how it can be used to solve the problem.

A. The Lifting technique

The Lifting technique is one of the classical approaches
used in multirate digital control. It relies on the use of a lin-
ear, time-varying, non-causal operator Lα, which operating
on a discrete signal v(k) ≡ {v(0), v(1), . . .} gives another
discrete signal referred to as the lifted signal v(k) where:

v(k) ∆= Lαv(k) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

v(0)
v(1)

...
v(α − 1)

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

v(α)
v(α + 1)

...
v(2α − 1)

⎤
⎥⎥⎥⎦ , . . .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6)

Here α ∈ Z+ is referred to as the Lifting order. The Lifting
operator transforms a fast rate signal into a slow rate signal
that contains the same information. This is clear by noting
that if v(k) is a discrete-time signal of vectors of order
“q” sampled every “h” seconds, v(k) can be considered
as a signal of vectors of order “αq” (sampled every “αh”
seconds) storing the same information in v(k). Hence, the
two signals xs(k) ∈ Rn and xf (k) ∈ Rn (defined in (2) and
(3)) are two discrete signals of different sampling times (hs

and hf respectively), while xs(k) ∈ Rn and xf (k) ∈ Rrn
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(
∆=Lrxf (k)) have the same sampling time and are related

by: xs(k) =
[
In 0n . . . 0n

]
1×r

xf (k). The inverse of
Lα is denoted by Lα

−1 and is also a linear, time varying
(but causal) operator. Both Lα and Lα

−1 preserve the L2

norms [2]. In addition to lifting signals, the Lifting operators
are also used to lift systems as follows: consider Gd; a
discrete-time, LTI, single rate system (inputs and outputs
are discrete signals sampled every “h” seconds) that has n
states, m inputs and p outputs, and that is represented as

Gd
∆=
[

A B
C D

]
, where A, B, C and D are matrices of

appropriate dimensions. The lifted system Gd is defined as

the system Gd
∆=Lα Gd Lα

−1. It can be shown that the
representation of Gd is as follows [2]:

Gd ≡

⎡
⎢⎢⎢⎢⎢⎣

Aα Aα−1B Aα−2B . . . B
C

CA
...

CAα−1

D 0pm . . . 0pm

CB D . . . 0pm

...
...

...
...

CAα−2B CAα−3B . . . D

⎤
⎥⎥⎥⎥⎥⎦

(7)
The MIMO system Gd is considered as a slow rate repre-
sentation of Gd. Throughout the paper, we will assume the
Lifting order to be the constant r in (4), and we will use L
to refer to Lr. The following Lifting relations will also be
used (for proof refer to [2]):

Sf H ≡ L−1 Q (8)

where Q is the static matrix
[
Im Im . . . Im

]T
1×r

. And,

S P Hf ≡ R L Sf P Hf (9)

where R is the static matrix
[
Ip 0p . . . 0p

]
1×r

.

B. Application to the SDO design problem

To solve the SDO design problem introduced in section
II and represented by Fig. 1, it is necessary to find a model
that captures the fast rate states to be estimated (i.e, xf (k))
and which is also function of an available set of input/output
information. The multirate system SPHf (mapping the fast
rate input uf (k) into the slow rate output ys(k) as in (10))
is therefore a possible candidate to solve the problem.

ys(k) = SPHf uf (k) (10)

To find a model for that system, it is easy to see (by using
the notation in (8)) that uf (k) is related to us(k) as:

uf (k) = Q us(k) (11)

To reflect the response of xf (k), it is important to remark
that the model of P in (1) can also be represented as:

P = M1P′ + M2 (12)

where P′ =
[

A B
In 0nm

]
, M1 =

[
0n 0n

0pn C

]
and

M2 =
[

0n 0nm

0pn D

]
Therefore, using the Lifting prop-

erties introduced in section III-A, along with equations (11)

and (12), the multirate system SPHf can be represented by
the following state space representation (see [9] for more
details about the derivation of this model):

ξ(k + 1) = Ar
fξ(k) +

[
Ar−1

f Bf Ar−2
f Bf . . . Bf

]
uf (k)

xf (k)=

⎡
⎢⎢⎢⎣

In

Af

...
Ar−1

f

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
C̄

ξ(k)+

⎡
⎢⎢⎢⎢⎣

0nm . . . 0nm

Bf
. . . 0nm

...
. . .

...
Ar−2

f Bf . . . 0nm

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
D̄

uf (k) (13)

ys(k)= [C 0pn . . . 0pn ]xf (k) + [D 0pm . . . 0pm]uf (k)

The following theorem presents an observer for this model
and provides conditions for its convergence:

Theorem 1: The system given by the following equations:

ξ̂(k + 1) = Ar
f ξ̂(k) +

[
Ar−1

f Bf Ar−2
f Bf . . . Bf

]
uf (k)

+ L� (ys(k) − ŷs(k))

x̂f (k) = C̄ ξ̂(k) + D̄ uf (k) (14)

ŷs(k)= [ C 0pn . . . 0pn ]xf (k) + [D 0pm . . . 0pm]uf (k)

is a SDO for the system in Fig. 1 if and only if the observer
gain L� is chosen such that (Ar

f − L�C) is Hurwitz.
Proof : By defining the error variables as ex = xf (k)−x̂f (k)
and eξ = ξ(k) − ξ̂(k), we have:

ex(k) = C̄ eξ(k)

But using (13) and (14) we have:

eξ(k + 1) = Ar
f ξ(k) −

(
Ar

f ξ̂(k) + L� (ys(k) − ŷs(k))
)

= Ar
f eξ(k) − L�

([
C 0pn . . . 0pn

]
ex(k)
)

=
(
Ar

f − L�C
)
eξ(k)

Therefore, (Ar
f − L�C) Hurwitz is necessary and sufficient

for the error eξ(k) to converge to zero. It follows that (14)
is a SDO for the system in Fig. 1 with x̂f (k) as the required
fast rate state estimation. �
Remarks:

1) A necessary and sufficient condition for arbitrary pole
placement of the SDO in (14) is the observability of
the pair (Ar

f , C). This is not guaranteed by the “non-
pathological” assumption on hf in section II.

2) The observer has a time delay of hs. This is clear by
noting that x̂f (0) is based on the initial guess for ξ̂(0).
The correction term (ys(k) − ŷs(k)) has effect on x̂f (k)
only starting from k = 1.

3) The observer developed in this section is equivalent to
two observers performing in parallel: Ψs in (5) as a
slow rate closed loop observer having Ls ≡ L�, and
Ψf (also given in (5) but with Lf = 0np) as an open
loop observer updating its initial conditions every “r”
steps with the new state of Ψs. This is similar to the
filter structure in [11].
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IV. H∞ SAMPLED-DATA OBSERVER DESIGN

To avoid the drawbacks of the Lifting technique, a direct use
of the fast rate model in (3) to design a SDO is necessary.
However, any Luenberger observer for this model (such as
Ψf in (5)) is not a feasible solution due to the unavailable
output information yf (k). And if yf (k) is replaced by ỹf (k):

ỹf (k) = yf (k) + d(k) (15)

(which is an arbitrary approximation to yf (k) with an error
vector d(k)), then the observer Ψf has an estimation error
e = xf − x̂f with dynamics given from:

e(k + 1) = (Af − LfC) e(k) − Lf d(k) (16)

which is affected by d(k) causing divergence of the observer.
In this section, we solve the SDO design problem by using a
dynamic structure (instead of (5)). The idea is to replace the
static observer gain Lf by a dynamic controller, and we here
show how this dynamic controller can be used to minimize
the effect of d(k) on e. Towards that goal, the proposed
dynamical observer for the fast rate model (3) is:

x̂f (k + 1) = Af x̂f (k) + Bf uf (k) + η(k) (17)

ŷf (k) = C x̂f (k) + D uf (k) (18)

where η(k) is obtained as follows:

z(k + 1) = AL z(k) + BL (ỹf (k) − ŷf (k)) (19)

η(k) = CL z(k) + DL (ỹf (k) − ŷf (k)) (20)

with AL, BL, CL,DL having appropriate dimensions, and
where ỹf (k) is an approximation to yf (k) with an error
vector d(k) as given in (15). We will also write

K =
[

AL BL

CL DL

]
(21)

to represent the compensator in (19)-(20). It is easy to see
that the error dynamics in (16) is now given by

e(k + 1) = Af e(k) − η(k) (22)

η(k) = K (Ce(k) + d(k)) (23)

which can also be represented by the standard setup in Fig. 2

G

K

�

�

� �ω ζ

ν ϕ

Fig. 2. Standard setup.

having the variables in (24), with controller K in (21), and
plant G as the standard state space representation in (25).

ω = d(k), ζ = e(k) = xf (k) − x̂f (k)
ν = η(k), ϕ = Ce(k) + d(k) (24)

G ∆=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ =

⎡
⎣ Af 0np −In

In 0np 0n

C Ip 0pn

⎤
⎦ (25)

Therefore, the SDO design problem reduces to the in-
put/output stability problem of the setup in Fig. 2 which has
as input d(k) and as output e(k). With an arbitrary choice
for ỹf (k) in (15), one can ensure that d(k) is a bounded
signal and the problem in Fig. 2 can then be solved as an
L1 optimization problem. However, we here focus on the use
of H∞ optimization assuming d(k) to be of finite energy (i.e,
d(k) ∈ L2). Unfortunately, the SDO design problem cannot
be carried out directly using the standard H∞ solution since
the standard form in (25) does not satisfy all of the regularity
assumptions in the H∞ framework.

A. Problem regularization

By adding a “weighted” disturbance term in the state
equation of the fast rate model (3), now we tackle the
problem of designing an observer for the following system:

xf (k + 1) = Af xf (k) + Bf uf (k) + ε φ(k), ε > 0 (26)

yf (k) = C xf (k) + D uf (k) (27)

where the vector φ(k) is a disturbance term. Using the same
observer defined by (17)-(21), the observer error dynamics
can still be represented by the setup in Fig. 2 with the same
variables in (24), except for replacing ω by ω̄ defined as:

ω̄
∆=
[
φ(k) d(k)

]T
(28)

and redefining the plant G as:

G ∆=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦ =

⎡
⎣ Af

[
εIn 0np

] −In

In

[
0n 0np

]
0n

C
[
0pn Ip

]
0pn

⎤
⎦

(29)
This standard form, however, still does not satisfy the
regularity assumptions in the H∞ problem. Fortunately,
regularization can be done by extending the external output
ζ to include the “weighted” vector βη(k), β > 0. This adds
another change in Fig. 2 by replacing ζ by ζ̄ defined as:

ζ̄ =
[
e(k) βη(k)

]T
(30)

The plant G is then given by

G ∆=

⎡
⎣ A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦=

⎡
⎢⎢⎣

Af

[
εIn 0np

] −In[
In

0n

] [
0n 0np

0n 0np

] [
0n

βIn

]
C
[
0pn Ip

]
0pn

⎤
⎥⎥⎦

(31)
It follows that all of the regularity assumptions summarized
below [2], [14] are now satisfied:

1) (A,B2) stabilizable: satisfied for any matrix A.
(C2,A) detectable: satisfied iff (Af , C) is detectable.

2) D21D
T
21 = Ip, which is nonsingular.

DT
12D12 = β2In, which is nonsingular.

3) rank

[
A − λI B2

C1 D12

]
= 2n = full column rank ∀λ.

rank

[
A − λI B1

C2 D21

]
= n + p = full row rank ∀λ.

4) D22 = 0.
Therefore, all the regularity assumptions are satisfied iff the
pair (Af , C) is detectable.
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B. Proof of equivalence

Let T1 be the setup in Fig. 2 associated with (25), T2

the one associated with (29) and T3 the one associated
with (31) where the three share the same controller K in
(21). And let T̂1(z), T̂2(z) and T̂3(z) be their correspond-
ing transfer matrices. The following two lemmas demon-
strate a certain equivalence relationships among these setups
(the proof is omitted and is included in [9]).

Lemma 1: Consider a stabilizing controller K for the
setups T1 and T2, then ‖ T̂1(z) ‖∞< γ if and only if ∃ ε > 0
such that ‖ T̂2(z) ‖∞< γ.

Lemma 2: Given ε > 0 and a stabilizing controller K for
the setups T2 and T3, then ‖ T̂2(z) ‖∞< γ if and only if
∃ β > 0 such that ‖ T̂3(z) ‖∞< γ.
We are now ready to present our main result in the form
of a theorem showing that the observer gain K needed to
minimize the energy (L2 norm) of the estimation error for the
SDO in (17)-(21) must solve a regular H∞ optimal control
problem. To this end, we define the regular discrete H∞
problem “Problem 1” as follows:
Problem 1: Given ε > 0 and β > 0, find S, the set of
admissible controllers K satisfying ‖ T̂ζω(z) ‖∞< γ for
the setup in Fig. 2 having the plant G in (31).
The main result is summarized in the following theorem:

Theorem 2: Consider the SDO design problem in Fig. 1
with the plant P in (1) and the fast rate model in (3). Then
the following two statements are equivalent:
(i) The observer (17)-(21) with the dynamic gain K has a

minimum estimation error energy.
(ii) ∃ ε∗ > 0, β∗ > 0 s.t K ∈ S∗ (the set of controllers

solving “Problem 1” with the minimum possible γ).
Proof : Since the observer’s error dynamics is represented by
T1 (the setup in Fig. 2 associated with (25)), then the esti-
mation error’s energy satisfies: ‖e‖L2 ≤ ‖T̂1(z)‖∞ ‖d‖L2 .
Then, ‖e‖L2 is minimized, for a certain disturbance signal
d(k), if and only if the controller K minimizes ‖T̂1(z)‖∞.
The equivalence of the two statements then follows as a
direct result of Lemma 1 and Lemma 2. �
C. A new H∞ design procedure

The following iterative “binary search” procedure is then
proposed to evaluate the observer gain K:
Design procedure:
Step 1 Set γlow to an arbitrary small positive value and γhigh

to an arbitrary large positive value.
Step 2 Set ε > 0 and β > 0 and set γ ← γlow+γhigh

2 .
Step 3 Test solvability of “Problem 1”. If test fails then go
to Step 5 ; otherwise solve the problem, select any K ∈ S
as a candidate observer gain and set γhigh ← γ.
Step 4 If |γhigh − γlow| < a threshold value then stop the
algorithm, otherwise go back to Step 2.
Step 5 Set ε ← ε

2 and β ← β
2 . If ε or β < a threshold value

then γlow ← γ and go to Step 4, otherwise go to Step 3.
Remarks

• The H∞ design is guaranteed to converge if the pair
(Af , C) is detectable [14]. This condition is guaranteed
by the “non-pathological assumption” on hf .

• The H∞ SDO does not introduce a time delay.
• The assumption of finite energy is easily satisfied in step

tracking applications if ỹf (k) is selected as ỹf (k) =
ys(r (k mod r)) (i.e, approximating the fast rate output
as a constant signal between samples).

V. SIMULATION RESULTS

We here consider an illustrative example using the rotary
inverted pendulum (ROTPEN) shown schematically in Fig. 3.
The angle that the perfectly rigid link of length l1 and inertia
J1 makes with the x-axis of an inertial frame is denoted θ1

(degrees). Also, the angle of the pendulum (of length l2 and
mass m2) from the z-axis of the inertial frame is denoted θ2

(degrees). The ROTPEN has a state space model of the form

Fig. 3. The Rotary Inverted Pendulum (ROTPEN).

ẋ = f(x)+g(x)u where x = [θ1 θ2 θ̇1 θ̇2]T is the state vector
and u is the scalar servomotor voltage input (Volt). The
output is assumed to be θ1 (the motor angle), i.e y = x1. The
system parameters are: l1 = 0.215 m, l2 = 0.335 m, m2 =
0.1246 Kg and J1 = 0.0064 Kg.m2. Linearization about
the link pendant configuration, i.e the equilibrium point
(θ1 = constant, θ2 = 180 degrees and u = 0) gives:

ẋ=

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 − 23.9774 −14.5255 −0.2777
0 − 67.0081 −13.9836 −0.7760

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣

0
0

1439.3
1385.6

⎤
⎥⎥⎦ u

(32)

This model is open-loop unstable. In our simulation, we
first stabilize the system, furthermore the closed-loop poles
and the feedforward gain are chosen to make the output
track a step input of 10 degrees. The simulation time is
taken as 50 sec. The observer design in case of H∞ was
done with the help of the Matlab command hinfsyn and
using the Bilinear transformation approach [2] to get a
discrete H∞ controller. In case of lifting, the command
place was used to place the discrete poles of the observer
(14) at {0.0183, 0.0025,−0.0563 ± 0.1231j}. The value
of hf is fixed to 0.1 sec and hs is changed to take the
values {0.2, 0.5, 0.8 and 1} sec. This represents a study
for different values of r in (4). The approximated out-
put ỹf (k) is chosen as the held output between samples
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(i.e, ỹf (k) = ys(r (k mod r))) as shown in Fig. 4(a) for the
case hs=1. The approximation error d(k) in (15) in this case
is shown in Fig. 4(b). It can be seen that the disturbance term
d(k) is a decaying signal having a finite L2 norm (note that
all L2 norms are computed for the interval t = [0, 50 sec]).
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Fig. 4. (a) Actual vs approximated outputs. (b) Disturbance term d(k).

Case study 1: The simulation is conducted to compare
the Lifting technique with the H∞ technique. The ob-
server initial conditions (for both techniques) are taken as[
0.2 0 0 0

]T
. Fig. 5 shows the output estimation error

for the two cases when hs = 1. Table I shows the trend of
state estimation error’s L2 norm with the change of hs. With
the increase of r, the number of inputs and outputs for the
system in (13) increases making the lifting technique more
complex. It is important to note that for very large values of
hs, the system in (13) could become unobservable making
the use of the lifting technique impossible (as is the case for
values of hs >> 1). Two factors are important in choosing
r: the computer speed to implement the observer in Fig. 1;
and the required bound on the disturbance term since the
norm of d(k) in (15) increases with the increase of r.
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Fig. 5. Output estimation error for Lifting and H∞ at hs = 1 sec.

TABLE I

CASE STUDY 1 - EFFECT OF CHANGE OF hs ON ‖ e ‖L2

Value of hs (in sec.) 0.2 0.5 0.8 1

H∞ technique 16.0328 16.9887 18.3506 19.5616
Lifting technique 22.9438 36.9739 46.2796 57.2925

Case study 2: In this case, the simulation shows the appli-
cation of the Lifting and H∞ SDOs in the fast rate fault
detection problem. In this experiment, hs is assumed to be
1 sec, and a sensor fault is assumed to start after 20 sec
in the form of a small bias of magnitude 1.75 degrees. The
residual signal s(k) is taken as the summation of the output
estimation error (r(k)) over a time window, and a simple

decision scheme at step k is assumed as follows:

s(k) =
k∑

i=k−4

|r(k)| > threshold ⇒ fault detected (33)

Applying both techniques (with the threshold as 2.0), the
fault in H∞ is detected at time = 20.1 sec, while in Lifting
it is detected at time = 22 sec. The residual signals are shown
in Fig. 6. This case study demonstrates that the proposed H∞
observer scheme can provide updated residual signal in fast
rate without introducing much time delay.
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Fig. 6. (a) Residual for H∞ technique. (b) Residual for Lifting technique.

VI. CONCLUSION

We considered the problem of sampled-data state recon-
struction in LTI systems. An observer structure that generates
intersample state estimations is introduced and the problem
is shown to be equivalent to a standard H∞ problem. A
design algorithm to solve this problem is presented and can
be carried out using commercially available software, such
as MATLAB. The proposed H∞ design has some important
advantages over the classical lifting technique.
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