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Abstract— The Galerkin finite element method is used to
examine the a simple polar test case of optimal drug delivery
to brain tumors. The PDE driven mathematical model is a
system of three coupled reaction diffusion equations involving
the tumor cells, the normal tissue and the drug concentration.
An optimal control problem is formulated keeping in mind the
primary goals of the treatment, i.e., minimizing the tumor cell
density and reducing the side effects of drugs. A distributed
parameter method based on application of variational calculus
to a pseudo-Hamiltonian, is used to obtain a coupled system of
forward state equations and backward co-state equations. The
Galerkin form of the finite element method is used due to its
greater facility in numerically representing complex structures
such as those in the brain. Finally, a two-dimensional circular
disk test case is considered and partitioned into a set of
rectangular finite elements in polar coordinates with bilinear
basis functions on each element, except that triangular elements
are used to accommodate the singular origin. Results show
significant reduction of the tumor density over time.

I. INTRODUCTION

Over the years, various kinds of cancerous growth have
been studied from the mathematical point of view. One such
kind is the growth of brain tumors. A brain tumor, like
other cancerous cells, originates from a cell that proliferates
and starts affecting the neighboring normal cells. As time
progresses the tumor cell becomes malignant and takes
life threatening proportions. Understanding the mechanisms
that augment and abet the growth of tumors is necessary
for formulating an optimal treatment. The most commonly
occurring form of brain tumors are the gliomas, which
account for a majority of the reported cases. Gliomas are
notoriously invasive and infiltrate the surrounding tissues [6],
[8]. Despite the availability of advanced diagnostic tools like
computerized tomography (CT) scan and magnetic resonance
imaging (MRI), realistic treatment options have been limited.
One major impediment in the treatment of brain tumors has
been the inability of the drugs to penetrate the blood brain
barrier (BBB)[2]. The BBB is a desirable natural protection
that exists in the human brain to prevent water soluble
toxic materials from entering the central nervous system.
The two most commonly used forms of drug delivery are
drugs conjugated with a polymer and delivery by optimal
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distribution of drugs about the original tumor site. Wang et al.
[9], [10] have worked extensively on drug delivery to tumors
in three dimension for drugs like IgG and BCNU. While this
paper was motivated by a biomedical problem, the treatment
here will be mostly mathematical. We will focus primarily
on control for the optimal distribution of the drug about the
original tumor site. While a lot of work targets study of solid
tumors, our primary concern would be the post operative
treatment, i.e, the resection that occurs after the surgeon has
removed the bulk of the tumor. The mathematical model
used in this paper is taken from Chakrabarty and Hanson [1],
which was influenced by the models of Gatenby et al. [3] and
Mansuri [5]. Both of these papers, while not dealing directly
with brain tumors, have models which closely resemble the
growth of brain tumors. Murray’s book [6] is an excellent
reference for different types of growth mechanisms. Westman
et al. [11] look at three common kinds of tumor growth, viz.,
exponential, logistic and Gompertz. In the next section we
take a fairly generalized model which could be used in the
mathematical study of other biomedical phenomena. Further,
an optimal control problem is formulated keeping in mind
the primary goals of the treatment, i.e., minimizing the tumor
cells and reducing the side effects of drugs. We define a
pseudo-Hamiltonian and use the necessary conditions from
calculus of variations [4]. This leads to a coupled system
of forward state equations and backward co-state equations,
but the main thrust of this paper is to formulate a finite
element numerical scheme to solve for this set state and co-
state vector equations.

II. MATHEMATICAL MODEL

In the PDE driven, distributed parameter control model of
Chakrabarty and Hanson [1], the tumor cell and normal cell
density and the drug concentration at any position vector x
and time t ∈ [0, tf ], in the interior Ω of the domain, denoted
by n1(x, t), n2(x, t) and c(x, t) respectively, are taken as the
state variables. Defining the global state vector as

Y(x, t) ≡
[
n1(x, t) n2(x, t) c(x, t)

]�
, (1)

the governing nonlinear vector PDE is given by

Yt(x, t) = D∇2
x[Y] + (A + B)(Y)Y + U, (2)

where D = [Diδi,j ]3×3,

A(Y) = a1(1−Y1/k1)e1e�1 +a2(1−Y2/k2)e2e�2 −a3e3e�3 ,

B(Y) = −(α1,2Y2+κ1,3Y3)e1e�1 −(α2,1Y1+κ2,3Y3)e2e�2 ,

U(x, t) = U3(x, t)e3. (3)
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Here, Di > 0 is the ith diffusion coefficient (could be
inhomogeneous depending on the brain matter [8]; in this
case the ∇x·D∇x should replace the D∇2

x for the diffu-
sion operator; D1 is mainly metastatic and D2 should be
negligible since normal), Ai,i(Yi)Yi is the ith growth rate
(logistic for i = 1 : 2 and exponentially decaying for i = 3,
but they can be purely exponential, logistic or Gompertzian
[6] depending the type of growth stage), αi,j are per capita
logistic death rates due to competition, κi,j are the death
rates due to treatment and u = u(x, t) is the rate at which
the drug is being delivered and will be the control variable
in an optimal control system. Also, ei is the ith unit vector.
The initial conditions and the no-flux boundary conditions
on the boundary ∂Ω are, respectively,

Y(x, 0) = Y0(x), and − D(N̂ · ∇x)[Y](x, t) = 0. (4)

III. THE OPTIMAL CONTROL PROBLEM

The objective functional in the quadratic form of running
and terminal cost is given by,

J [Y,U] =
1
2

∫ tf

0

dt

∫
Ω

dx
(
Y�RY+(U−U0)

�
S (U−U0)

)
+

1
2

∫
Ω

dx
(
Y�QY

)
(x, tf ), (5)

where R = r̃1e1e�1 , S = s3e3e�3 , Q = q1e1e�1 + q3e3e�3
and U0 = U0,3(x, t)e3. The goal is to minimize this
functional with respect to the drug input rate relative to
some threshold rate U0,3 and the terminal costs at tf , i.e.,
minu [J(u)]. Note that here r̃1 > 0 is the tumor burden cost
coefficient and s3 > 0 is the drug delivery cost coefficient,
while q1 > 0 and q3 > 0 are final costs. We are trying
to minimize the density of tumor cells and the drug delivery
quadratic control term (U3(x, t)−U0,3(x, t))2. Also, the goal
at the final time tf is to minimize the final tumor density and
more importantly the drug concentration so as to reduce the
effects of toxicity. In addition, no assumption is made about
the control constraints, even though there might be physical
restriction on the amount of drugs that can be administered.
Using three Lagrange multiplier vectors, two of which are
functions of space and time and one is independent of time,
and letting Z = (Y,U, ξ,η,χ) be an extended state vector,
the pseudo-Hamiltonian is defined as,

H(Z) ≡ 1

2

∫ tf

0

dt

∫
Ω

dx
(
Y�RY+(U−U0)

�S (U−U0)
)

+
1

2

∫
Ω

dx
(
Y�QY

)
(x, tf )

+

∫ tf

0

dt

∫
Ω

dx ξ�
(
Yt−D∇2

x[Y]−(A+B)(Y)Y−U

)

+

∫ tf

0

dt

∫
∂Ω

dΓ η�
(
−D

(
N̂·∇x

)
[Y]

)
(6)

+

∫
Ω

dx
(
χ�(Y− Y0)

)
(x, 0).

The calculus of variations is used to determine the functional
critical point necessary condition for the first variation [4] of
the pseudo-Hamiltonian H(Z). Let the perturbation δZ about
the optimal trajectory Z∗, be defined as δZ = Z − Z∗. The
pseudo-Hamiltonian is expanded as follows,

H(Z∗ + δZ) = H(Z∗) + δH(Z∗, δZ) + O((δZ)2).

The quadratic order terms, including the 2nd variation of
H are neglected. In addition the functional dependence of
the higher derivatives in time and state of the extended state
perturbations must be eliminated on lower order terms by one
or two integrations by parts, i.e., Green’s formula. Merging
these identities, rearranging inner products and collecting
terms, the extended state equations yields the following
intermediate form:

δH(Z∗, δZ) =

∫ tf

0

dt

∫
Ω

dx δY�(
RY∗−ξ∗

t−∇2
x[Dξ∗]

−(A+B)(Y∗)ξ∗−∇Y [A+B](Y∗):(ξ∗(Y∗)�
)

+

∫ tf

0

dt

∫
Ω

dx δU�(S (U∗−U0)−ξ∗)

+

∫ tf

0

dt

∫
Ω

dx δξ�(
Y∗

t−D∇2
x[Y∗]

−(A+B)(Y∗)Y∗ − U∗)

−
∫ tf

0

dt

∫
∂Ω

dΓ δη�D
(
N̂·∇x

)
[Y∗]

+

∫ tf

0

dt

∫
∂Ω

dΓ δY�
(
N̂·∇x

)
[Dξ∗]

−
∫ tf

0

dt

∫
∂Ω

dΓ
(
N̂·∇x

)[
δY�

]
D(η∗+ξ∗)

+

∫
Ω

dx
(
δχ� (Y∗−Y0(x))

)
(x, 0)

+

∫
Ω

dx
(
δY�(χ∗−ξ∗)

)
(x, 0)

+

∫
Ω

dx
(
δY�(ξ∗+QY∗)

)
(x, tf ),

where A : B denotes the trace of the matrix AB or
the double-dot product, e.g., ∇Y [A](Y∗) : (ξ∗(Y∗)� =∑3

j=1

∑3
k=1 ∇Y [Aj,k]ξ∗j Y ∗

k .

A. State Equations

The optimal state equation is recovered by setting the
coefficient of (δξ)� to zero:

Y∗
t = D∇2

x[Y∗] + (A + B)(Y∗)Y∗ + U∗ (7)

on Ω×(0, tf ], with boundary conditions on ∂Ω×[0, tf ] from
the coefficient of (δη)�, i.e., −D(N̂·∇x)[Y∗](x, t) = 0, for
(x, t) ∈ ∂Ω×[0, tf ] and with initial conditions on the interior
Ω from the coefficient of (δχ)�, i.e., Y∗(x, 0) = Y0(x) for
x ∈ Ω. Due to the presence of the functions A(Y)Y and
B(Y)Y the forward PDE (7) will be nonlinear.

B. Regular Optimal Control

Since the control has been defined in (3) as only having
one component, only the coefficient of δU3 is set to zero
giving the corresponding regular control

U∗
3 (x, t) = U0,3(x, t) + ξ∗3(x, t)/s3, (8)

on Ω×[0, tf ],provided s3 �= 0. Note that this control law only
requires solving for the 3rd component of the first co-state
vector ξ∗(x, t), since δU1 ≡ 0 and δU2 ≡ 0.
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C. Co-State Equations

Setting the functional coefficient of (δY)� to zero yields
the primary co-state backward PDE:

0 = ξ∗
t + ∇2

x[Dξ∗] + (A+B)(Y∗)ξ∗ (9)

+∇Y [A+B](Y∗):(ξ∗(Y∗)�) − RY∗,

for (x, t) ∈ Ω × [0, tf ). This PDE (9) is unidirectionally
coupled to the state PDE (7), except that only the 3rd
component ξ∗3(x, t) is needed for the regular optimal control
input U∗

3 (x, t) from (8). The boundary condition follows
from setting the functional coefficient of δY(x, t) for x on
Γ=∂Ω to zero, so

(N̂·∇x)[Dξ∗](x, t) = 0, (x, t) ∈ ∂Ω × [0, tf ) (10)

and the final condition for this backward PDE follows from
forcing the coefficient of δY(x, tf ) to be zero on Ω,

ξ∗(x, tf ) = −QY∗(x, tf ). (11)

The two other co-state vectors should not be needed, but
satisfy rather simple equations. The 2nd co-state vector
equation follows as the zero coefficient of (N̂·∇x)[δY�] on
the state boundary Γ=∂Ω, η∗(x, t) = −ξ∗(x, t), (x, t) ∈
∂Ω× [0, tf ]. The 3rd co-state vector equation follows as the
zero coefficient of state initial condition δY(x, 0), χ∗(x) =
ξ∗(x, 0), x ∈ Ω.

IV. GALERKIN FINITE ELEMENT METHOD

In an earlier paper [1] we had worked using a Crank-
Nicolson implicit method to study the problem numeri-
cally. However, using finite difference methods like Crank-
Nicolson implicit method and alternating directions implicit
method have serious drawbacks. Finite difference techniques
are more likely to have higher computational requirements,
i.e, they suffer from the curse of dimensionality. Finite
element methods require a relatively smaller number of
nodes as compared to the finite difference methods while
maintaining the same level of accuracy. Also, the finite
element method can better handle irregular structure, such
as the brain tumor. For the problem under consideration, we
use the Galerkin finite element method so as to reduce the
number of state nodes. The following steps can be used to
get an approximate numerical solution using our predictor-
corrector Crank-Nicolson adapted to finite element equations.
Note that the assumption made in this paper is that the growth
is logistic for the tumor and normal cells.

1) The first step (� = 1) would be to make a guess about
the control U∗

3 (x, t)�U
(1)
3 (x, t). We substitute it into

the forward state equations and use the finite element
method to solve for the state Y∗(x, t)�Y(1)(x, t) for
t > 0. Initially, Y∗(x, 0) = Y0(x). Let the Galerkin
approximation for any state or control vector summa-
rized in the global vector Z(x, t) = (Y,U.ξ,η,χ) be

Z∗(x, t) � Ẑ(x, t) ≡
M∑

k̂=1

Ẑk̂(t) · φk̂(x), (12)

where, [φi(x)]M×1, is a set of M linearly indepen-
dent continuous basis functions, with the normalization
property φk̂(xĵ) = δĵ,k̂, at the element node xĵ ,
implying the interpolation property that Z∗(xĵ , t) =
Ẑĵ(t) for ĵ = 1:M finite element nodes.

2) Before applying the Galerkin approximation (12) to
a state equation, say (7), the equation must be put
into integral form on Ω with respect to a test function
φĵ(x) taken from the basis and then further prepared
for low order basis function by reducing the 2nd order
derivatives to 1st order derivatives by integration by
parts i.e., again by Green’s formula, so

0 =

∫
Ω

dxφĵ(x)
(
Y∗

t −D∇2
x[Y∗]−(A+B)(Y∗)Y∗−U∗)

=

∫
Ω

dx
(
φĵY

∗
t +D∇�

x [φĵ ]∇x[Y∗]

−φĵ ((A+B)(Y∗)Y∗+U∗)
)
,

for ĵ = 1 : M , where the exact no-flux boundary
condition has been used in the last step.

3) Application of the Galerkin approximation (12) yields

0 �
M∑

k̂=1

∫
Ω

dx
(
Ŷ′

k̂
φĵφk̂+DŶk̂

(
∇�

x [φĵ ]∇x[φk̂]
)

−
(
(A+B)

(
Ŷ

)
Ŷk̂+Ûk̂

)
φĵφk̂

)
,

for ĵ = 1 :: M . Futher reduction to finite element
integrals is accomplished by letting

Mĵ,k̂ ≡
∫

Ω

dxφĵ(x)φk̂(x) (13)

be an element mass integral for ĵ, k̂ = 1 ::M ,

Kĵ,k̂ ≡
∫

Ω

dx∇�
x [φĵ ]∇x[φk̂] (14)

be an element stiffness integral for ĵ, k̂ = 1 ::M , and

Tĵ,k̂,l̂ ≡
∫

Ω

dxφĵ(x)φk̂(x)φl̂(x) (15)

be a triple basis element integral for ĵ, k̂, l̂ = 1 :: M
arising from the purely nonlinear terms in A(Y)Y and
B(Y)Y. Thus, the Galerkin equation becomes

0 =
M∑

k̂=1

(
Mĵ,k̂

(
Ŷ′

k̂(t)−
(
a1e1e

�
1 +a2e2e

�
2

−a3e3e
�
3

)
Ŷk̂(t) − Ûk̂(t)

)
+Kĵ,k̂DŶk̂(t)

+

M∑
l̂=1

Tĵ,k̂,l̂

(
a1

k1
Ŷ1,k̂(t)Ŷ1,l̂(t)e1+

a2

k2
Ŷ2,k̂(t)Ŷ2,l̂(t)e2

+
(
α1,2Ŷ2,l̂(t)+κ1,3Ŷ3,l̂(t)

)
Ŷ1,k̂(t)e1 (16)

+
(
α2,1Ŷ1,l̂(t)+κ2,3Ŷ3,l̂(t)

)
Ŷ2,k̂(t)e2

))
,

for ĵ = 1 :: M . This Galerkin ODE can be solved
by approximating the Galerkin basis integral coeffi-
cients (Mĵ,k̂,Kĵ,k̂, Tĵ,k̂,l̂) by exact symbolic methods
or numerical quadrature if there is sufficient element
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complexity, and then the ODE can be solved by our
predictor-corrector Crank-Nicolson method [1] adapted
to finite element equations. The coefficients can be
computed for all double shots for fixed finite elements
off-line since they will be fixed. These coefficients can
be calculated on an element-by-element decomposition
and element results can later be reassembled to form
the global solution [7].

4) In the second shot of the double shot algorithm [1],
the final condition (11),

ξ(�)(x, tf ) � −Q
∑M

k̂=1 Ŷ(�)

k̂
(tf )φk̂(x),

for � = 1 ::L double shots, is used to start the back-
ward co-state solution. Similar to the state equation, a
Galerkin approximation for the co-state equation (after
dropping the (�) subscript) using the same basis is
given by (12) for t < tf . As with the state Galerkin
variational formulation, the variation formulation for
the co-state equation (9) is

0 =

∫
Ω

dxφĵ(x)
(
ξ∗

t +∇2
x[Dξ∗]+(A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)�)−RY∗
)

=

∫
Ω

dx
(
φĵ (ξ∗

t + (A+B)(Y∗)ξ∗

+∇Y [A+B](Y∗):(ξ∗(Y∗)�)−RY∗
)

−∇�
x [φĵ ]∇x[Dξ∗]

)
+

∫
∂Ω

dΓφĵ

(
N̂·∇x

)
[Dξ∗].

A form with reduced order derivatives is derived by
eliminating the boundary integral by the no-flux con-
dition (10) and then the Galerkin approximations are
substituted for the state and co-state, thus producing

0 �
M∑

k̂=1

∫
Ω

dx
((

ξ̂
′
k̂(t)+ (A+B)(Ŷ)ξ̂k̂

+∇Y [A+B](Ŷ):(ξ̂k̂(Ŷ)�)−RŶk̂

)
φĵφk̂

−Dξ̂k̂∇�
x [φĵ ]∇x[φk̂]

)
,

for ĵ = 1 : M . Next by substituting the Galerkin
approximation for Ŷ in the nonlinear terms, using the
element Galerkin integral notation for the mass Mĵ,k̂
(13), stiffness Kĵ,k̂ (14) and the pure nonlinear triple
Tĵ,k̂,l̂ (15), the compact Galerkin ODEs are obtained:

0 =

M∑
k̂=1

(
Mĵ,k̂

(
ξ̂
′
k̂(t)+a1ξ̂1,k̂e1+a2ξ̂2,k̂e2

−a3ξ̂3,k̂e3−RŶk̂(t)
)
−Kĵ,k̂Dξ̂k̂(t)

−
M∑

l̂=1

Tĵ,k̂,l̂

(
2a1

k1
Ŷ1,l̂(t)ξ̂1,k̂(t)e1+

2a2

k2
Ŷ2,l̂(t)ξ̂2,k̂(t)e2

+α1,2

(
Ŷ2,l̂(t)e1 + Ŷ1,l̂(t)e2

)
ξ̂1,k̂(t) (17)

+κ1,3

(
Ŷ3,l̂(t)e1 + Ŷ1,l̂(t)e3

)
ξ̂1,k̂(t)

+α2,1

(
Ŷ2,l̂(t)e1 + Ŷ1,l̂(t)e2

)
ξ̂1,k̂(t)

+κ2,3

(
Ŷ3,l̂(t)e2 + Ŷ2,l̂(t)e3

)
ξ̂2,k̂(t)

))
,

for ĵ = 1 :: M . This Galerkin ODE (17) may be
computed by the appropriate numerical methods using
the same Galerkin integral basis coefficients.

5) For each completed double shot for � = 1 :L, the co-

state approximation ξ̂
(�)

(x, t) =
∑M

k̂=1 ξ̂
(�)

k̂ (t)φk̂(x)
is used to determine the regular optimal control (8)
updated value third component

Û
(�+1)
3 (x, t) = U0,3(x, t) + ξ̂

(�)
3 (x, t)/s3.

6) This process is repeated for � = 2 : L double shot
iterations until a convergence criterion for sufficiently
large L is reached, e.g., the relative criterion for the
control,∣∣∣∣∣∣U (�)

3 (x, t)−U
(�−1)
3 (x, t)

∣∣∣∣∣∣ < tolu
∣∣∣∣∣∣U (�−1)

3 (x, t)
∣∣∣∣∣∣ ,∣∣∣∣∣∣Y(�)(x, t)−Y(�−1)(x, t)

∣∣∣∣∣∣ < toly
∣∣∣∣∣∣Y(�−1)(x, t)

∣∣∣∣∣∣ ,

for � = 2:L until satisfied, provided ||U (�−1)
3 (x, t)|| �=

0 and ||Y(�−1)(x, t)|| �= 0, where tolu > 0 and toly >
0 are some prescribed tolerances.

V. POLAR FINITE ELEMENT TEST CONFIGURATION

Consider two-dimensional configuration that is a circular
disk of radius Rr with center at the origin. Transforming
the rectangular space coordinates (x, y)= r(cos(θ), sin(θ))
to polar coordinates permits use of a completely covering
rectangular grid configuration in the rθ-plane and is consis-
tent with the v ariational representation of no-flux boundary
condition. The grid is contructed of Ms sectors of angular
width ∆θ=2π/Ms and each sector is further partitioned into
Mr subsectors of radial length ∆r=Rr/Mr. The nodes are
given by (θî, rĵ)=((̂i−1)∆θ, (ĵ−1)∆r) for î=1 :: Ms+1
and ĵ=1 ::Mr+1. Due to the one-to-many properties of the
transformation, all r=r1 =0 nodes are aliased to the first
global node numbered 1, while all θ=θMs+1=2π nodes are
aliased to the corresponding global node with θ=θ1=0 and
the same r=rĵ for ĵ=1 ::Mr+1. Otherwise, the global node
numbering is given by nk̂ = î+ (ĵ−1)∗Ms for î=1 :: Ms

and for ĵ=1 ::Mr+1, corresponding to column (θ) ordering
and aliasing for î=Ms. The elements are similarly numbered
as eî,ĵ = î+(ĵ−1)∗Ms for î=1 :: Ms and for ĵ=1 :: Mr,
while the element local node numbering is ke = 1:4 in the
clockwise direction, going first along the r = rĵ edge, see
Figure 1 showing the relationship between local and global
node numbering.

eî,ĵ+1 eî,ĵ+Ms+1
↑ 2 4

∆θ eî,ĵ= î+(ĵ−1)∗Ms

↓ 1 3
eî,ĵ ← ∆r → eî,ĵ+Ms

Fig. 1. Typical finite element configuration in rθ-plane.

Though the configuration may seem complex, it greatly
facilitates the deassembly and reassembly between the el-
ements locally to the global representation, while allowing
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one system to define the approximating basis functions for
all elements except for the elements adjacent to the origin.

For simplicity, bilinear quadrilateral basis functions are
used for the non-origin elements, where for element eî,ĵ on
(θî, θî+1)× (rĵ , rĵ+1) for î=1 ::Ms + 1 and for ĵ=2 ::Mr in
the ke = 1:4 element node numbering,

φ
(̂i,ĵ)
1 (r, θ) =

(
θî+1−θ

∆θ

) (
rĵ+1−r

∆r

)
; (18)

φ
(̂i,ĵ)
2 (r, θ) =

(
θ−θî

∆θ

) (
rĵ+1−r

∆r

)
; (19)

φ
(̂i,ĵ)
3 (r, θ) =

(
θî+1−θ

∆θ

) (
r−rĵ

∆r

)
; (20)

φ
(̂i,ĵ)
4 (r, θ) =

(
θ−θî

∆θ

) (
r−rĵ

∆r

)
, (21)

else zero outside the element (̂i, ĵ). For the elements when
ĵ = 1 the basis functions for local nodes ke = 3 : 4 are
still valid, but the ke = 2 nodes for r1 = 0 are aliases for
the ke = 1 nodes since all r1 = 0 nodes must have the
same values, so we need the basis functions for triangular
elements ke = 1, 3, 4 to be consistent with the circular sector
in cartesian coordinates, so φ

(̂i,1)
1 (r, θ) = 1−r/∆r; replaces

(18) for ke = 1 and (19) for ke = 2 is not used, while (20)
for ke = 3 and (21) for ke = 4, respectively, are still valid.

The element version of the global mass matrix (13) is

M̂(̂i,ĵ)
ie,je

=
∫ θî+1

θî

dθ

∫ rĵ+1

rĵ

drrφ
(̂i,ĵ)
ie

(r, θ)φ(̂i,ĵ)
je

(r, θ),

for local node numbers ie, je = 1 : 4, and produces the
symmetric (̂i, ĵ) non-origin element matrix

M̂(̂i,ĵ)=
(∆r)2∆θ

72

⎡
⎢⎢⎣
2(4ĵ−3) (4ĵ−3) 2(2ĵ−1) (2ĵ−1)

∗ 2(4ĵ−3) (2ĵ−1) 2(2ĵ−1)

∗ ∗ 2(4ĵ−1) (4ĵ−1)

∗ ∗ ∗ 2(4ĵ−1)

⎤
⎥⎥⎦,

where the symmetric lower triangular components have been
suppressed (∗). Note that the corresponding element area is
A(̂i,ĵ) = (∆r)2∆θ(2ĵ − 1)/2. Using the rectangular-polar
gradient identity, ∇�

x [φi]∇x[φj ]=φi,rφj,r+φi,θφj,θ/r2, the
element version of the global stiffness matrix (13) is

K̂(̂i,ĵ)
ie,je

=
∫ θî+1

θî

dθ

∫ rĵ+1

rĵ

drr
(
φ

(̂i,ĵ)
ie,rφ

(̂i,ĵ)
je,r+φ

(̂i,ĵ)
ie,θφ

(̂i,ĵ)
je,θ /r2

)
(r, θ)

and produces the symmetric (̂i, ĵ) element matrix

K̂(̂i,ĵ) =
(2ĵ−1)∆θ

12

⎡
⎢⎣
+2 +1 −2 −1
∗ +2 −1 −2
∗ ∗ +2 +1
∗ ∗ ∗ +2

⎤
⎥⎦

= +
ln

(
ĵ

ĵ−1

)
2∆θ

⎡
⎢⎢⎣
+2ĵ2 −2ĵ2 −2ĵ(ĵ−1) +2ĵ(ĵ−1)

∗ +2ĵ2 +2ĵ(ĵ−1) −2ĵ(ĵ−1)

∗ ∗ +2(ĵ−1)2 −2(ĵ−1)2

∗ ∗ ∗ +2(ĵ−1)2

⎤
⎥⎥⎦

= +
1

2∆θ

⎡
⎢⎢⎣
−(2ĵ + 1) +(2ĵ + 1) +(2ĵ−1) −(2ĵ−1)

∗ −(2ĵ + 1) −(2ĵ−1) +(2ĵ−1)

∗ ∗ −(2ĵ−3) +(2ĵ−3)

∗ ∗ ∗ −(2ĵ−3)

⎤
⎥⎥⎦,

where again the symmetric lower triangular components have
been suppressed (∗). The triple basis coefficient (15) of the
nonlinear terms is a 4 × 4 × 4 array on each element,

T̂ (̂i,ĵ)
ie,je,ke

=
∫ θî+1

θî

dθ

∫ rĵ+1

rĵ

drrφ
(̂i,ĵ)
ie

(r, θ)φ(̂i,ĵ)
je

(r, θ)φ(̂i,ĵ)
ke

(r, θ),

so the actual values are omitted due to lack of space. Other
element coefficient matrices, such as those for the elements
adjacent to the origin, are also omitted due to lack of space.

VI. COMPUTATIONAL RESULTS

The double shot, forward and backward iteration algorithm
using the finite element method outlined in Section IV was
implemented on the two-dimensional space with the three
states and the drug input control. The numerical implemen-
tation of the algorithm is adapted to finite element equations
from our one space dimension application in [1], except there
the finite difference version of Crank-Nicolson’s method was
used and is too costly to extend to another dimension.

The data for the numerical parameters are drawn from
various sources including Wang et al. [9], [10], Swanson[8]
and Murray [6], while unavailable parameters were esti-
mated. The diffusion diagonal vector is D = [4.2e-3, 1.e-
15,0.22] cm2 per day. The quadratic cost coefficients are
r1 = q1 = q3 = 0.1 and s3 = 0.2. The net growth coefficient
is a = [1.2e-2, 8.6e-7, 11.1] per day. The other coefficients
are ki = 1 for i = 1 : 2, α1,2 = α2,1 = κ2,3 = 1.e-4
and κ1,3 = 0.5. Following Murray, the initial state for the
normal tissue is assumed to be uniformly one. The initial
tumor spread and drug concentration are assumed to be
Gaussian with mean 0, spread 0.2 and weights 1.0e-3 and
0.15, respectively. Maple 9.5 was used to exactly evaluate
the integrals of the element matrices.

The main advantage of the polar coordinate FEM formula-
tion is that the no-flux boundary condition (4 ) is implicit in
the method when the domain is our test circle. The penalty
for this advantage is the nonuniqueness of the origin (for any
θ when r = 0) and for the branch cut along the positive x-
axis. The non-unique alias nodes were eliminated leading to a
reduction in the number of vector ODEs in the time t. These
ODEs where treated by an efficient finite element variant
of our predictor-corrector Crank-Nicolson method that uses
a predictor-corrector method to handle the nonlinear terms
and higher space dimensions. The state and co-state are
discretized at the forward and backward mid-point in time,
respectively, and the algorithm is implemented in MATLAB.
The Crank-Nicolson temporal mid-point was approximated
by Y(γ,�)

j,k+0.5 = 0.5∗
(
Y(γ,�)

j,k+1 + Y(�)
j,k

)
, for vector node index

j, time index k, double shot � and correction γ. The FEM
ODE is discretized in the general form

Âkm(Ŷk+1 − Ŷk) = B̂kmŶk + dtMÛkm

and solved by the MATLAB built-in backslash ’ḿethod.
Similar discretization and approximation was used for the
co-state equations. The Fig. 2 shows a sample history of
the tumor density Y1(r, π, t) on the interval r ∈ [−5, 5]

1617



over a T = 5 day treatment schedule for the quartiles
in time t = 0, 1.25, 2.5, 3.75, 5.0. For this test case the
distribution of the tumor using the optimal drug delivery
showed a significant reduction of 51.3 percent of the total
tumor density integral over the 5 day treatment period. The
time taken by the program was 32.8 minutes.
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Fig. 2. The optimal, relative tumor density Y ∗
1 (r, θ, t) versus r

parametrized in time, t = 0, 1.25, 2.5, 3.75, 5.0 days, as a cross-section
at θ = π, the original tumor density peak location with r = 2.5 also. The
polar grid size is (Mr, Ms) = (8, 6).

A more detailed presentation of the final tumor density is
given in Fig. 3 over the (r, θ) plane at T = 5 days showing
that although the peak value is small, the tumor has spread
through most of the plane.
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Fig. 3. The final optimal, relative tumor density Y ∗
1 (r, θ, t) over (r, theta)

plane at time t = T = 5.0 days. The FEM polar grid size is (Mr, Ms) =
(8, 6), but a grid refinement is presented by using the FEM basis as an
interpolant.

VII. CONCLUSION AND FUTURE DIRECTIONS

The theory of Galerkin finite elements is used to develop
approximations to the distributed parameter optimal control
problem of cancer drug delivery to the brain governed by a
coupled set of three reaction diffusion PDEs. The three state
variables are the tumor cell density, the normal cell density

and the cancer drug concentration. The tumor and normal
cells are highly coupled through intrinsic and competitive in-
teractions, the concentration is directly controlled by the drug
delivery control rate. The optimally controlled distributed
parameter system is derived by a straight-forward calculus of
variations technique without resort to an extremely abstract
formulation, and that should be useful in other similar
scientific or engineering applications.

The system of optimal PDEs in six state dimensions is
reduced by Galerkin approximations of the state, co-state and
control vectors to a system of six ODEs in time with three
fundamental element integral coefficient forms: the mass,
the stiffness and nonlinear coefficients. The finite element
configuration is given for a circular disk geometry that can
be used to test the optimal drug delivery computations.
This finite element configuration will be more amenable to
complex brain structures and three-dimensional geometries
than the finite difference method of our earlier work.

Future directions include:

• Application to multidimensional drug delivery domains;
• Application to general curvilinear coordinates for gen-

eral brain geometries;
• Application to heterogeneous brain structures such as

spinal fluid cavities, variable brain matter, vascular
system and the blood brain barrier.
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