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Abstract— An algorithm for robust adaptive control de-
sign for a class of nonlinear single-input-single-output (SISO)
switched systems is presented. The control scheme achieves pre-
specified exponential stability, bounded-input-bounded-state
(BIBS) stability, and arbitrary switched system stability. This is
achieved for any bounded time varying parametric uncertainty
and disturbance without requiring a priori knowledge of such
bounds. The algorithm is based on a standard adaptive control
architecture with a scheduled periodic switching between a
standard adaptation law and an exponentially stabilizing robust
one. The results are illustrated through simulations.

Index Terms— switched control, robust adaptive control,
hybrid systems.

I. INTRODUCTION

The control of systems characterized by hybrid, i.e., con-
tinuous and discrete, dynamics has been attracting many
research efforts in recent years. This is motivated by the
need to achieve reliably, repeatable, and safe control schemes
to handel complex systems with switching dynamics of
large, rapid, and sudden changes in model characteristics
due to either natural (physical) changes or controlled (de-
cision making based) changes. Such systems arise in many
application such as robotics, chemical processes, power and
communications networks. There are two main issues with
control of switched systems, which are stability and response
of the switched system even when each subsystem is stable
and known and the other is the robustness of stability with
respect to uncertainties.

In terms of stability and response of switched systems,
several results have been obtained in recent years, e.g.
[6]. The most common approach to control of switched
systems uses switching between linear-time-invariant (LTI)
controllers. In this context, sufficient conditions for stability
such as common Lyapunov functions and average dwell time
[6] are the most commonly used tools. One class of results
requires very sensitive adjustment to controller gains with
each plant switch to guarantee stability for any switching
speed. This is the case for common Lyapunov function based
work, e.g., [10], [6], which requires switching control gains
such that closed loop LTI system matrices are all stable and
commute or are symmetric. Whereas another group of results
shows stability if switching is slow on average, e.g., [1], [6],
which limits possible plant variations to be dealt with and
requires gains to be adjusted to guarantee the stability of
each frozen configuration and some level of knowledge of
system parameters to compute admissible switching speed,
which is the average dwell time.

The other problem of interest is that of dealing with
uncertainty. The existing results are categorized based on
the architecture being either that of a fixed robust control or
standard adaptive control. In this regard, controller switching
is used to deal with large uncertainties in a plant belong-
ing to a known family of plants [1], [10], [8]. The first
approach usually uses switching between LTI controllers,
where stability is either based on a common Lyapunov
function condition [10] or an average dwell time condition
[1]. The weak robustness of LTI controllers with respect
to parametric uncertainty causes the problem of unstable
frozen plant/controller configuration [1]. On the other hand,
methods based on adaptive control [8], [4] enjoy better
stability guarantees in theory for similarly parameterized
plants, if no disturbances or noise are present, analogous to
standard adaptive control systems. Yet as standard adaptive
control, these methods do not allow for characterizing the
dynamic response neither for a frozen configuration nor
for the overall dynamics. As suggested by the authors [8],
[4], re-initializing the adaptation by switching between fixed
estimates or resetting the adaptive estimate, is solely for
improving transients, which is possible only if such fixed
estimates are good. These results display similar pros and
cons of the robust and adaptive methods analogous to those
in non-switching control designs.

This paper poses a solution to the following problem:

Find a single control scheme that guarantees :
1-Stability
2-Steady state and dynamic performance.
for a large class of uncertain time varying switched systems
subject to:
(i) Large and time varying parametric uncertainty.
(ii) Disturbances and unstructured uncertainties.

More specifically, the question is to find a scheme that
achieves 1 and yields design guidelines for addressing 2
as good as possible without employing situation specific
information, estimation, and heuristics. Though, the use of
situation specific information and logic-based codes can
allow for improvements, the objective here is to find the
best possible single design. Naturally, this will yield vari-
ous trade-offs and performance limitations for which some
generic design parameters should be adjusted according to
the nature of the problem. If situation specific information
is available then logic-based codes can be incorporated to
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optimize the performance based on that information.
The algorithm developed in this paper is based on a

standard adaptive control architecture for single-input-single-
output (SISO) nonlinear systems with a scheduled periodic
switching between a standard gradient adaptation law and an
exponentially stabilizing robust one [2]. The approach used
here bypasses the switched system stability problem since
switching in plant parameters appear as step and impulse
inputs to a continuous exponentially stable system [2]. Then
a scheduled switching scheme is introduced solely for im-
proving steady state tracking error. This is in contrast to most
current schemes where logic-based codes are developed to
estimate and switch between candidate controllers. However,
some older papers [3], [7] for adaptive control of linear
systems used a predetermined switching scheme between a
set of candidate controllers. As suggested by the authors,
despite promising potential the difficulty in finding these
candidate controllers is a key limitation.

The remainder of the paper is organized as follows.
Section II reviews the exponentially stable robust adaptive
control system and classes of systems of interest. Section III
presents the scheduled switched control system. A simulation
example is given in section IV and conclusions are given
in section V. The appendix provides a proof of the main
result. In this paper, λ(.) and λ(.) denote the maximal and
minimal eigenvalues of a matrix, ‖.‖ the euclidian norm, and
diag(., ., . . .) denotes a block diagonal matrix.

II. EXPONENTIALLY STABLE ROBUST ADAPTIVE

CONTROL

A. Standard Adaptive Control

Consider the following closed loop error dynamics com-
monly found in adaptive control:

ė = fe(e, ã, t) + d(t)
˙̃a = fa(e, â, t) (1)

where e is a generalized tracking error, includes state estima-
tion error in general output feedback problems, parameter es-
timation error ã = â−a is the difference between parameter
estimate â and actual parameter a, and d is the disturbance.
The parameter vector a corresponds to a parametrization
of the plant’s modeled dynamics. The adaptation law in
Equation (1) though not specified is usually a gradient
adaptation law.

In standard adaptive control with constant parameters and
no disturbances we have ȧ = d = 0 and the Lyapunov
analysis:

V (e, ã) = eT Pe + ãT Γ−1ã ⇒ V̇ (e, ã) = −2eT Ce ≤ 0 (2)

where matrices P, C > 0 are chosen matrices depending on
the particular algorithm, e.g. choice of reference model and
Γ > 0 is adaptation gain matrix. This concludes Lyapunov
stability of the system, with fixed point (e, ã) = (0, 0), and
further analysis from Barbalat’s lemma shows that e(t) → 0
as t → ∞.

B. Classes of Systems

The previous section describes a generic closed loop error
dynamics and a Lyapunov analysis with quadratic Lyapunov
functions without specifying how such a system is obtained
and what classes of plants are considered. We will focus
on linearly parameterized minimum phase SISO nonlinear
systems for which there exists well established algorithms,
which sum of which are briefly summarized next.

Consider the following n-dimensional single input linear
system:

ẋ = A(t)x + B(t)u + d

y = C(t)x (3)

where A, B,C, d are piecewise continuous uniformly
bounded. The objective is for the output y to follow the
output of a reference model:

ẋm = Amxm + Bmr

ym = Cmxm (4)

where Am, Bm, Cm are nonminimal realization of a stable
reference model and and scalar r is a piecewise continuous
bounded reference trajectory. Standard assumptions as in [9]
follow with pointwise in time analogues for the output feed-
back matching condition and uniform exponential stability of
the zero dynamics required. Similarly, the full state feedback
model reference design can be incorporated using standard
assumptions [9] with pointwise in time analogues for the full
state feedback matching condition. Due to space limitations
only an informal presentation on the classes of systems is
done in this paper.

Another class of systems based on the adaptive control
design in [11] are those globally transformable to the com-
panion form given below:

y(r) =
m∑

i=1

θifi(x) + bβ(x)u + d (5)

where y(r) is the rth derivative of the targeted output,
where r is the relative degree of the system, vector θ =
[θ1, θ2, . . . , θm]T and scalar b are piecewise continuous uni-
formly bounded unknown plant parameters, fi, and β(x) �= 0
are known functions, and d is the disturbance. The state
x = [y, y(1), . . . y(r−1)] is measured, which reduces to
output feedback for relative degree 1 plants. The sign of
high frequency gain b �= 0 is assumed to be known and
constant. Uniformly exponentially stable zero dynamics are
also assumed.

C. The Robust Adaptive Controller

In order to deal with time varying and switching dynamics
as well as allow characterizing the dynamic response we
propose the modified adaptation law:

˙̂a = fa(e, â, t) − L(â − a∗) (6)
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with L > 0 and a∗ is a chosen estimate of a which yields
the system:

ė = fe(e, ã, t) + d(t)
˙̃a = fa(e, â, t) − Lã + L(a∗ − a) − ȧ (7)

The system above, as shown in [2], using the Lyapunov
function in Equation (2), is an exponentially stable system
with state x = [e, ã]T and bounded-input-bounded-state
(BIBS) stable driven by an input v̄ = [d, L(a∗ − a) − ȧ]T .
Note that the adaptation law of Equation (6) is closely
related to the notion of leakage, which is usually used to
maintain Lyapunov stability in the presence of disturbances
with a priori known bounds, which is not pursued here.
This result is provided without proof, see [2], since the
new result to be presented in this paper will reduce to this
earlier result in a limiting case. However, we will consider
the implications of this result to motivate the scheduled
switching control scheme developed in this paper. The
following Theorem gives a formal statement of the result.

Theorem 1: Consider the system given by Equation (1)
and the Lyapunov analysis of Equation (2) then the system
given by Equation (7) is :
(i) Uniformly internally exponentially stable.
(ii) BIBS stable with
‖e(t)‖ ≤ c1‖x(to)‖e−α(t−to) + c2

∫ t

to
eα(τ−t)‖v(τ)‖ dτ .

where c1, c2 are constants, α = λ̄(diag(P−1C, L)), and
v = [P 1/2d, Γ−1/2(L(a∗ − a) − ȧ)]T .
The following remarks summarize some key properties of
the developed result:

• Exponential stability allows for shaping the transient
response, e.g. settling time, and frequency response of
the system to low/high frequency dynamics and inputs
by adjusting the decay rate α independent of parametric
uncertainty, see [2] for details.

• The system is robustly stable with respect to any
bounded magnitude parametric uncertainty and bounded
disturbance without requiring any a priori knowledge of
such bounds since these affects enter as inputs to a BIBS
stable system.

• Also note that plant parameter switching no longer
affects internal dynamics and stability but enters as
a step change in input L(a∗ − a) and an impulse in
input ȧ at the switching instant. Similarly, switching
the estimate a∗ yields a step change in input L(a∗−a).

• An allowed arbitrary time variation and switching in
the parameter vector a as a uniformly bounded piece-
wise continuous vector suggests that such changes in
the controlled plant parameters are for a plant with
the same assumed parameterized structure and within
admissible values dictated by design assumptions. Such
assumptions include constant and known sign of high
frequency gain, nonzero high frequency gain, and uni-
formly exponentially stable zero dynamics. A more
precise statement is due on class by class basis.

III. ROBUST ADAPTIVE SCHEDULED SWITCHING

CONTROLLER

A. Rationale

This section introduces the scheduled switching control
scheme. In this scheme it is proposed to periodically (or gen-
erally synchronously) switch between the standard adaptation
law and the modified robust adaptation law. The motivation
for such an idea can be seen by investigating its effect on
the convolution integral for THE input v(t) in Theorem 1
(ii). When we turn on the standard adaptive controller the
convolution integral is zero, when ȧ = d = 0, since there
are no inputs yet the system’s dynamics is not exponentially
stable. Whereas, if we switch back to the robust adaptation
law (with exponentially stable system dynamics) for a very
short period of time ∆t∗ then the convolution integral is
very small since the integration period is very small. There-
fore, repeating the process gives a system with convolution
integral ≈ 0, i.e., e ≈ 0 after transients, yet the average
response of the system remains that of an exponentially
stable system. Therefore, this scheme allows for a reduction
in the tracking error’s sensitivity with respect to parametric
uncertainty without high gains as standard adaptive control
while retaining exponential stability and BIBS stability of
the robust adaptive scheme. As opposed to other schemes
that switch between different controllers or reset parameter
estimates, the switching here is for the purpose of optimiz-
ing performance independent of any additional knowledge.
Whereas, adjustments to the estimate a∗ based on multiple
candidate models, as has been briefly discussed in [2] would
be an additional capability that takes advantage of available
information in a manner analogous to controller switching
or resetting techniques in [1], [4], [10], [8].

B. Main Result

We now formulate the problem precisely. In this sched-
uled switching scheme it is proposed to use the following
adaptation law:

˙̂a = fa(e, â, t) − q(t)L(â − a∗) (8)

This yields the following closed loop error dynamics:

ė = fe(e, ã, t) + d(t)
˙̃a = fa(e, â, t) − q(t)L(â − a∗) − ȧ (9)

This differs from the system given by Equation (7) by only
the scalar switching function q(t), the discrete state variable
of this hybrid system, which is shown in Figure 1. This is
referred to as scheduled switching since the the transition
of the discrete state variable is scheduled ahead of time as
opposed to being reactive.

Analyzing the switching function in Figure 1 shows that
the function takes the value 1 during the time period ∆t∗,
which is the activation period of the robust adaptation law
of Section II. Whereas, during periods ∆ts we have the
standard gradient adaptation law with q = 0. Let ∆t =
∆ts + ∆t∗ be the period of the pulse then the switching
ratio r = ∆t∗/∆t, where r ∈ (0, 1). The switching ratio
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r indicates the relative activation of standard and robust
adaptation laws. In this analysis, we will assume fixed
values for all these periods for simplicity and tractability of
performance evaluation. The results apply in a similar way
to the case where the pulse is of time varying width and
period. The following Theorem states the main result and
incorporates Theorem 1 as a special case.

1

0

∆t*

∆t

q(t)

∆ts

t

Fig. 1. Pulse Switching Function for Scheduled Switching.

Theorem 2: Consider the system given by Equation (1)
and the Lyapunov analysis of Equation (2) then the system
given by Equation (9) is :
(i) Uniformly internally exponentially stable and BIBS stable
∀ r ∈ (0, 1] with

‖e(t)‖ ≤ c1‖x(to)‖e−rα(t−to) + c2

∫ t

to

erα(τ−t)‖v(τ)‖ dτ

(ii) The steady state tracking error ∀ r ∈ (0, 1) satisfies :

‖e(t)‖ss ≤ e∗ + eo

eo = c2

∫ ∞

to

erα(τ−t)‖vo(τ)‖ dτ

e∗ = c2
erα∆t∗ − 1

rα
sup
t≥to

‖v∗‖

where c1 and c2 are constants, α = λ̄(diag(P−1C, L)), r =
∆t∗/∆t, v∗ = [0,Γ−1/2L(a∗ − a)], vo = v − qv∗, and
v = [P 1/2d, Γ−1/2(L(a∗ − a) − ȧ)]T ,

C. Analysis of the Switching Function

The result of Section III.B simply states that the developed
system retains exponential stability and BIBS stability from
the robust scheme of Section II (part (i) of Theorem 2)
yet allows the attenuation factor with respect parametric
uncertainty a∗ − a to be improved for the same gains via
adjusting the switching function q(t). Let us examine the
steady state tracking error from Theorem 2 (ii) and let
ȧ = d = 0 since their affect can be superimposed, which
is reflected by the term eo in steady state upper bound in
Theorem 2 (ii). Therefore, we have

‖e(t)‖ss ≤ c2
erα∆t∗ − 1

rα
sup
t≥to

‖v∗‖ (10)

This means that making ∆t∗ small allows for significantly
attenuating parametric uncertainty for same system gains. In
fact, using a Taylor expansion of erα∆t∗ for a small rα∆t∗

and substituting in Equation (10) we get:

‖e(t)‖ss ≤ c2∆t∗ sup
t≥to

‖v∗‖ (11)

which suggests that attenuation of parametric uncertainty
scales with ∆t∗. Since ∆t∗ = r∆t, we can reduce ∆t∗

by either reducing r or ∆t. The first case, r small is obvious
since it implies that adaptive control dominates the average
response of the system, i.e. its turned on more, which should
lead to small sensitivity to parametric uncertainty. However,
it is important to note that the averaged response needs not
to be dominated by adaptive control for reduced sensitivity
with respect to parametric uncertainty. This means that we
can have each activation period of the modified adaptation
law larger than that of the standard adaptation law ∆t∗ >
∆ts, yet if ∆t∗ is small enough small tracking error can
be achieved, which is in agreement with the discussion in
Section III. A.

IV. EXAMPLE SIMULATION

In this section, case study simulations are shown to
demonstrate the key results presented in this paper. Consider
a MRAC, see [9], [5] for control design details, for the
following unstable 2nd order plant of relative degree 1:

ẋ1 = b1x1 + b2x2 + b3u + b3d

ẋ2 = x1

y = c1x1 + c2x2 + n (12)

where b1 = 3, b2 = −2, and c1 = c2 = b3 = 1 are
the nominal simulation values for which we will denote the
vector a as the parameterized vector corresponding to these
values. Whereas, u, d, and n are control signal, disturbance,
and measurement noise, respectively. The measurement noise
used in the simulations is of SN 1 : 1000 and a pair of
unmodeled complex poles at 22 rad/sec and 0.07 damping
ratio are also included. The reference model used is of the
following transfer function:

Wm(s) =
am

s + am

Let us choose the nominal am = 1 and L = I , where I is
the identity matrix. Also the nominal value of the adaptation
gain Γ will be denoted Γo = 100I . Also ∆t∗ = 0.0005
seconds and r = 0.5 are used. The reference trajectory is a
sine of amplitude 2 and frequency 0.3 rad/sec.

Figure 2 shows a comparative study for MRAC of the
nominal LTI plant for disturbance d = 0 and constant
parameters. The standard MRAC, denoted standard, shows
poor and unpredictable transients, which were also observed
when noise and unmodeled dynamics were removed but
with less oscillations. The response of the robust adaptive
algorithm of Section II.C, denoted robust, and switching
algorithm are shown for a large parametric uncertainty a∗ =
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100a yielding predesigned settling, 4 seconds, and better
transients. Note that the modified scheme without switching
yields larger steady state tracking error than the standard and
the switching algorithms with the same adaptation gain Γo.
Yet using a large adaptation gain Γ = 10Γo yields similar
tracking error. Therefore, the switching scheme achieves
the best performance trade-off by achieving pre-specified
good transient response as the robust scheme yet achieves
small steady state tracking error as the standard adaptive
controller without requiring larger gains. The lower part
of Figure 2 shows the control signals used to achieve the
aforementioned tracking responses. The control signal for the
standard adaptive controller is clearly much more aggressive
than all other signals during the transients. A key observation
is that the switching scheme introduced here does not require
any aggressive and oscillatory controls as most switching
control schemes, this is in agreement with the comment made
at the end of Section III.C.
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Fig. 2. Comparison of standard and modified MRAC for an LTI plant:
Tracking error (top), control signal (bottom).

Figure 3 shows the response of the system for a
time varying switching plant subject to disturbance d =
10(sin(2π0.1t) + sin(2π1000t). Note that the response was
found to be the same with or without the high frequency
component of d due to pre-specified system roll-off, see [2]
for details on related frequency response properties. Figure 3
shows 3 plant switches from the nominal value of b1 to 2b1,
−2b1, and 2b1 at times t = 10, 14, 21 seconds and similarly
for b2. Another switch occurs at t = 25 seconds from 2b1 to
a time varying parameter 12b1+2b1 cos(5t) and similarly for
b2. A fifth switch to the plant takes place at t = 35 seconds
from 12b1 + 2b1 cos(5t) to 18b1 + 2b1 cos(5t) and similarly
for b2. As explained earlier, these switches correspond to step
changes in a∗ − a and impulses in ȧ. Therefore, due to the
attenuation of uncertainty, the system responds to these plant
switches as impulse inputs and recovers to almost the same
tracking error after a quick exponential decay. The maximum
tracking error is about 35−40% of the size of the reference,
which occurs at two transition times t ≈ 10, 21 seconds.
Whereas a much smaller error of less than 5% is obtained
elsewhere. Note that an increase in Γ, see Figure 3, can

reduce the maximum overshoot at switching, to about 20%,
since the effective input v acting on the system contains a
term Γ−1/2ȧ, see Theorem 2, which suggests reducing the
size of the impulse in ȧ corresponding to switching in a.
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Fig. 3. Tracking error for scheduled MRAC for a switching linear plant
with disturbances.

V. CONCLUSIONS

An algorithm for stable robust adaptive control for a class
of SISO switched nonlinear systems has been presented. The
control scheme guarantees robust exponential stability with
respect to any bounded time varying and switching paramet-
ric uncertainty and bounded disturbance without requiring
a priori knowledge of such bounds. The scheme is based
on a standard adaptive control architecture with scheduled
periodic switching between a standard gradient adaptation
and an exponentially stabilizing one.

APPENDIX

A. Proof of Theorems 1 and 2

The proof of Theorem 2 is presented for which part (i)
reduces to that of Theorem 1 by letting r = 1.

Proof:
(i) Let x = [e, ã]T and z = Sx, where S =
diag(P 1/2, Γ−1/2) a symmetric positive definite matrix. Us-
ing the Lyapunov function V (e, ã) = eT Pe + ãT Γ−1ã and
the result from Equation (2), we have for the system given
by Equation (9):

V̇ (x) = −2xT SMSx + 2xT S2v̄

= −2zT Mz + 2zT v

where M(t) = diag(P−1/2CP−1/2, Γ−1/2qLΓ1/2), v̄ =
[d, qL(a∗ − a) − ȧ]T and v = Sv̄. But by comparison
arguments as in [5] we have V = ‖z‖2, which means:

1
2

d

dτ
‖z‖2 = −zT M(t)z + zT v ≤ −ᾱ(t)‖z‖2 + ‖z‖‖v‖

Hence

d

dτ
‖z‖ ≤ −ᾱ(t)‖z‖ + ‖v‖
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where ᾱ = λ(M) = λ(diag(P−1C, qL)) by similarity. Note
that ᾱ = α if q = 1 and equals 0 otherwise, where α =
λ(diag(P−1C, L)). Using the integration factor e

∫ τ
0 ᾱ(τ)dτ

we then have:∫ t

to

d

dτ

(
‖z(t)‖e

∫ τ
0 ᾱ(τ)dτ

)
dτ ≤

∫ t

to

e
∫ τ
0 ᾱ(τ)dτ‖v(τ)‖ dτ

Consider the integration factor used above, we have the
current time τ = N∆t + T , where N is the total number of
switches and T is a time offset since the last switch. Then
using the expression for τ and ᾱ the integral:∫ τ

0

ᾱ(τ)dτ = αN∆t∗ + cT

= rατ + T (c − rα)

where c is the value ᾱ takes during the period T , i.e. either
0 or α and r = ∆t∗/∆t. Using the last two expressions we
get: ∫ t

to

d

dτ
‖z(τ)‖erατ dτ ≤

∫ t

to

erατ‖v(τ)‖ dτ

where the constant term eT (c−αr) is factored out on both
sides. Then integrating we simply have:

‖z(t)‖ ≤ ‖z(to)‖e−rα(t−to) +
∫ t

to

erα(τ−t)‖v(τ)‖ dτ

By definition of ‖z‖ = ‖Sx‖ we can get that:

‖x(t)‖ ≤ c1‖x(to)‖e−rα(t−to) + c2

∫ t

to

erα(τ−t)‖v(τ)‖ dτ

where c1 = ‖S‖‖S−1‖ and c2 = ‖S−1‖. Internal exponen-
tial stability is shown by letting v = 0 above. BIBS stability
is achieved by denoting vo = supt≥to

‖v(t)‖ < ∞, then
from the last expression we have:

‖x(t)‖ ≤ c1‖x(to)‖e−rα(t−to) +
c2

rα
vo

This proves part (i).

(ii) To prove this part let v∗ = [0,Γ−1/2L(a∗ − a)]T and
vo = v − qv∗ and recall that from part (i) that :

‖x(t)‖ ≤ c1‖x(to)‖e−rα(t−to) + c2

∫ t

to

erα(τ−t)‖v(τ)‖ dτ

Therefore,

lim
t→∞ ‖e(t)‖ ≤ c2

∫ ∞

to

erα(τ−t)‖v‖ dτ

≤ c2

∫ ∞

to

erα(τ−t)(‖vo‖ + q‖v∗‖)dτ

Now consider the following term from above:
∫ t

to

erατq‖v∗‖dτ ≤
N∑

i=1

∫ ti+∆t∗

ti

erατ‖v∗‖ dτ + c3

≤ erα∆t∗ − 1
rα

N∑
i=1

erαti sup
t≥to

‖v∗‖ + c3

where
∫ T

0
erατq‖v∗‖dτ ≤ c3 but t = to + N∆t + T and

ti = i∆t, which means:

e−rαt
N∑

i=1

erαti = e−rα(to+T )
N∑

i=1

e−rα∆t(N−i)

The sequence {e−rα∆t(N−i)} is monotonic and bounded by
1, which means its convergent. In fact, we have

lim
N→∞

N∑
i=1

e−rα∆t(N−i) = 1

Using the fact that as t → ∞ we have N → ∞ and
substituting the last three expressions into the expression for
limt→∞ ‖e(t)‖ we have :

lim
t→∞ ‖e(t)‖ ≤ e∗ + eo

eo = c2

∫ ∞

to

erα(τ−t)‖vo‖ dτ

e∗ = c2
erα∆t∗ − 1

rα
sup
t≥to

‖v∗‖

By denoting ‖e(t)‖ss = limt→∞ ‖e(t)‖ in the last expression
part (ii) is proved.
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