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Abstract— Stabilisability of a minimum phase unstable con-
tinuous plant is studied under the presence of a bandwidth
limited and Signal to Noise Ratio constrained communication
link. The problem is addressed in two different ways: first
through the use of an LTI filter explicitly modelling the
bandwidth limitation, and in second place, for the case of
one real unstable pole, through the Poisson Integral Formula
and design attenuation requirements on the power outside
the assigned bandwidth. Results show that when a bandwidth
limitation is in existence this increases the minimum value of
Signal to Noise Ratio required for stabilisability. An example
is used to study both approaches.

I. INTRODUCTION

Feedback control over communication links has become

an area of growing interest in recent years with works such

as, for example, [1], [2], [3], [4] and [5]. See also [6] and

the references therein.

Generally, the communication link involves some pre-

and post-processing of the signals that are sent through

a communication channel, for example, filtering, analog-

to-digital (A-D) conversion, coding, modulation, decoding,

demodulation and digital-to-analog (D-A) conversion.

In this paper we neglect all pre- and post- signal processing

involved in the communication link, which is thus reduced to

the communication channel itself and, as in [7], [8] and [9],

or more recently [10], we model the communication channel

as an additive white Gaussian noise (AWGN) channel, but

with the added fundamental feature of limited bandwidth.

This bandwidth constraint may be imposed, for example, to

avoid interference between different channels in a commu-

nication system.

Of the two possible configurations for the location of

the idealised communication channel (measurement path and

control path), we consider the case of a communication

channel over the control link. Such a setting is common in

practice and arises, for example, when actuators are far from

the controller and have to communicate through a (perhaps

partially wireless) communication network. Nonetheless in

an LTI setting both forms are equivalent, and it is a simple

matter to restate the results for the case of where measure-

ment is performed over a communication channel.
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Stabilisability of the resulting feedback loop has been stud-

ied in relation to quantisation, bit rate limitations, bandwidths

constraint or time delays over the communication channel.

As another example, a different line of investigation is

pursued in [11], [12] and [13], which make use of topological

and entropy concepts. This article, instead, follows the line

of research developed in [7], [8], [9] and [10] using signal

to noise ratio constraints.

These works model the communication channel through

the idealisation of an AWGN channel, see for example [14],

imposing a power constraint on the signal that has been sent.

The line of investigation developed in [7], [8] and [9] has

also been successfully linked to the topological results in

[11], including the effects of non-minimum phase zeros and

time delays in the plant, both in the continuous and discrete

setting, with output feedback and state-space feedback.

We also consider an AWGN channel for the communica-

tion channel, as for example in [7]. The Signal to Noise Ratio

(SNR) constraint is achieved by transferring the original

power constraint P on the signal us to the signal uf ,

as in Figure 1. We assume |F (jω)| ≤ 1, for simplicity.

The bandwidth constraint is modelled through the low pass

transfer function F .

In this paper only the continuous time output feedback

case is treated; however, extensions to the discrete case as

well as to the state feedback case (both continuous and

discrete) should follow in a similar fashion to [7], when we

are dealing with a minimum phase unstable plant with no

time delays.

The main result of this work is an expression for the

minimum SNR required to guarantee stabilisability when

we face the case of a AWGN communication channel with

an assigned bandwidth. The obtained SNR bound proves to

be more demanding than the bound previously obtained in

[7] for a AWGN channel with infinite bandwidth. For the

case in which the plant has one unstable real pole and F (s)
is restricted due to a second power constraint defined for

the range of frequencies outside the assigned bandwidth, a

necessary condition is developed by restating the main result.

+

n

uf ur = uf ∗ f + n+
F

us

‖uf‖
2

RMS < P

Fig. 1. Additive white Gaussian noise channel with power and bandwidth
constraint
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The paper is organised as follows: in Section II we

briefly review a linear time invariant framework for control

over a bandwidth limited and SNR constrained communica-

tion channel; Section III addresses design issues involving

power attenuation outside the assigned bandwidth. Section

IV presents concluding remarks. All proofs are listed in the

Appendix.

II. AN LTI FRAMEWORK FOR CONTROL OVER A

COMMUNICATION LINK

Consider a linear, band limited, AWGN channel with an

input power constraint as depicted in Figure 1. The channel

output signal is given (in the Laplace transform domain, for

continuous-time systems) by

Ur(s) = F (s)Uf (s) + N(s),

where the filter F (s) represents the channel transfer function

(limited bandwidth) and n(t) is a zero-mean white Gaussian

noise with intensity Φ, that is,

E{n(t)} = 0, E{n(t)n(t + τ)} = Φ δ(t − τ),

where E{·} denotes the expectation operation. Assuming the

closed loop is exponentially stable, the distribution of us(t)
converges to a stationary stochastic process with root mean

square (RMS) value

‖uf‖RMS =
(
E{uf (t)2}

)1/2
.

The power of a continuous-time stationary stochastic process

uf is defined as ‖uf‖
2
RMS , which can be alternatively ex-

pressed (e.g.,pp. 21–22, [15]) in terms of the power spectral
density Suf

(ω),

‖uf‖
2
RMS =

1

2π

[∫ ∞

−∞

Suf
(ω) dω

]
. (1)

The power constraint in the channel model of Figure 1 is

represented by requiring that the power of uf (t) be bounded

by some predetermined positive value P ,

‖uf‖
2
RMS < P

Such a channel model is widely used in Communications

(e.g., [16]; [14]; [17]), and is also useful to represent, to

some extent, effects of roundoff and quantisation in A-D

and D-A converters [18].

On using the channel model of Figure 1 we obtain the

LTI feedback loop of Figure 2, in which P (s) and C(s)
respectively are the transfer functions of the plant and the

controller, and y(t) is the output of the system.

y
−

C(s) P (s)F (s)
ur

nAWGN Channel

uf

Fig. 2. Simplified continuous-time feedback loop over a control plus noise
corrupted channel communication

We assume that the controller C(s) is such that the

feedback loop of Figure 2 is asymptotically stable. We also

assume that the plant P (s) is proper and minimum phase (it

does not contain either zeros in C
+ or time delays), although

it may be unstable, and that the filter F (s) is proper, stable

and minimum phase. The results here can be extended to

cover NMP or time delays though with significantly more

involved calculations.

Since the closed loop system is asymptotically stable,

the control signal received by the plant uf (t) resulting

from the input noise n(t) is a stationary stochastic process

with Gaussian distribution. It is well known that the power

spectral density of uf (t) can be expressed as

Suf
(ω) = TF (jω)Sn(ω)TF (−jω), (2)

where TF (s) is the closed loop transfer function between

n(t) and uf (t) in Figure 2, that is,

TF (s) = −
P (s)C(s)

1 + P (s)C(s)F (s)
, (3)

and

Sn(ω) =

∫ ∞

−∞

E
{
n(τ)n(t + τ)

}
e−jωτ dτ = Φ,

is the power spectral density of n(t). Hence, by virtue of

(1),

‖uf‖
2
RMS =

1

2π

∫ ∞

−∞

[TF (jω)TF (−jω)] Φ dω = ‖TF ‖
2
H2

Φ,

(4)

where ‖TF ‖H2
=

√
1
2π

∫ ∞

−∞
|TF (jω)|

2
dω is the H2 norm of

TF (s). Note that ‖TF ‖H2
is finite because TF (s) is stable

and strictly proper. To find the lowest achievable value of

‖uf‖RMS we have to find the lowest achievable value of

‖TF ‖H2
over the class of all stabilising controllers.

If the plant is unstable, ‖TF ‖H2
has a positive lower bound

that cannot be further reduced by any choice of the controller,

as we show in the following lemma. We denote by K the set

of stabilising proper LTI controllers C(s) for P (s).
Proposition 1: Consider the feedback loop of Figure 2.

Assume that the plant P (s) is proper and minimum phase,

and has m poles pk, k = 1, 2, . . . ,m in C
+, and that C(s)

is such that the closed-loop is asymptotically stable. Then

an SNR which suffices in guaranteeing stabilisability must

satisfy:

P

Φ
> inf

C∈K
‖TF ‖

2
H2

=
m∑

k=1

2Re {pk} |Rk(pk)|
2

(5)

where

Rk(s) =

(
s + pk−1

)
Rk−1(s) − 2Re {pk−1}Rk−1(pk−1)

s − pk−1
,

(6)

for k = 2, . . . ,m, and

R1(pk) = F−1(pk) k = 1, . . . ,m. (7)

Proof: See Appendix.
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Corollary 1: Under the assumptions of Proposition 1, if

the filter has the same magnitude at all the unstable poles of

P (s) are real, i.e., |F (pk)| = f0,∀k = 1, . . . ,m, then:

P

Φ
> inf

C∈K
‖TF ‖

2
H2

=
1

f2
0

m∑
k=1

2Re {pk} (8)

In order to better interpret the main result reported in

Proposition 1 an example follows.

Example 1: Consider a plant P (s) with an unstable real

pole located at p = 1 and also consider a Chebyshev

low pass filter of order 6 and cut-off frequency ωB , as a

potential candidate for the role of filter F (throughout this

example ωB and bandwidth will be considered equivalent

concepts). Chebyshev filters also have a parameter R which

represents the level of attenuation between in band and out

band frequencies.
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Fig. 3. Filter magnitude response for the case of Chebyshev filters of order
6 with R = 5 [dB], dashed line, R = 10 dB, dash-dot line, and R = 20
[dB] solid line for ωB = 1[rad/sec] .

Figure 3 reports the filter magnitude for a range of

frequencies up to 5[rad/sec]. Different selections for R show

how the out band attenuation changes.

The SNR bound that suffices to guarantee stabilisability

in the case of a Chebyshev filter of order 6 is reported in

Figure 4, with values of target attenuation of R = 20 [dB],

a less stringent attenuation of 10 [dB] and an even lesser

attenuation of 5 [dB]. The main observation is that for R = 5
[dB] we will have less attenuation than for R = 10 [dB] or

R = 20 [dB]. Less attenuation implies a smaller SNR value,

due to the inverse proportionality between the magnitude of

the filter and the SNR bound, mostly in the initial range

of values for ωB . The effect of the difference in the values

of R disappears as ωB increases, since the filter magnitude

at the unstable pole location is approaching 1, no matter

what filter attenuation is implied by R. Note that the feature

of initial increase in the SNR, when ωB is approximately

0.1[rad/sec], is due to the selection of Chebyshev filters for

F and decreases in range when R increases. Indeed if we

select Butterworth filters instead of Chebyshev filters, this

feature disappears (not shown).
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Fig. 4. SNR bound for the case of a Chebyshev filter of order 6 designed
to achieve 5 [dB] attenuation for ω > ωB , dashed line, 10 [dB] attenuation,
dash-dot line, and 20 [dB] attenuation, solid line (unstable pole located at
1).

The main assumption behind results presented in Figure 4

is that we have a candidate for the filter F that will define the

bandwidth of our communication channel, but this may be

not always the case or we may be interested in other aspects

of the problem that not involve explicitly the filter.

Note 1: As might be expected from the problem for-

mulation, the expression in equation (5) is invariant under

all possible orderings of the m unstable poles pk, k =
1, 2, · · · ,m, for a proof see [19].

Note 2: please note that the definition of Rk (s) in equa-

tion (6) is well defined. An inductive argument, not presented

here, can be used to prove this. Also note that for the

particular case of pk = pk−1, Rk (pk) in (6) will become:

Rk(pk) = Rk−1(pk) + 2Re {pk}
dRk−1(s)

ds

∣∣∣∣
s=pk

(9)

III. OUT OF BAND POWER ATTENUATION REQUIREMENT

The presence of a filter limiting the communication link

bandwidth can also be seen as an assigned bandwidth for

the channel itself. Naturally design requirements, apart from

those of bandwidth, will also have to specify a power

level, Pout say, for the communication channel to comply

with at frequencies greater than ωB , in order to minimise

interference to other potential users, as for example, in a

frequency division multiplexing scheme.

To quantify the effect of a constraint on the level of out

of band interference on the required SNR for closed loop

stability, we impose a general profile on the filter frequency

response as:

|F (jω)| ≤ ε, ∀ω > ωB (10)

The level of attenuation ε outside the communication band-

width can be interpreted as the admissible ratio of out of

band interference power (Pout) relative to the total power

(P). Indeed, we can approximate the out of band power of
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us as follow:

1

π

∫ ∞

ωB

Sus
(ω)dω ≤ sup

ω>ωB

|F (jω)|
2 1

π

∫ ∞

ωB

Suf
(ω)dω

≤ ε2P = Pout

(11)

Proposition 2: Consider a plant P (s) proper and mini-

mum phase with one pole p ∈ R
+. The SNR requirement

necessary for stabilisability in terms of the ratio between the

power constraints inside and outside the assigned bandwidth,

P/Pout, is given by:

P

Φ
≥ 2p

(
P

Pout

)π−2 arctan(ωB/p)
π

(12)

Proof: Consider the Poisson Integral Formula, see [20],

for the case of one unstable real pole p :

log |F (p)| =
1

π

∫ ∞

−∞

log |F (jω)|
p

p2 + ω2
dω (13)

It is not difficult to see that the following inequality holds

true for the magnitude of any filter F that is contained by

its idealised version described in equation (10).

|F (p)|
−1

≥

(
1

ε

)π−2 arctan(ωB/p)
π

(14)

Replacing equation (14) into (5) and noting, from equation

(11), that 1/ε2 = P/Pout ends the proof.

The result in Proposition 2 expose the relationship between

the SNR necessary for stabilisability and the power ratio

requirement, P/Pout. Also, it presents the interplay that

exists between the available bandwidth, ωB , and the unstable

pole location p. If the bandwidth tends to zero we will have

that the required SNR will be inversely proportional to the

power attenuation, whilst if the bandwidth tends to infinity

the result for one unstable pole with no band limitation

obtained in [7] will be recovered. Again an example will

help to better interpret the result.

Example 2: Consider a plant P (s) with one unstable real

pole. For the case of p = 1, in Figure 5, values of 10,

1000 and 105 for the ratio P/Pout have been studied, as

per equation (12).

The resulting SNR bounds show that the greater the out

of band power attenuation required, the greater the estimated

SNR will be.

As an example see that at ωB = 5[rad/sec] the estimate

SNR is 4 [dB], for an out of band power constraint 10
times smaller than the in band power constraint. The SNR

estimate increases to 7 [dB], for an out of band attenuation

of 1000, and it jumps to almost 10 [dB], for an out of

band attenuation of 105. This can be seen in terms of

the filter F as follows: the greater the out-band power

attenuation requirement the more stringent the requirement

for the communication channel to confine the transmitted

signal inside the assigned bandwidth, i.e the smaller the value

of ε will have to be for that filter (as per equation (11)).

It is not surprising, therefore, that increasing the factor

P/Pout or increasing the attenuation requirement for the cut-

off frequency of the filter F (s) have the equivalent effect of

increasing the SNR lower bound for stabilisability. Note in

any case that the lower bound defined in equation (12) is

necessary to guarantee stabilisability, whilst the expression in

equation (5) is sufficient. Also note that all bounds presented

in Figures 4 and 5 tend to the same limit as ωB increases.

This limit is given by the result obtained in [7] for the infinite

bandwidth AWGN channel and for this specific example is

given by:

P

Φ
[dB] ≥ 10 log10 (2p) (15)

A comparison of the results portrayed in Figures 4 and 5

with equation (15), obtained in [7], shows that the presence

of a band limitation in the communication channel increases

the value of SNR required for stabilisability.

Finally to investigate the effect of the pole location over

the bound defined as in equation (12), a factor of 1000 has

been selected for P/Pout . The result in figure 6 confirms

the intuition that the position of the unstable pole heavily

affects the required SNR value for stabilisability. However,

this same penalty is reduced if the bandwidth is increased.

See for example that for p = 1 and ωB = 1 [rad/sec] the

SNR value is 18 [dB], for ωB = 5 [rad/sec] decreases to 7
[dB] and for ωB = 10 [rad/sec] diminishes to 5 [dB].
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Fig. 5. Estimated SNR necessary bound for P/Pout equal to 10, solid
line, 1000, dashed line, and 105, dash dotted line.

Note 3: A similar result can be obtained for the case of

two unstable real poles, p1 and p2, and is reported here as
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Fig. 6. Estimated SNR necessary bound for P/Pout=1000 with ωB = 1
[rad/sec], solid line, ωB = 5 [rad/sec], dashed line and ωB = 10 [rad/sec],
dash-dotted line. Unstable pole location varying from 0 to 15.

an example on how to extend this ideas.

P

Φ
≥ 2p1

(
p1 + p2

p2 − p1

)2 (
P

Pout

)π−2 arctan(ωB/p1)
π

−
8p1p2 (p1 + p2)

(p2 − p1)
2

(
P

Pout

)π−arctan(ωB/p1)−arctan(ωB/p2)
π

+ 2p2

(
p1 + p2

p2 − p1

)2 (
P

Pout

)π−2 arctan(ωB/p2)
π

(16)

It is possible to include as many real unstable poles as

needed, but with the associated cost of increasingly more

demanding algebra. The case of p1 = p2 is not addressed in

equation (16), for that would require the use of equation (9)

and the Poisson Integral Formula, instead of equation (7),

twice, for p1 and p2 and the Poisson Integral Formula.

IV. CONCLUSIONS AND REMARKS

In this paper the case of a sufficient SNR requirement for

stabilisability over a band limited communication channel

has been studied. The main result shows the interplay be-

tween the real parts of the unstable poles of the plant and

the bandwidth available for the communication channel. The

SNR requirement for stabilisability will be more demanding

if the unstable poles of the plant are located outside the

bandwidth for the communication channel. Vice versa, if the

unstable poles of the plant are well inside the bandwidth of

the communication channel the SNR requirement approaches

the result for an infinite bandwidth channel.

For one real unstable pole in the plant the filtered version

of the communication channel creates a sufficient SNR lower

bound for stabilisability inversely proportional to the square

of the filter magnitude evaluated at that pole. The obtained

bound is greater than the result presented in [7] for an infinite

bandwidth AWGN channel. An out of band power attenua-

tion requirement has been also studied and results suggest

that a design problem can be stated in this framework. This

alternative definition for the SNR lower bound will consider

out of band power attenuation requirements and it will be

necessary for stabilisability.

Future work includes band limited SNR constrained com-

munication channels for discrete systems, as well as the

case of state feedback. Multivariable systems application will

follow.

V. APPENDIX

To compute the minimum value of ‖T‖2
H2

over the class

of all stabilising controllers, we apply a technique used in

[21]. We start by deriving an expression for T based on

a parametrisation of all stabilising controllers. Represent

F (s)P (s) by a co-prime factorisation

F (s)P (s) =
N(s)

Bp(s)
,

where N(s) ∈ RH∞ (the space of proper, stable, rational

functions), and

Bp(s) =

m∏
k=1

s − pk

s + pk

is the Blaschke product of all poles of P (s) in C
+

. By using

the well-known Youla controller parametrisation [22], we can

represent any stabilising controller for the feedback loop in

Figure 2 by1

C =
X + BpQ

Y − NQ
, (17)

where Q, X and Y are in RH∞, with X and Y satisfying

the Bezout identity

NX + BpY = 1. (18)

By replacing (17) in (18), we find that TF can be expressed

as

TF = (1 − Bp(Y − NQ)) F−1 = N(X +BpQ)F−1, (19)

where the last equality follows from the Bezout identity.

Thus, from (19), the problem of finding the lowest value

of ‖TF ‖
2
H2

over the class of stabilising controllers reduces

to that of finding

inf
Q∈RH∞

∥∥N(X + BpQ)F−1
∥∥

H2

. (20)

The rest of the proof involves a sequential partial fraction

expansion of the unstable poles of P (s), pk, k = 1, 2, . . . ,m,

that will render the minimisation in (20) trivial, and leave as

a remainder the RHS of (5).

For simplicity, and to start a recursive argument, define

R1 = N(X + BpQ)F−1. (21)

Now let p1 be the first unstable pole of P (s). Since the factor
s+p

1

s−p1

is all-pass, i.e.,
∣∣∣ jω+p

1

jω−p1

∣∣∣ = 1, we can write

‖R1‖
2
H2

=

∥∥∥∥
(

s + p1

s − p1

)
R1

∥∥∥∥
2

H2

=

∥∥∥∥ r1

s − p1
+ R2

∥∥∥∥
2

H2

(22)

1Dependency on s is suppressed to simplify notation when convenient.
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where

R2 =

(
s + p1

s − p1

)
R1 −

r1

s − p1
, (23)

and r1 is the residue of
(

s+p
1

s−p1

)
R1 at s = p1, i.e.,

r1 = lim
s→p1

(s + p1)R1

= 2Re {p1}R1(p1). (24)

Notice from (23) and (24) that we have just obtained (6) for

k = 2. Now, R2 ∈ H2, since its residue at s = p1 is zero,

while r1

s−p1

∈ H⊥
2 . Therefore, we can rewrite (20) as

inf
Q∈RHinfty

‖R1‖
2
H2

=

∥∥∥∥ r1

s − p1

∥∥∥∥
2

H⊥

2

+ inf
Q∈RH∞

‖R2‖
2
H2

.

(25)

By continuing the same procedure with the rest of the

unstable poles of P (s), we obtain, for k = 1, . . . ,m, the

recursive formula

Rk+1 =

(
s + pk

s − pk

)
Rk −

rk

s − pk
, (26)

where rk is the residue of
(

s+pk

s−pk

)
Rk at s = pk, i.e.,

rk = lim
s→pk

(s + pk)Rk

= 2Re {pk}Rk(pk). (27)

Equations (26) and (27) yield (6) for all k. Equation (7)

follows by noting that

R1(pk) = N(pk)X(pk)F−1(pk) = F−1(pk),

since, from (18), N(pk)X(pk) = 1 − Bp(pk)Q(pk) = 1.

By construction Rk ∈ H2∀k = 1, . . . ,m, which gives

inf
Q∈RH∞

‖R1‖
2
H2

=
m∑

k=1

∥∥∥∥ rk

s − pk

∥∥∥∥
2

H⊥

2

+ inf
Q∈RH∞

‖Rm+1‖
2
H2

.

(28)

We claim that infQ∈RH∞
‖Rm+1‖

2
H2

= 0. Indeed, note that

Rm+1 = B−1
p R1 −

m−1∑
k=1

rk

s − pk

m∏
i=k

(
s + pi

s − pi

)
−

rm

s − pm

=

{
B−1

p NXF−1 −
m−1∑
k=1

rk

s − pk

m∏
i=k

(
s + pi

s − pi

)
−

rm

s − pm

}

+ NQF−1

Because Rm+1 and NQF−1 are stable, the term between

braces in the last equality is also stable. Therefore, given any

ε > 0, there exists a Qε ∈ RH∞ such that ‖Rm+1‖H2
< ε,

proving that infQ∈RH∞
‖Rm+1‖

2
H2

= 0.

Finally then,

inf
Q∈RH∞

‖R1‖
2
H2

=

m∑
k=1

∥∥∥∥ rk

s − pk

∥∥∥∥
2

H⊥

2

. (29)

Since∥∥∥∥ rk

s − pk

∥∥∥∥
2

H⊥

2

=
|rk|

2

2Re {pk}
= 2Re {pk} |Rk(pk)|

2
,

which follows from (27), then (29) and (4) yield (5), com-

pleting the proof.
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