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Abstract— This paper addresses the issues relating to the
enforcement of robust stability when implementing the Adaptive
Inverse Control (AIC) scheme. In this scheme, an adaptive
FIR filter is added to a closed-loop system in order to
reduce the output error caused by external disturbances,
enhancing the performance achieved by linear time-invariant
controllers alone. A Small-Gain-Theorem-based sufficient sta-
bility condition, which accounts for the feedback interaction
between the time-varying adaptive filter and the unmodeled
dynamics existing in the closed-loop plant, is derived. This
condition suggests that system stability can be imposed by
reducing the feasible region where the FIR filter gains can lie.
Thus, a constrained convex optimization problem is formulated
and solved for the FIR filter form. A relation between this
optimization problem and the recursive least-squares (RLS)
algorithm is established. Also, a suboptimal solution, which is
implementable recursively, is proposed. Finally, to demonstrate
their effectiveness, these algorithms are implemented on a laser
beam steering experiment.

I. INTRODUCTION

In this work, we address the stability issues involved in the
implementation of the AIC scheme used for noise cancelation
[1], [2]. The AIC scheme has been demonstrated to be very
useful in a wide range of applications. In particular, it has
been seen that using AIC, it is possible to enhance the per-
formance achieved by linear time-invariant (LTI) controllers
employed in laser beam jitter suppression applications [4],
[5]. The block diagram of the AIC system is shown in Fig.
1.

In general, the stability problem arises when we have a
system that consists of smaller subsystems interconnected in
feedback configurations. Even though each of these subsys-
tems is internally stable, the bigger system could be unstable.
In the particular case of AIC, ensuring that the adaptive filter
employed is stable does not guarantee stability of the scheme
as a whole. Arguments for stability of the AIC scheme have
been discussed in [1]. However, those are based on conditions
that are impossible to impose on a real case experiment. Such
arguments do not take into account the inherent uncertainty
in any identified model, due to the inability of an LTI model
to capture the real dynamics of a physical system, which in
general, is time-varying and nonlinear.

When implementing the AIC scheme, the adaptation pro-
cess can be performed using a wide range of stochas-
tic methods, such as the least-mean-squares (LMS), and
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deterministic methods, such as the recursive least-squares
(RLS) method. Convergence and stability of adaptive fil-
tering implementation, using these algorithms, are studied
in [6]–[10]. However, as mentioned earlier, stability of the
subsystems does not guarantee stability of the whole scheme.
Assuming that in the block diagram of Fig. 1, all the input
signals are bounded and all the subsystems are internally
stable, a condition for �∞-stability is determined. Imposing
this condition leads to the formulation of a constrained
optimization problem. Specifically, it can be shown that one
way to ensure stability under uncertainty is to enforce certain
constraints on the adaptive filter gains. This problem has not
been addressed in the adaptive filtering literature, though, it
is mentioned briefly in [9]. We refer to this as the constrained
adaptive filtering problem.

In particular, we focus on the recursive solution to the
least-squares (LS) problem, subject to the constraints on the
adaptive filter coefficients that impose robust stability under
uncertainty. The consequence of constraining the filter coef-
ficients is the reduction of the feasible region, where the set
of optimal coefficients can lie. Fortunately, this constrained
problem is convex [11], allowing us to formulate two classes
of algorithms. The first type exploits the relation between
the constrained LS problem and the RLS algorithm. The
second type is based on a suboptimal solution obtained by
computing projections of the unconstrained solution onto the
convex feasible region. The applicability of these algorithms
is demonstrated on the optical experiment described in [4]
and [5].

It is important to emphasize that the approach, chosen
in this paper, allows us to address a practical issue in the
core of many adaptive schemes. This type of controllers
require strong and rich excitation of the output signals,
which is usually against the control objectives. Therefore,
it is common to encounter cases, where high performance
diminishes the excitation of the measured outputs, causing
the adjustable parameters to drift to unstable regions [12].

The paper is organized as follows. In Section II, we intro-
duce some notation and formulate the problem in considera-
tion. In Section III, a connection between the constrained
LS problem and the RLS algorithm is established. After
that, following a different approach, a suboptimal solution
is found. Finalizing this section, we propose two recursive
algorithms. In Section IV, the experimental implementation
of these algorithms is demonstrated, and finally in Section V
we draw some conclusions and discuss some directions for
future work.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeC07.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 5800



II. PROBLEM FORMULATION

A. The Adaptive Inverse Control Scheme

In principle, the AIC scheme intends to find a transfer
function F (z)z−1, which is the inverse of the plant G in a
certain frequency range. This frequency range depends on the
bandwidth of the disturbance sequence n(i). In reality, the
finding for F (z) can be seen as a predictive process based
on Ĝ(z), which is the plant model of the system G. Usually,
Ĝ(z) is computed off line.

In every step, an estimate n̂(i) for the disturbance n(i) is
computed using Ĝ(z). For analysis purposes, we consider
that the reference signal r(i) is set to 0 for all i. Thus,
once n̂(i) is computed, it is filtered through −F (z)z−1 and,
ideally, the output of −F (z)z−1 is the required input for
G, such that, the output of G is v(i) ≈ −n̂(i). Therefore,
if n̂(i) ≈ n(i), the noise n(i) is counteracted, making the
control error smaller.

In this work, F (z) is chosen to be a finite impulse response
(FIR) filter, whose coefficients are found solving an LS
problem. The data used for solving this LS problem are
generated using Ĝ(z) and n̂(i). This can be done off-line,
as in [3], or in an adaptive-recursive manner [4], [5]. In
the following sections, we show that stability of the whole
interconnected system is not guaranteed for any of these two
estimation methods when Ĝ �= G, even if, F (z) is stable.
We propose a method to handle this problem.
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Fig. 1. Adaptive Inverse Control Scheme.

B. Notation and Mathematical Preliminaries

The space of all bounded scalar-valued sequences is de-
noted by �∞(Z). Thus, if x = {. . . , x(−1), x(0), x(1), . . .},
with x(k) ∈ �, is a sequence in �∞(Z), then

‖x‖�∞ = sup
k

|x(k)| < ∞. (1)

From a mathematical point of view, a system is an operator
that maps sequences between two signal spaces. In this case,
the operators of interest are the operators that map signals
from �∞ to �∞ (operators on �∞), that are linear and causal,
but not necessarily time-invariant. The space of all linear,
causal operators from �∞ to �∞ can be represented by an
infinite dimensional block triangular matrix

R =

⎡⎢⎣ R(0, 0) 0 0 . . .
R(1, 0) R(1, 1) 0 . . .

...
...

. . .
...

⎤⎥⎦ , (2)

where, R(i, j) ∈ � [13]. Consequently, if the sequence
{u(k)}∞k=0 in �∞ is the input to the system associated with
the matrix R and the sequence {y(k)}∞k=0 in �∞ is the output
from the system associated with R, then y = Ru.

An operator F from �∞ to �∞ is called bounded if its
induced norm defined as

‖F‖�∞→�∞ = sup
x∈�∞,x �=0

‖Fx‖�∞

‖x‖�∞
(3)

is finite. Also, an operator F : �∞ → �∞ is said to be stable
with respect to a signal space �∞ if it is bounded on �∞
[13]–[16].

In particular, we would like to find the induced norm
from �∞ to �∞ for the linear time-varying (LTV) system
F (k, z) = w0(k) + w1(k)z−1 + . . . + wN (k)z−N , with
wi(k) ∈ �, and where z−1 denotes the unit delay operator.
Pursuing that, consider an input sequence u = {u(k)}∞k=0.
Then, the relationship y = Ru, becomes[

y(0) y(1) . . . y(N) . . . . . .
]T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w0(0) 0 0 . . .
w1(1) w0(1) 0 . . .

...
...

. . .
...

wN (N) wN−1(N) . . . . . .
0 wN (N + 1) . . . . . .

0 0
. . .

...
...

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(1)

...
u(N)

u(N + 1)
...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Now, define w(k) as the vector that contains all the
elements that are different than 0 in the kth row, with
k = {0, 1, 2, . . .}. For example, w(0) = w0(0), w(1) =
[w1(1) w0(1)]T , w(N) = [wN (N) . . . w0(N)]T and w(N+
1) = [wN (N +1) . . . w0(N +1)]T . This allows us to write
the following.

Lemma 1: The induced norm from �∞ to �∞ of the LTV
system F is given by

‖F‖�∞→�∞ = sup
k

‖w(k)‖�1 . (4)

Proof: It is straightforward that

‖F‖�∞→�∞ = sup
‖x‖�∞≤1

‖Fx‖�∞ = sup
k

w(k)T xs(k), (5)
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with xs(k) = sign([wN (k) wN−1(k) . . . w0(k)]T ). Then,
it is clear that (4) holds.

It is worth to mention that when F is LTI, with w being
a constant vector of gains, the relation ‖F‖�∞→�∞ = ‖w‖�1

holds. This result is consistent with the well known theorem
that states that the induced norm from �∞ to �∞ of an LTI
bounded system H is given by ‖h‖�1 , where h denotes the
impulse response of the system H [13].

Next, consider the block diagram in Fig. 2. It is clear that
the relations

y1 = P2y2 + u1

y2 = P1y1 + u2
(6)

hold. The feedback connection in Fig. 2 is called well posed
if (6) gives a unique output {y1, y2} for any input {u1, u2}
in �∞ [13]–[15]. A special case of wellposedness is given
when the operator P1P2 is strictly causal.

Lemma 2: If the operator P1P2 is strictly causal, then the
feedback connection of Fig. 2 is well posed.

Proof: It is clear that y2 = P1P2y2 + P1u1 + u2,
therefore, for any {u1, u2} ∈ �∞, a unique solution, y2,
can be computed recursively, since P1P2 is strictly causal.
Similarly, y1 can be computed in the same way

The last mathematical tool that we need is a particular
version of the Small Gain Theorem.

Theorem 1: Let P1 : �∞ → �∞ and P2 : �∞ → �∞ be two
stable operators and assume that the closed-loop system, in
Fig. 2, is well posed. Then, the closed-loop system is �∞-
stable if ‖P1‖�∞→�∞‖P2‖�∞→�∞ < 1.

Proof: See [13].

1P

2P

1u 1y

2y 2u

Fig. 2. Typical Feedback Connection.

C. Model Uncertainty and Robust Stability in the AIC
scheme

Consider Fig. 1, and let Q be a system operator, such
that, y = Qr. It is immediate that Q = G if the condition
Ĝ = G holds. Consequently, it is possible to conclude that
Q is �∞-stable for any F (z) if the system plant G is stable.
Unfortunately, this stability condition is not useful in a real
case scenario, since it is theoretically impossible to have a
model Ĝ(z) such that Ĝ = G.

We could think that a way to be confident about the
stability of our system is to have a model very close to
the real physical system. However, no matter how good our
model is, one can always find gains for F (z) so that the
system is unstable. On the other hand, empirical evidence
shows that, in many cases, the control scheme works in
a stable way, even when, Ĝ �= G [4], [5]. This indicates
that there should be a less conservative and more realistic
sufficient condition that ensures the stability of the adaptive

scheme as a whole if G belongs to a known set of system
operators.

Let the signals r and n in Fig. 1 be in �∞ and let Ĝ,
G and F be operators on �∞. In general, G is a bounded,
nonlinear, time-varying and causal operator, and therefore it
is natural to consider that

G = Ĝ + ∆, (7)

where, in general ∆ is a bounded, nonlinear, time-varying
and causal operator, representing the differences between
modeling and reality. Another interpretation of ∆ is as an
uncertainty. In other words, ∆ represents what we do not
know about the physical system G.

On the other hand, let us define the system operator Fa

as

Fa(z) = −F (z)z−1, (8)

and notice that Fa is strictly causal and linear. Also, notice
that considering (7) and (8), the system in Fig. 1 and the
system in Fig. 3 are equivalent. Hence, one can write

uG = Fan̂ + r
n̂ = ∆uG + n.

(9)

The development, done thus far, allows us to conclude
some facts about our adaptive system.

Lemma 3: The system in Fig. 3 is well posed.
Proof: Fa is a strictly causal operator and ∆ is a causal

operator, therefore the operator ∆Fa is strictly causal. Then,
by lemma 2, the system in Fig. 3 is well posed.

Theorem 2: Let w(i) = [wN (i) . . . w0(i)]T be the adap-
tively computed vector of gains for the prediction problem
in Fig. 1 at time i. Furthermore, let ‖∆‖�∞→�∞ < 1

γ , with
γ ∈ �++. Then the system in Fig. 3 is �∞-stable if

‖w(i)‖�1 ≤ γ, ∀ i = 0, 1, 2, . . . (10)

Proof: It is immediate that ‖Fa‖�∞→�∞ = ‖F‖�∞→�∞ .
Then, by Lemmas 1–3 and Theorem 1, the system in Fig.
3 is �∞-stable if supi ‖w(i)‖�1 ≤ γ, which is equivalent to
(10).

Since the systems in Fig. 1 and Fig. 3 are equivalent,
Theorem 2 gives us a sufficient condition for enforcing �∞-
stability on the AIC scheme in Fig. 1. Experimentally, it is
possible to include this condition by imposing bounds on the
value of the �1-norm of the adaptively computed vector of
gains. Thus, (10) leads to the formulation of a new problem,
namely, the constrained adaptive filtering problem.

aF

r u
G

nn̂

Fig. 3. ∆ and Fa in Typical Feedback Connection.
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D. The Constrained Adaptive Filtering Problem

As mentioned earlier, we need to formulate a least-squares
problem that allows us to estimate coefficients for F (z) =
w0 + z−1w1 + . . . + z−M+1wM−1 in Fig. 4. We define d(i)
as the desired output, u(i) as the input and d̂(i) as the actual
output from F (z) with coefficients estimated at time i − 1.

It is common to define the so-called regressor row vector
as U(i) = [u(i) u(i − 1) . . . u(i − M + 1)]. Then, one
can write d̂(i) = U(i)w(i − 1), where w(i − 1) = [w0(i −
1) w1(i−1) . . . wM−1(i−1+M)]T . The relations between
the variables in Fig. 1 and Fig. 4 are: u(i) = m(i − 1) and
d(i) = n̂(i).

Thus, we formulate the optimization problem

min
w

‖Aw − b‖2
�2 , (11)

where the matrices for N − 1 samples are

b =

⎡⎢⎢⎢⎣
d(0)
d(1)

...
d(N − 1)

⎤⎥⎥⎥⎦ and A =

⎡⎢⎢⎢⎣
U(0)
U(1)

...
U(N − 1)

⎤⎥⎥⎥⎦ . (12)

Notice that this optimization problem is unconstrained,
which implies that the feasible region is �M , where M − 1
is the order of the filter to be found. The recursive solution
to the regularized version of this problem is the well known
RLS algorithm. In this case, in order to impose the condition
given by Theorem 2, we formulate the constrained least-
squares problem

min
w

‖Aw − b‖2
�2 s.t. ‖w‖�1 ≤ γ. (13)

This optimization problem is convex, which means that
an optimal solution can be found, and that this solution is
unique if rank(A) = M . However, in this case we have
the additional difficulty of finding this optimal point in a
recursive manner. Thus, it could be useful to replace the
constraint given by the �1-norm by the constraint ‖w‖�2 ≤
α, where, α = γ√

M
. This is possible, because for a vector

x ∈ �n, the relationship ‖x‖�1 ≤ √
n‖x‖�2 holds.

z
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w 1M

w
1
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)(iu
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Fig. 4. FIR Adaptive Filter.

III. SOME APPROACHES TO THE SOLUTION OF THE

CONSTRAINED PROBLEM

A. Optimal Solution to the �2-norm Constrained Least-
Squares Problem Using SVD Decomposition

Our first goal is to have a solution to the constrained least-
squares problem

min
w

‖Aw − b‖2
�2 s.t. ‖w‖2

�2 ≤ α2 =
γ2

M
, (14)

which allows us to have a better understanding of what
is needed to be done in order to ensure the conditions of
stability.

To begin with, consider the SVD of matrix A. A =
UΣAV T , where U and V are unitary matrices and where
ΣA is a diagonal matrix with r elements greater than zero
and r = rank(A) [17]. Multiplication of a vector by
unitary matrices preserve the length of the vector. Hence,
‖Aw − b‖2

�2
= ‖UT (Aw − b)‖2

�2
and ‖w‖�2 = ‖V T w‖�2 .

Furthermore, if we define b̃ = UT b and y = V T w, it is
possible to formulate the equivalent minimization problem

min
y

‖ΣAy − b̃‖2
�2 s.t. ‖y‖2

�2 ≤ α2. (15)

In this case, we assume that r = n, i.e., the rank of matrix
A is equal to the number of columns of A. The case r �= n
is a trivial generalization of this solution.

Strong duality allows us to solve (15) using Lagrange
multipliers and the Karush-Kuhn-Tucker (KKT) conditions
[11]. Thus, we write the corresponding Lagrangian function

h(y, λ) = ‖ΣAy − b̃‖2
�2 + λ(‖y‖2

�2 − α2) =

n∑
i=1

(σi − yib̃i)2 +
m∑

i=n+1

b̃i
2

+ λ

(
n∑

i=1

y2
i − α2

)
(16)

and the corresponding KKT conditions

λ ≥ 0 (17)

∂h(y, λ)
∂yi

= (σiyi − b̃i)σi + yiλ = 0 (18)

∂h(y, λ)
∂λ

=
n∑

i=1

y2
i − α2 = 0. (19)

In this way, the optimal wo can be found as follows.

1) Find the optimal solution to the unconstrained problem.
If this solution lies outside the feasible region go to
step 2, otherwise stop.

2) Find the optimal λo ≥ 0, that satisfies

n∑
i=1

b̃iσi

σ2
i + λo

= α2. (20)

3) Compute the vector yo as

yo
i =

b̃iσi

σ2
i + λo

. (21)
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4) Compute the optimal wo for the original problem (14)
as

wo = V yo. (22)

The previous algorithm allows us to solve the problem,
nevertheless, this solution is not implementable in a recursive
manner. Despite this fact, it sheds light to understanding
the nature of the original problem (14). Clearly, (20)–(22)
indicate that there exists a set Λ = {λ : λ > λo}, such that,
any vector w(λ), with λ ∈ Λ, is inside the feasible region
and therefore, such a point w(λ) is a vector of gains robustly
stable in the sense of (10).

B. The Constrained �2-norm LS problem as a Regularized
LS problem

In the previous section we found an explicit solution for
the constrained least-squares problem and we noticed that
the optimal solution to the constrained problem (14) can be
found by scaling the ith entry of the unconstrained optimal
vector by σ2

i

σ2
i
+λo . Therefore w(λ), with λ ≥ λo, is inside the

feasible region. These facts indicate that if we are able to
find, from the data for example, an estimate for the optimal
λo, we could find a recursive method for computing w(λo).

To begin with, we found optimality conditions for the
original problem (14). In this case, the Lagrangian is

L(w, µ) = ‖Aw − b‖2
�2 + µ(‖w‖2

�2 − α2) =

wT AT Aw − 2wT AT b + bT b + µ

(
n∑

i=1

w2
i − α2

)
(23)

and the KKT conditions are given by

µ ≥ 0 (24)

∇wL(w, µ) = 2AT Aw − 2AT b + 2µw = 0 (25)

∂L(w, µ)
∂µ

= ‖w‖2 − α2 = 0. (26)

From (25) we obtain

(AT A + µI)w = AT b, (27)

which is the normal equation for the regularized problem,
stated as

min
w

∣∣∣∣∣∣∣∣( A√
µI

)
w −

(
b
0

)∣∣∣∣∣∣∣∣2
�2

= min
w

‖Aw−b‖2
�2 +µ‖w‖2

�2 .

(28)
Now, we establish a strong relation between (16) and (27),

that will be used later.
Lemma 4: Let (yo, λo) be the solution to (17)–(19) and

let (wo, µo) be the solution to (24)–(26). Then, µo = λo and
h(yo, λo) = L(wo, µo).

Proof: From (16), it is immediate that (ΣT
AΣA +

λoI)yo = ΣT
Ab̃. Thus, (V T AT UUT AV + λoI)V T wo =

V T AT UUT b. Then, V T (AT A + λoI)wo = V T AT b, which
implies (AT A + λoI)wo = AT b, since V T is always

invertible. By (27), µo must satisfy the same relationship.
Therefore, µo = λo and h(yo, λo) = L(wo, µo).

Thus, in principle, (14) can be solved in two steps. First,
an estimate λ̂o for λo is found, and then, the problem (28) is
solved. λ̂o must satisfy λ̂o ≥ λo, in order to have a solution
point inside the feasible region.

It is essential to note that the problem (28), for a fixed
estimate λ̂o, is nothing but the regularized least-squares
problem that can be solved using the recursions

w(i) = w(i − 1)+

P (i − 1)UT (i)
1 + U(i)P (i − 1)UT (i)

(d(i) − U(i)w(i − 1)) (29)

P (i) = P (i − 1) − P (i − 1)UT (i)U(i)P (i − 1)
1 + U(i)P (i − 1)UT (i)

, (30)

with w(−1) = 0 and P (−1) = λ̂o
−1

I [6]. In other words,
when using the RLS algorithm, one is solving a �2-norm
constrained problem with an unknown α. It is important
to mention that, for numerical reasons, it is preferable to
implement (29)–(30) using some equivalent method. For
example, the inverse QR-RLS algorithm [6], [7].

Thus, one can solve (14), recursively, employing the RLS
algorithm. However, if our estimate of λo is too conservative
or not big enough, we would like to modify the value
of P (−1). Since RLS is recursive, this is not possible.
Nevertheless, one can reinitialize the filter with a new
P (−1). Considering these ideas, we define Algorithm 1. For
reasons that will become obvious, from this point onwards,
we distinguish between the regularized gains w(i) computed
using (29)-(30) and the constrained gains wc(i) that meet
the stability condition. Consequently, the control scheme is
always implemented using wc(i).

Algorithm 1 (Variable P-RLS):
1) Compute w(i) and P (i) using (29)–(30) or a numeri-

cally more reliable equivalent method (for example the
inverse QR-RLS algorithm).

2) If ‖w(i)‖�2 < α set wc(i) = w(i), return to step 1 and
compute w(i + 1) and P (i + 1). If ‖w(i)‖�2 ≥ α go
to step 3.

3) Set wc(i + k) = w(i − 1) for k = 0, . . . , Mo − 1.

Set w(i) = 0 and P (i) = λ̂o
−1

I , with λ̂o
−1

:=
max{λ̂o

−1
+ Kp(α − ‖w(i)‖�2), ε > 0}, where Kp

and ε are in �++. Use (29)–(30) to update w and P .
When k = Mo, set wc(i+Mo) = w(i+Mo), return to
step 1 and compute w(i+Mo +1) and P (i+Mo +1).

C. Suboptimal Solution to the Constrained LS problem

In this section, we derive suboptimal solutions for the
constrained LS problem. This is done by assuming that
we know the optimal point, wuo, of the unconstrained or
slightly regularized LS problem. In general, we will have
two possible cases. The case when wuo is inside the feasible
region, and the case when wuo is outside. Since the norm
constraints define convex feasible regions, if wuo is outside,
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the optimal point of the constrained problem must be in the
boundary of the feasible region. Considering the previous
facts, we propose to compute a suboptimal point, wco, by
projecting wuo, orthogonally, onto the feasible region. This
idea is illustrated by Fig. 5.

Unconstrained
Optimal Solution

Convex

Feasible

Set

Feasible Projection

Fig. 5. Feasible Set.

1) Suboptimal Solution to the �1-norm Constrained LS
problem: The projection problem for the �1-norm constraint
case can be stated as

min
wc

‖wc − wuo‖2
�2 s.t. ‖wc‖�1 ≤ γ. (31)

Noting that the feasible region of (31) is determined by the
�1-norm of the points wcs, the optimal point, wco, of (31)
must have the same direction that the unconstrained optimal
vector wuo. Thus, we can write the equivalent optimization
problem

min
wc

‖wc − wuo‖2
�2 s.t. cT wc ≤ γ, (32)

where c is the vector that contains the signs of the entries of
wuo. This equivalent problem remains convex, because the
new constraint is a halfplane. The Lagrangian is given by

h(wc, λ) =
n∑

i=1

(wc
i − wuo

i )2 + λ

(
n∑

i=1

ciw
c
i − γ

)
. (33)

Thus, deriving the corresponding KKT conditions, the opti-
mal point becomes

wco
i = wuo

i − λoci

2
, (34)

where the optimal λo is given by

λo =
2∑n

i=1 c2
i

(
n∑

i=1

ciw
uo
i − γ

)
=

2
n

(
n∑

i=1

ciw
uo
i − γ

)
.

(35)
2) Suboptimal Solution to the �2-norm Constrained LS

problem: The projection problem for the �2-norm constraint
case can be stated as

min
wc

‖wc − wuo‖2
�2 s.t. ‖wc‖2

�2 ≤ α2 . (36)

In this case, the Lagrangian function is

h(wc, λ) =
n∑

i=1

(wc
i − wuo

i )2 + λ

(
n∑

i=1

(wc
i )

2 − α2

)
. (37)

Thus, deriving the corresponding KKT conditions, the opti-
mal point becomes

wco
i =

wuo
i

1 + λo
, (38)

where λo solves
‖wuo‖2

�2

(1 + λ)2
= α2. (39)

3) The Simple Projection-RLS Algorithm: Based on the
previous results, it is possible to formulate another algorithm
that enforces the stability condition (10).

Algorithm 2 (The Simple Projection-RLS Algorithm):

1) Compute w(i) and P (i) using (29)-(30) or a numeri-
cally more reliable equivalent method.

2) If ‖w(i)‖�2 (�1) < α (γ) set wc(i) = w(i), return
to step 1 and compute w(i + 1) and P (i + 1). If
‖w(i)‖�2 (�1) ≥ α (γ) go to step 3.

3) Compute wc(i) according to (34) in the �1-norm case
or according to (38) in the �2-norm case. Set w(i) =
wc(i) and go back to step 1.

IV. EXPERIMENTAL IMPLEMENTATION OF THE

ALGORITHMS

A. Experiment Description

The algorithms developed in the previous sections were
implemented, in real time, on an optical experiment. For this
purpose, we used a Texas Instruments TMS320C6701 digital
signal processor (DSP). The sampling rate was set to 2KHz.

From a physical viewpoint, this experiment is a free-space
path through which a laser beam travels. Disturbance is
added during the trajectory, which produces jittering in the
laser beam spot to be measured at the end of the optical
path. The control objective is to adaptively suppress this
jitter using the scheme shown in Fig. 1. The experimental
setup is shown in Fig. 6 and the diagram of this optical
system is shown in Fig. 7. The main optical components in
this system are the laser source, two MEMS beam steering
mirrors (BSM), and a position sensing device (sensor). The
diagram in Fig. 7 shows the path of the laser beam from
the source to the sensor. After leaving the laser source, the
beam reflects of the mirror BSM 1, which serves as the
control actuator, then reflects of the mirror BSM 2, which
adds disturbance to the beam direction, and finally goes to
the sensor. Each mirror rotates about horizontal and vertical
axes and the outputs of the sensor are the horizontal and
vertical displacements of the centroid of the laser spot on
the sensor plane.

Fig. 6. Laser Beam Steering Experiment.
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BSM 1

BSM 2

Position Sensing

Device

Disturbance Generator (DSP)
Computer 2

D\A

Laser Beam

Source

Digital Control (DSP)
Computer 1

A\DD\A

5 6

1 2

3 4

Fig. 7. Diagram of Experiment.

TABLE I

RMS VALUES OF THE OUTPUT ERROR y (8000 SAMPLES).

Method RMS values of y
Open Loop 0.5944

LTI Feedback Controller 0.5834
Adaptive Scheme with Algorithm 1 0.0536
Adaptive Scheme with Algorithm 2 0.0573

For practical reasons, in this subsection, we consider that
all the physical systems, involved in this experiment, are LTI.
Thus, the discrete-time open-loop transfer function, P (z),
is defined as everything between points 5 and 6, in Fig.
7. In principle, this transfer function is a MIMO system,
because the MEMS mirror has two axes. However, these
two axes are decoupled, reason by which, in this paper we
consider the horizontal jitter only. The closed-loop transfer
function, G(z), is determined by the block diagram in Fig.
8, where C(z) is an LTI controller designed to reject the
disturbance n0. Notice that n0 and n of Fig. 1 are related
by n = (1 − PC)−1no. The Bode plot of the computed
sensitivity function, S(z) = (1 − P̂ (z)C(z))−1, is shown
in Fig. 9. For further information about the experimental
implementation, system identification, LTI control design,
and other aspects relating to this system, refer to [4] and
[5].

)(zP

)(zG

)(zC

-

y

n
0

u
G

Fig. 8. Block Diagram of LTI Feedback Control System. P (z): Open-Loop
Plant; C(z): LTI Feedback Controller; G(z) = Y (z)/UG(z).

B. Experimental Results and Analysis

Let do be the sequence generated inside the DSP 2 to
be applied, as a disturbance, to the laser beam through
the actuator mirror BSM 2. Then, the open-loop output
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Fig. 9. Bode Plot for the Computed Model, S(z), of the Sensitivity
Function.
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Fig. 10. Algorithm 1, with α = 1.0, KP = 10, and Mo = 100. The
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Over Time.

measurement is no = P2do, where P2 is the BSM 2 plant.
Similarly, when the optical system is under the control of the
LTI feedback controller C, the disturbance to be predicted
and canceled adaptively is n = (1 − PC)−1P2do. In this
case, do was generated as the sum of various sequences with
different bandwidths. These bandwidths are: 0-130Hz, 225-
235Hz, 340-350Hz and 455-465Hz.

The effectiveness of the constrained adaptive algorithms
is demonstrated in Fig. 10 and Fig. 11. In Fig. 10, the top
plot shows the time series of the measured output y, using
Algorithm 1, with α = 1.0, Kp = 10, Mo = 100 and initial

λ̂o
−1

= 107, for a filter of order 16. The bottom plot shows
the evolution on time of ‖wc(i)‖�2 . In order to have many
transition points, Kp was chosen small. Similarly, in Fig. 11,
the top plot shows the time series of the measured output

y, using Algorithm 2, with α = 1.0 and λ̂o
−1

= 107, for
a filter of order 16. The bottom plot shows the evolution
on time of ‖wc(i)‖�2 . The plots are segmented in four
sections. The first section shows the system in open loop,
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the second section shows the system operating under the LTI
controller, designed in [4], and the last two sections show
the system operating under the adaptive scheme, with the
unconstrained RLS first, and then with the constrained RLS
algorithms. Both constrained algorithms are able to bound
the filter coefficients, as desired, and improve significatively
the performance achieved by the LTI feedback controller
alone. This can be seen in Table I, Fig. 10, and Fig. 11. Fig.
12 shows that the noise with bandwidth below to 80Hz is
suppressed by the LTI controller. In higher frequencies the
LTI controller amplifies more than rejects, which explains
the performance of the LTI controller in Table I, Fig. 10 and
Fig. 11. The former is predicted by Fig. 9. Thus, the noise
cancelation above 80Hz is mostly done by the AIC scheme.

Finally, it is essential to mention that under the constrained
adaptive scheme, the optical system is able to endure strong
disturbances, which cannot be tolerated by the unconstrained
scheme, such as, blocking of the laser beam path and high
amplitude mechanical vibrations, returning to the steady-state
performance shown in Table I. Based on empirical evidence,

in this system, �∞-stability is enforced if ‖w(i)‖�2 ≤ 10,
which means that in this experiment we used a scheme 10
times more conservative than the critical limit.

V. CONCLUSIONS

In this paper we presented some initial results on the im-
plementation of a robustly stable AIC scheme. We worked on
the �∞(Z) space. Assuming additive uncertainty, a sufficient
condition for enforcing �∞-stability was found. We showed
that this condition can be imposed by solving a constrained
convex optimization problem. A connection between this
constrained convex problem and the RLS algorithm was
established, leading us to the formulation of the Variable
P-RLS algorithm. Also, we proposed a projection algo-
rithm which gives us a suboptimal solution implementable
recursively (Algorithm 2). Finally, we demonstrate these
algorithms on a laser beam jitter suppression application.

Empirical evidence shows that the control error converges,
satisfactorily, to a small level, when either of the two
algorithms is implemented on this experiment. However, the
question of the convergence properties of the AIC scheme, in
general, and the algorithms proposed here, in particular, still
remains. A beginning would be to enforce the convergence
properties of the RLS algorithm [10], when bounding the
norms of w(i).
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[5] N. O. Pérez Arancibia, S. Gibson and T.-C. Tsao, “Adaptive con-
trol of MEMS mirrors for beam steering,” in Proc. ASME Interna-
tional Mechanical Engineering Congress, Anaheim, CA, Nov. 2004,
IMECE2004–60256.

[6] A.H. Sayed, Fundamentals of Adaptive Filtering. New York, NY: John
Wiley & Sons, 2003.

[7] S. Haykin, Adaptive Filter Theory. Upper Saddle River, NJ: Prentice-
Hall, 1996.

[8] S.T. Alexander, Adaptive Signal Processing. New York, NY: Springer-
Verlag, 1986.

[9] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.

[10] G. C. Goodwin, P. J. Ramadge and P. A. Caines, “Discrete-Time
Multivariable Adaptive Control,” IEEE Transactions on Automatic
Control, vol 25, NO. 3, pp. 449-455, Jun. 1980.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambrige, UK:
Cambrige University Press, 2004.

[12] T.-T. Tay, I. Mareels and J. B. Moore, High Performance Control.
Boston, MA: Birkäuser, 1998.
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