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Abstract— The secant condition plays a useful role in stability
studies, especially for biological models. This paper provides a
generalization of that condition to nonlinear passive systems.
A “secant gain” is introduced, which combines gain and phase
information for each of the cascaded subsystems.

I. INTRODUCTION

The secant condition for linear stability was introduced
and proved by Tyson and Othmer [13] and Thron [12].
(See also [10] for recent remarks.) One way to express the
condition is as follows: the matrix⎛

⎜⎜⎝
−α1 0 . . . 0 −β1

β2 −α2 . . . 0 0
...

...
...

0 0 . . . βn −αn

⎞
⎟⎟⎠

(with αi > 0 and βi > 0 for all i), is Hurwitz (all eigenvalues
have negative real part) if:

β1 . . . βn

α1 . . . αn
<

(
sec

π

n

)n

.

It is useful to compare this restriction to the small-gain
theorem, which would have a 1 in the right-hand side. The
secant expression, on the other hand, is always bigger than
one. It is singular at n = 2 –which it should be, since then
the matrix is always Hurwitz– and it equals 8 for n = 3, 4 for
n = 4, and ≈ 2.88 for n = 5, and tends monotonically to 1
as n → ∞ (the bound is achieved exactly in the special case
in which all the constants αi’s coincide). The secant takes
into account simultaneously of phase and gain information
on the open-loop system, at least for stable systems with
distinct real eigenvalues and no zeros.

In this paper, we give a generalization of the secant
condition to nonlinear systems, more precisely cascades of
output strictly passive (OSP) systems. When each system is
linear and one-dimensional, the known result is recovered.
The generalization is based on systematic use of a “gain”
associated to OSP systems, and it is possible that this type of
gain might be useful for many other problems as well. Some
details omitted from this conference version can be found in
the full journal paper [11]. We also remark that, in the very
recent work [1] with Murat Arcak, the reader may find a
very different approach, based upon Lyapunov functions and
Popov Criterion techniques instead of input/output methods.
Although limited to finite dimensional continuous-time sys-
tems, this other approach is very powerful and it helps tighten
up estimates for many examples, such as the inhibitory
feedback loop with Michaelis-Menten kinetics mentioned in
this paper.

II. NOTATIONS, DEFINITIONS, AND STATEMENT OF

MAIN RESULT

We use standard notations: L2
e(0,∞) denotes the “ex-

tended” set of signals w : [0,∞) → R such that the
restriction wT = w|[0,T ] belongs to L2(0, T ) for each T > 0.
For w ∈ L2

e(0,∞) and T > 0, we denote by ‖w‖T the L2

the norm of the restriction wT . For v, w ∈ L2
e(0,∞) and any

fixed T > 0, 〈v, w〉T is the inner product of vT and wT . In
any Hilbert space, θ(v, w) ∈ [0, π] is the angle formed by v
and w, that is:

cos θ(v, w) =
〈v, w〉
‖v‖ ‖w‖

(zero if v = w = 0). The angle between the restrictions of
v, w ∈ L2

e(0,∞) to [0, T ] is denoted by θT (v, w) (instead of
θ(vT , wT )).

Generally (but the theorems are proved in fact in more gen-
erality), we take continuous-time finite-dimensional systems
ẋ = f(x, u), y = h(x) as usual in control theory (e.g. [9]),
with scalar valued inputs and outputs (generalizations to
vector inputs and outputs are just a matter of notations), and
state space R

n. For simplicity, we assume that the systems
being considered are L2-well-posed, meaning that for each
u ∈ L2

e(0,∞) and initial state x(0) = 0 there is a unique
solution x(·) defined for all t ≥ 0, and the corresponding
output y(t) = h(x(t)) is also in L2

e(0,∞), and in that case
call (u, y) an input/output (i/o) pair of the system.

We recall that a system is output strictly passive (OSP)
(see e.g. [5], [14], [15]) if, for some constant γ > 0 it holds
that

‖y‖2
T ≤ γ 〈u, y〉T (1)

for every i/o pair (u, y) and all T > 0. (We only consider
zero state responses when applying this definition, so we do
not add a separate additive constant. Non-zero initial states
will be dealt with separately.) If a system is OSP, There is a
smallest such γ, since the set of γ’s that satisfy (1) is a closed
set, and we call it the secant gain of the system, denoted by
γs. An equivalent definition of γs is as the smallest γ with
the property that

‖y‖2
T ≤ γ ‖u‖T ‖y‖T θT (u, y),

or equivalently:

‖y‖T ≤ γ ‖u‖T cos θT (u, y) (2)

for all T > 0 and all i/o pairs. Since (1) implies that
〈u, y〉T ≥ 0 for all i/o pairs and all T , for OSP systems
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we always think of the angle as lying in the interval [0, π/2],
and the cosine is nonnegative. Note that the Cauchy-Schwartz
inequality applied to (1) gives ‖y‖T ≤ γ ‖u‖T ≤ γ ‖u‖ for
all T > 0; thus, y ∈ L2 if u ∈ L2, so an OSP system
necessarily has finite L2-induced (or “H∞”) gain γ∞ ≤ γs

(this inequality is in general a strict one). Just as the L2

gain is the supremum of the expressions ‖y‖T / ‖u‖T over
all T and all i/o pairs with nonzero u, the secant gain is
obtained by maximizing sec θT (u, y) ‖y‖T / ‖u‖T , hence our
terminology. If u ∈ L2, so that also y ∈ L2, taking limits
in (1) gives

‖y‖2 ≤ γ〈u, y〉 . (3)

Conversely, if u ∈ L2 ⇒ y ∈ L2 and (3) is true for all
u ∈ L2, then (1) holds. This is a routine exercise in causality.

Our goal is to study the stability of the closed-loop system

ẋ = f(x, u − h(x))

obtained under negative unity feedback, and specifically
starting from a cascade of n subsystems, as shown in the
diagram in Figure 1 and subject to unity negative feedback.

� � � ����
−

u y1 y2 yn

+

Fig. 1. Closed-loop system

Such cascades appear frequently in control theory as well
as in biological applications, and, when components are
one-dimensional, tend to have especially good dynamical
properties such as the validity of the Poincaré-Bendixson
Theorem ([6]). We will assume that the i-th system has a
secant gain γi, and we write yi for the output of the ith
subsystem. We also assume well-posedness of the closed-
loop. The main result is as follows:
Theorem. Suppose that

γ1γ2 . . . γn <
(
sec

π

n

)n

.

Then the cascade is L2-stable: there is a number c so that

‖yn‖T ≤ c ‖u‖T

for all input/output pairs in the cascade and all T > 0.

Note that this property implies that every ‖yi‖T is bounded
by some linear function of ‖u‖T , and that the signals yi

belong to L2 if u ∈ L2. In the special cases n = 1 and n = 2
(i.e., the secant is infinite), we interpret the inequality in the
theorem as saying that the condition holds for any possible
values of the γi’s. For n = 2, therefore, the theorem is simply
a restatement of the Passivity Theorem as given e.g. in [14],
Theorem 2.2.15, Part a (using only the input u).

The assumption that the initial state of the cascade is
x(0) = 0 is easy to dispose of, assuming appropriate
reachability of the cascade, as routinely done in going from
input/output stability to state space stability, and Barbălat’s
Lemma combined with either reachability or detectability

arguments can be used to show convergence of internal states
to zero. This is one such corollary:
Corollary. Suppose that the condition in the Theorem is
verified, that the composite system shown in Figure 1 is zero-
reachable and that each subsystem is input to state L2-stable.
Then the system with no inputs (u = 0) has the property that
all solutions converge to x = 0.

III. EXTENSIONS

We formulated the results in terms of state-space systems
only in order to be concrete. One could equally well consider
arbitrary operators L2 → L2, or even just relations R on L2×
L2, where an “i/o pair” is by definition any element of R,
and define secant gain γs as the smallest number so that (1)
holds for all T and all i/o pairs. Nor is it needed for the inputs
and outputs to be scalar-valued; one may consider values on
arbitrary Hilbert spaces, with inner product and norms taken
pointwise in that space. More generally, functions of time are
not required: one could consider an arbitrary Hilbert space
H and simply ask that u and y belong to H . (To be precise,
one needs a Hilbert space together with a resolution of the
identity, in order to be able to have a concept of “restriction”
of u and y to subintervals; this is the formalism of resolution
spaces developed in [8].)

Even more generally, if one has a system in which inputs
u and outputs y are known to lie in a specific subset S ⊆ H ,
then γs can be defined in terms only of i/o pairs that lie in
S; the validity of the main theorem is not affected, since it is
just an algebraic statement about norms and inner products.
One example of an operator defined only on subsets, which is
of interest in biomolecular applications (“Michaelis-Menten
kinetics”), is as follows. Suppose that S is the set of all L2

maps w : [0,∞) → [−a,∞) with any fixed a > 0, and that
we consider the function � : [−a,∞) → R given by

�(r) =
V r

K + a + r
(4)

(with K,V > 0 some constants) and the operator u �→ y
defined on S, where y(t) = F (u)(t) = �(u(t)). This is an
example of a “sector” nonlinearity. The analysis of sector
nonlinearities is routine in passivity theory. The operator F
is OSP and has γs = V/K, because we have, for all r ∈
[−a,∞):

[�(r)]2 =
V

K + a + r

V r2

K + a + r

≤ V

K

V r2

K + a + r
=

V

K
r�(r)

(since K + a + r ≥ K), and thus

‖y‖2
T =

∫ T

0

�(u(t))2 dt

≤ V

K

∫ T

0

u(t)�(u(t)) dt =
V

K
〈u, y〉T

so γs ≤ V/K, and the equality is verified when u(t) ≡ −a.
We formulated our results in terms of stability in the L2

sense, which is really appropriate only when dealing with
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equilibria associated to zero signals. However, there are easy
extensions, which are of interest, particularly, when dealing
with problems in biology and chemistry, where quantities
represent concentrations of substances, and hence are always
nonnegative. Suppose that one wishes to study a system

ẋ = f(x, u)
y = h(x)

under the feedback law u = −y, and that there is a steady
state x∗ for this closed-loop system:

f(x∗,−h(x∗)) = 0

whose stability is of interest to analyze. We assume that the
states x(t) evolve in some subset S of R

n, for example the
positive orthant

R
n
+ = {(x1, . . . , xn), xi ≥ 0∀i},

and inputs u of the open-loop system take values on some
set U . (We assume that −h(S) ⊆ U .) We make a change of
variables z = x − x∗ which leads to the system

ż = g(z, v) = f(z + x∗, v − h(x∗))
w = �(z) = h(z + x∗) − h(x∗),

having states z(t) ∈ {x − x∗, x ∈ S}, inputs v(t) in the
input-value space {u + h(x∗), u ∈ U}, and outputs w(t).
We have that g(0, 0) = 0.

The feedback v = −�(z) results in

ż = g(z,−�(z)) = f(z + x∗,−h(z + x∗)).

Thus, for each solution x(t) of ẋ = f(x,−h(x)), we have
that z(t) = x(t) − x∗ satisfies ż = g(z,−�(z)), and each
solution of the latter system arises from the former. We have
reduced the analysis to the case treated in this paper, since
all solutions of

ẋ = f(x,−h(x))

converge to x∗ if and only if all solutions of the new system
converge to z = 0. For example, suppose that we wish to
study a positive system, that is, a system whose state state
space is R

n
+ and inputs are also nonnegative. Furthermore,

suppose that, as is often the case in biological feedback
loops, one wishes to study an inhibitory feedback of the
form

u =
M

K + xn

where M and K are some positive constants and xn is the
nth coordinate of the state, that is to say, we have h(x) =
−M/(K + xn).

In terms of the variables z, we have the output

w = �(z) = h(z + x∗) − h(x∗)

=
M

K + x∗
n

− M

K + (zn + x∗
n)

=
V zn

K + x∗
n + zn

which is the function in (4) with a = x∗ and V = M/(K +
x∗

n). Since xn(t) is nonnegative, the state variable zn(t)
takes values in [−x∗,∞). Thus, the closed-loop system as

obtained from cascading the original system (which may
itself be a cascade of several subsystems) with the static
system “y = �(u)”, which has γs = V/K, so the previous
analysis applies. This is all particularly simple for a linear
system ẋ = f(x, u) = Ax+Bu. Positivity amounts to asking
that all the off-diagonal entries of A as well as all entries
of B are nonnegative (see e.g. [2], [4]). Since the system is
linear and Ax∗ − Bh(x∗) = 0, we have that

g(z, v) = A(z + x∗) + B(v − h(x∗)) = Az + Bv,

so the same open loop system results, except that now we
are interested in the stability of z = 0.

IV. PROOF OF MAIN RESULT

Given an external input u, the solutions of the closed-loop
system with initial state zero are so that the signals yi have
the following properties:

‖y1‖2
T ≤ γ1 〈u + y0, y1〉T

‖y2‖2
T ≤ γ2 〈y1, y2〉T
...

‖yn‖2
T ≤ γn 〈yn−1, yn〉T

for every T > 0, where we are writing y0 = −yn. We
expand 〈u + y0, y1〉T = 〈u, y1〉T + 〈y0, y1〉T , and use
the Cauchy-Schwartz inequality for the first term, upper-
bounding it by ‖u‖T ‖y1‖T . Replacing now each 〈yi−1, yi〉T
by ‖yi−1‖T ‖yi‖T cos θT (yi−1, yi) and dividing by ‖yi‖T

(assumed nonzero; otherwise, there will be nothing to prove),
we have these estimates:

‖y1‖T ≤ γ1 ‖y0‖T cos θT (y0, y1) + γ1 ‖u‖T

‖y2‖T ≤ γ2 ‖y1‖T cos θT (y1, y2)
...

‖yn‖T ≤ γn ‖yn−1‖T cos θT (yn−1, yn)

from which we conclude, by recursively substituting the
estimates starting from the last one backward towards the
first, that:

‖yn‖T ≤ κ ‖yn‖T + α ‖u‖T

where

α = γ1γ2 . . . γn cos θT (y1, y2) . . . . cos θT (yn−1, yn)

and
κ = α cos θT (y0, y1) .

It is enough to show that κ < 1, since then we can write
(1−κ) ‖yn‖T ≤ α ‖u‖T , and therefore the result holds with
c = α/(1−κ). Let us fix T and write θi := θT (yi−1, yi) for
i = 1, . . . , n. We must show, then, that

cos θ1 . . . cos θn ≤
(
cos

π

n

)n

. (5)

The angles θi all lie in [0, π/2], for each i = 2, . . . , n, since
each system is OSP; thus cos θi ≥ 0 for all such i. However,
it is possible that cos θ1 < 0, since all that is known is that
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〈u + y0, y1〉T ≥ 0, not that 〈y0, y1〉T ≥ 0. But if cos θ1 < 0,
then (5) is true because the left-hand side is ≤ 0 and the
right-hand side is positive. So, in order to prove (5), we may
assume from now on that all θi ∈ [0, π/2].

We prove, more generally, this fact about Hilbert spaces:
suppose given vectors v0, v1, . . . , vn such that 〈vi, vi+1〉 ≥ 0,
and v0 = −vn. Let θi ∈ [0, π/2] be the angle between vi−1

and vi. Then (5) holds. Intuitively, the property that the start
and end vector are at angle π means that the consecutive
vectors cannot be too close in angle, and therefore at least
some of the angles must be large, and hence have small
cosine, and the largest possible value is achieved when all
angles are the same.

To prove this general fact, without loss of generality, we
may assume that all the vi are unit vectors (since only angles
matter). Notice that

∑
i θi ≥ π. This is because, for any three

unit vectors, θ(u, v)+ θ(v, w) ≥ θ(u,w), since we can view
the angle as the geodesic distance in a sphere, and apply
the triangle inequality; inductively applied starting from v0,
we get that

∑
i θi ≥ θ(v0, vn) = π. Now, we have also this

algebraic fact:

cos θ1 . . . cos θn ≤
(

cos
θ1 + . . . + θn

n

)n

which follows by noticing that the function f(x) =
− ln cos x is convex for x ∈ [0, π/2), applying Jensen’s
inequality to obtain f(

∑
i θi/n) ≤ (1/n)

∑
i f(θi), and

taking exponentials. Together with
∑

i θi ≥ π, using that
π/n ≤ (θ1 + . . . + θn)/n ≤ π/2 < π (recall that each
θi ∈ [0, π/2]), and using that cos decreases on [0, π], we
conclude: (

cos
θ1 + . . . + θn

n

)n

≤
(
cos

π

n

)n

.

This completes the proof of the Theorem.
To prove the Corollary, we provide a standard argument,

as done e.g. in [9], Theorem 33. Pick any initial state x0

and consider the solution x(·) of the closed-loop system ẋ =
f(x, u−h(x)) with input 0 and x(0) = x0. Zero-reachability
means that there is some finite-time input u0 : [0, T ] →
R such that, if z0(·) solves the closed-loop equations ż =
f(z, u− h(z)) with initial state z0(0) = 0 and this input u0

on the interval [0, T ], then z0(T ) = x0. Consider now the
input u obtained by the formula u(t) = u0(t) for t ≤ T and
u(t) ≡ 0 for t > T , and let z(·) be the solution with initial
state z(0) = 0 and this input u; by causality, z(t) = z0(t) for
t ≤ T , and hence z(T ) = x0 = x(0), from which it follows
that z(t + T ) = x(t) for all t ≥ 0. Showing x(t) → 0 as
t → ∞ is the same as showing z(t) → 0 as t → ∞. Let yi

be the outputs of the subsystems when using input u (and
zero initial state). Since u ∈ L2 and ‖y‖ ≤ c ‖u‖ < ∞, we
have that yi ∈ L2 for each of the intermediate outputs. Since
each subsystem is input to state L2-stable, meaning that L2

inputs (and zero initial state) produces L2 state trajectories,
we have that the complete state z is in L2. Finally, as z is a
trajectory of a semiflow in finite dimensions, we must have

that z(t) → 0, by a Barbălat’s Lemma type of argument (see
e.g. [3]).

Finally, we review in the present context a weaker version
that applies when n = 2, basically part of the statement of
the classical Passivity Theorem. Suppose that the first system
is OSP but the second system is only known to be passive, in
the sense that no estimate ‖y2‖2

T ≤ γ2〈y1, y2〉T may hold,
but we do know that 〈y1, y2〉T ≥ 0 for all T > 0. Then,
y0 = −y2 implies that:

‖y1‖2
T ≤ γ1〈u + y0, y1〉T

= γ1〈u, y1〉T − γ1〈y2, y1〉T ≤ γ1〈u, y1〉T
and so the system with output y1 is OSP, and in particular,
L2 stable. If, in addition, the second system is also L2 stable,
then stability to y2 holds as well.

V. LINEAR SYSTEMS

The condition that a system be OSP is of course a restric-
tive one, but the concept of OSP system is thoroughly well-
studied, and examples of passive systems abound, especially,
but not only, for linear systems. We collect here some facts,
mostly well-known, regarding the linear case.

For a stable linear system with transfer function G(s), the
secant gain can be characterized as the smallest γ such that

|G(iω)|2 ≤ γ Re G(iω) ∀ω ∈ R . (6)

A proof is as follows. First of all, squaring the expression
below and expanding 〈y − (γ/2), y − (γ/2)〉T , one easily
sees that the definition of OSP system is equivalent to the
requirement that

‖y − (γ/2)u‖T ≤ (γ/2) ‖u‖T (7)

for all i/o pairs and all T , which means γs is the smallest
number such that the L2-induced norm of u �→ y − (γ/2)u
is ≤ γ/2. For linear systems, induced L2-induced norm
corresponds to H∞ gain, that is to say, γs is the smallest
number so that supω∈R

|G(iω) − (γ/2)| ≤ γ/2. Writing
|G(iω) − (γ/2)|2 = (G(iω) − (γ/2))(G(iω) − (γ/2)) and
expanding, one has (6).

An equivalent formulation of (6) is via the following
analog of the estimate (2):

|G(iω)| ≤ γ cos θ(G(iω)) ∀ω ∈ R . (8)

where we are denoting now by θ(µ) the argument of a
complex number µ. Since G is analytic on Re λ ≥ 0 (stabil-
ity), the maximum modulus principle for analytic functions
implies that same estimate is obtained when maximizing not
merely over λ = iω purely imaginary, but also over all
complex numbers with nonnegative real part.

If we write G(s) = p(s)/q(s) as a quotient of two
polynomials, condition (6) can be also written as

|p(iω)|2 ≤ γ Re [p(iω)q(iω)] .

For example, for a one-dimensional system ẋ = −αx + βu
with output y = x, the transfer function is β/(s+α), so that
p(iω) = β and Re [p(iω)q(iω)] = αβ for any ω, from which
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it follows that γs = β/α, and the classical result is obtained.
On the other hand, as is well-known for OSP systems,
G(s) must have relative degree at most one (the condition
Re G(iω) ≥ 0 is otherwise violated). Therefore, cascades, as
studied here, of two or more such one-dimensional systems
are not OSP themselves.

For linear systems, a sufficient condition for a system to be
OSP is that its transfer function G(s) be strictly positive real
(SPR), meaning that G(s−ε) is positive real for some ε > 0,
or equivalently (see e.g. [5], Lemma 10.1) that it be stable
(all poles have negative real part) and satisfy Re G(iω) > 0
for all ω ∈ R and limω→∞ ω2Re G(iω) > 0. (Note that our
transfer functions are strictly proper, by definition, since we
are considering state-space systems with no direct i/o term;
for non-strictly proper transfer functions, the condition is
slightly different.) This provides a large class of examples;
for instance, any transfer function of the form (s+α)/(s2 +
as + b) with b > 0 and 0 < a < 2

√
b is SPR if and only

if 0 < α < a ([5], Exercise 10.1). That SPR implies OSP
can be proved using the Kalman-Yakubovich-Popov (KYP)
Lemma. The converse implication does not hold: s/(s2 +
s + 1) is not SPR, since it fails the test just quoted with
(a = b = 1, α = 1/2) or just by noting that there is an
imaginary axis zero, since Re G(0) = 0, but it is OSP, since
|p(iω)| /Re [p(iω)q(iω)] ≡ 1 < ∞.

More generally, for not necessarily linear systems, if there
exists some nonnegative definite smooth function V on states
with the property that, for some γ > 0,

∇V (x).f(x, u) ≤ −y2 + γ uy

for all x ∈ R
n, u ∈ R, and y = h(x), then the system

is OSP. Indeed, integrating along solutions corresponding to
x(0) = 0, and using that V is nonnegative definite (so that
V (0) = 0 and V (x(T )) ≥ 0), one has that

0 ≤ V (x(T )) − V (0)

≤ −
∫ T

0

y(s)2 ds + γ

∫ T

0

u(s)y(s) ds

and thus ‖y‖2
T ≤ γ〈u, y〉T as claimed. This property can be

checked by means of nonlinear versions of the KYP Lemma,
see e.g. [5], [14].

Yet another way of stating the estimate (1) is in terms
of integral quadratic constraints (IQC’s), cf. [7]: one may
equivalently write “wT Mw ≥ 0” in L2 for i/o pairs w =
(u, y)′ and where:

M =
(

0 γ/2
γ/2 −1

)

The powerful tools for analysis of IQC’s, based on LMI’s, as
developed by Megretski and Rantzer and others, should thus
be useful for the study of secant gains. (We wish to thank
R. Sepulchre for suggesting this reformulation.)

We pointed out that the induced L2 gain γ∞ is upper
bounded by the secant gain γs. In general, one has the strict
inequality γ∞ < γs. For example consider the linear system

with transfer function

G(s) =
2s + 1

s2 + s + 1
.

This is a scalar multiple of (s + 1/2)/(s2 + s + 1), so it
is SPR by the criterion mentioned earlier, and hence OSP.
Explicitly:

γs = sup
ω∈R

|p(iω)|2
Re [p(iω)q(iω)]

= sup
ω∈R

1 + 4ω2

1 + ω2
= 4

and

γ∞ = sup
ω∈R

∣∣∣∣ 1 + 2iω

1 − iω − ω2

∣∣∣∣ = sup
ω∈R

√
1 + 4ω2

1 − ω2 + ω4

=
√

2 + (2/3)
√

21 ≈ 2.25 < 4

(the maximum value is achieved at ω = 1/2
√√

21 − 1).
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