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Abstract— We consider the von Neumann entropy I(ρ) :=
−trace(ρ log ρ) and the Kullback-Leibler-Umegaki distance
S(ρ||σ) := trace(ρ log ρ − ρ log σ) as regularizing functionals
in seeking solutions to multi-variable and multi-dimensional
moment problems. We show how to obtain extrema for such
functionals via a suitable homotopy and how to characterize
all the solutions to moment problems. The range of possible
applications includes the inverse problem of describing power
spectra which are consistent with second-order statistics, mea-
surement in classical thermodynamics as well as a quantum
mechanics, as well as analytic interpolation encountered in
modern robust control (cf. [6], [14], [15], [16], [17]).

I. Introduction

THE quantum relative entropy (Umegaki [35])

S(ρ ‖σ) := trace(ρ log ρ − ρ logσ)

where ρ, σ are positive Hermitian matrices (or operators)
with trace equal to one, generalizes the Kullback-Leibler
relative entropy [23], just as the von Neumann entropy

I(ρ) := −trace(ρ log ρ)

generalizes the classical Shannon entropy. They both inherit
a rather rich structure from their scalar counterparts and
in particular, S(·‖·) is jointly convex in its arguments as
shown by Lieb [27] in 1973, whereas I(·) is concave.
The relative entropy originates in the quest to quantify the
difficulty in discriminating between probability distributions
and can be thought as a distance between such. Its matricial
counterpart S can similarly be used to quantify distances
between positive matrices.

Entropy and relative entropy have played a central rôle in
thermodynamics in enumerating states consistent with data
and, thereby, used to identify “the most likely” ones among
all possible alternatives. The measurement of a physical
property in a classical setting is modeled via ensemble
averaging (e.g., see [21, Chapter 3])

r =
∑

k

g(k)ρ(k)

where k runs over all micro-states corresponding to a scalar
value g(k). Each micro-state occurs with probability ρ(k)
and r is a moment of the underlying probability distribution.
Similarly, quantum measurement is also modeled by averag-
ing (as originally idealized by von Neumann, see e.g., [34,
Chapter 5], [19, page 183]):

ρafter =
∑

k

G(k)ρbeforeG(k)∗

where the ρ’s represent density matrices (positive Hermitian
with trace one), the G’s represent products of projection
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operators, and “∗” denotes “conjugate-transpose”. Similar
expressions arise for the density operator when restricted
to a subsystem (partial trace [34, page 185]). If the un-
derlying space is infinite dimensional then the measurement
process can be modeled via a continuous analogue where the
summation is replaced by an integral (e.g., see [4]). These
are instances of moment problems. More generally we may
consider

R =
∑

k

Gleft(k)ρ(k)Gright(k) (1)

where ρ(k) are Hermitian positive matrices as well as its
“continuous” counterpart

R =

∫
S

Gleft(θ)ρ(θ)Gright(θ)dθ (2)

where ρ(θ) represents a Hermitian-valued positive (den-
sity) function on a support set S ⊆ Rk (k > 1) and
Gleft, Gright are matrix-valued functions on S. If the under-
lying distribution is not absolutely continuous then we write
R =

∫
S Gleft(θ)dµ(θ)Gright(θ) instead, with dµ a positive

Hermitian-valued measure.
The moment problem (1-2) is typified by multivariable

and multidimensional sampling of spectra in sensor arrays
and polarimetric radar. The echo/signal at different polar-
izations and/or wavelengths is being sampled at various
sensor locations. It is usually the case that these samples
are not independent. Attributes of the scattering field (e.g.,
reflectivity at different wavelengths and polarization) and the
relative position of the array elements are responsible for the
variations in the vectorial echo. The vector of attributes can
be thought of as a vectorial input u(θ) to the array while the
relative position and characteristics of its elements specify a
nleft × m transfer matrix

Gleft =

⎡
⎢⎣

g1,left

...
gnleft,left

⎤
⎥⎦

to the nleft sensor outputs. If the attributes u(θ) are modeled
as a zero-mean vectorial stochastic process, independent over
frequencies, then

yleft =

∫
S

Gleft(θ)du(θ)

represents the vectorial output process. Similarly, if

Gright(θ) =
[
g1,right, . . . gnright,right

]
is the m×nright complex conjugate transpose of the transfer
matrix corresponding to a second group of sensors, and if

yright =

∫
S

Gright(θ)
∗du(θ),
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designate the corresponding vector of nright outputs, then the
nleft × nright correlation matrix

R = E{ylefty
∗
right}

gives rise to the matricial moment constraint on the spectral
distribution of u given in (2). On the other hand (1) can be
interpreted when the power spectrum is discrete. A power
density which matches the correlation samples aims at giving
clues about the makeup of the scattering field.

We address the moment problem in the above generality
and, by using various forms of entropy functionals, we
provide a way to answer the following:
(i) does there exist a density function satisfying (1-2)?

(ii) if yes, describe all densities consistent with (1-2).

The present work follows up in the footsteps of a rather
extensive literature on inverse problems having roots in the
early days of statistical mechanics (e.g., see [25], [11],
[24], [26], and also [17] for a more comprehensive list
of references). The key idea has been to seek extrema of
entropy functionals—existence would guarantee solvability
of the moment problem. The idea of using “weighted”
entropy functionals to parametrize solutions is more recent
and originates in [7]. It was followed up in [6] and in [5],
[18] where it was reformulated using the Kullback-Leibler
distance between sought solutions and positive “priors.”
Exploring the connection with the Kullback-Leibler distance,
[18], [5], [8], [16], [9] studied scalar problems at various
levels of generality, while [18] pointed to the relevance of
quantum relative entropy for the multi-variable case (see also
[12, Chapter V], [2]) Classical moment problems [22] and
their matrix-valued counterpart (see e.g., [32]) have been
studied when the integration kernels possess a very particular
shift-structure similar to that of a Fourier vector and are of
limited use in the generality sought herein. In the present
work we develop a computational approach for multivariable
and multidimensional moment problems analogous to one
presented in [16] for scalar distributions, using suitable
generalizations of entropy (cf. [18]). Detailed derivations and
exposition of the material is provided in [17].

II. Motivating Example: non-uniform sampling

Consider an array of sensors with three elements, linearly
spaced at distances 1 and

√
2 wavelengths from one another,

and assume that (monochromatic) planar waves, originating
from afar, impinge upon the array. This is exemplified in
Figure 1. For brevity, we have assume a scalar distribution.

φ

E0 E1 E2

Fig. 1. Non-equispaced sensor array

Assuming that the sensors are sensitive over one side of
the array, with sensitivity independent of direction, the signal

at the �th sensor is typically represented as a superposition

u�(t) =

∫ π

0

A(θ)ej(ωt−px� cos(θ)+φ(θ))dθ,

of waves arising from all spatial directions θ ∈ [0, π], where
ω is as usual the angular time-frequency (as opposed to
“spatial”), x� the distance between the �th and the 0th sensor,
p the wavenumber, and A(θ)dθ the amplitude and φ(θ)
a random phase of the θ-component. Typically, φ(θ) for
various values of θ are uncorrelated. The term px� cos(θ)
in the exponent accounts for the phase difference between
reception at different sensors. For simplicity we assume that
p = 1 in appropriate units. Correlating the sensor outputs we
obtain

Rk = E{u�1 ū�2} :=

∫ π

0

e−jk cos(θ)f(θ)dθ

where f(θ) = |A(θ)|2 represents power density, and k =
�1 − �2 with �1 ≥ �2 and belonging to {0, 1,

√
2 + 1}. Thus,

k ∈ I := {0, 1,
√

2,
√

2 + 1}. (3)

The significance of our selection of distances between sen-
sors, giving rise to the indexing set (3), is to underscore the
absence of algebraic dependence between the elements of
the transfer function/array manifold

G(θ) :=
[
1 e−jτ e−j

√
2τ e−j(

√
2+1)τ

]′
,

( thought of as a column vector with τ = cos(θ) ∈ [−1, 1].
Given a set of values Rk for k ∈ I, it is often important to

determine whether they are indeed the moments of a power
density f(θ), and if so to characterize all consistent power
spectra. The case of arrays with equispaced elements is very
special and answers to such questions relate to the non-
negativity of a Toeplitz matrix formed out of the Rk’s. In
the present situation nonnegativity of

∫ 1

−1

⎡
⎣ 1

e−jτ

e−j
√

2τ

⎤
⎦ f(cos−1(τ))√

1 − τ2

[
1 ejτ ej

√
2τ

]
dτ

which, in the obvious indexing turns out to be⎡
⎣ R0 R1 R√

2+1

R̄1 R0 R√
2

R̄√
2+1 R̄√

2 R0

⎤
⎦ , (4)

is only a necessary condition. The fact that it is not sufficient
(see e.g., [13, page 786], [15]) motivated the present study.

III. Matricial distributions and their moments
The moment conditions (1-2) are linear constraints on

densities ρk (k = 1, 2, . . .) and ρ(θ) (θ ∈ S), respectively.
Density functions, whether discrete or continuous, are non-
negative, or non-negative definite in the matricial case, for
each value of their indexing set. Thus they have the structure
of a cone. Entropy functionals on the other hand represent
natural barriers on such positive cones and can be used
to identify, and even parametrize, density functions which
are consistent with given moment conditions. We begin by
explaining the geometry of the moment problem for constant
density matrices and the relevance of entropy functionals
in obtaining solutions as their respective extrema. Both, the
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geometry of cones of matricial densities functions as well as
the rôle of entropy functionals is quite similar and is taken
up in Section III-B.

A. Relative entropy and the geometry of matricial cones
We begin by focusing on constraints

R =
∑

k

Gleft(k)ρ Gright(k)

where ρ is not indexed. The general case is quite similar.
We use the notation

M := {M ∈ C
m×m : M = M∗},

M := {M ∈ M and M ≥ 0},
M+ := {M ∈ M and M > 0}

to denote the space of Hermitian matrices and the cones
of non-negative and positive definite ones, respectively. The
space M is endowed with a natural inner product

〈M1, M2〉 := trace(M∗
1 M2) = trace(M1M2)

as a linear space over R. Clearly, both, M and M+ are
convex cones. Since non-negativity of 〈M1, M〉 for all M1 ∈
M implies that M ∈ M, it follows that M is self-dual1. It
can also be seen that M+ is the interior of M.

The linear operator

L : M → R : ρ 	→ R =
∑

k

Gleft(k)ρ Gright(k)

where R ⊆ Cnleft×nright denotes the range of L, maps M

onto the cone of admissible moments K = L(M) ⊆ R.
Here, and throughout, Gleft, Gright are matrices of dimension
nleft×m and m×nright, respectively. A further assumption
that is often needed is that the null space of L does not
intersect M, i.e.,

null(L) ∩ M = {0}. (5)

The interior of K is int(K) = L(M+) and, given R, the
moment problem requires testing whether R ∈ K and if so,
characterizing all ρ ∈ M such that R = L(ρ).

Geometry in the range space R is based on

〈λ, R〉 := �e (trace(λ∗R)) , for λ, R ∈ R. (6)

Then the adjoint transformation of L is

L∗ : R → M : λ 	→ ρ =

(∑
k

Gleft(k)∗λGright(k)∗
)

Herm

where (M)Herm := 1
2 (M + M∗) is the “Hermitian part”.

The dual cone of K,

Kdual := {λ ∈ R : 〈λ, R〉 ≥ 0, ∀R ∈ K},
is naturally related to the cone M ⊂ M. In fact, using
〈λ, L(ρ)〉 = 〈L∗(λ), ρ〉 it follows easily that

Kdual = {λ ∈ R : L∗(λ) ∈ M}.
The interior of the dual cone

Kdual
+ := int(Kdual) := {λ : 〈λ, R〉 > 0, ∀R ∈ K − {0}}

corresponds to M+ since Kdual
+ = {λ : L∗(λ) ∈ M+}.

Finally, (5) can be seen to be equivalent to Kdual
+ �= ∅.

1In general, the dual cone Mdual is the set of elements forming an “acute
angle” with all elements of the original cone, i.e., {M : 〈M, M1〉 ≥
0, ∀M1 ∈ M} (see [22]).

1) Minimizers of S(I‖ρ): We are interested in minimiz-
ers of (the negative entropy) S(I‖ρ) = −trace(log(ρ)) on
M+ subject to R = L(ρ). Here and throughout, “I” denotes
the identity matrix of size determined from the context.
When such a minimizer exists at an interior point of MR,+,
stationarity conditions for the entropy functional dictate an
explicit form for the minimizer (which, is unique due to the
convexity of −trace(log(ρ))).

The Lagrangian of the problem is

L(λ, ρ) := trace(− log(ρ)) − 〈λ, R − L(ρ)〉.
Using the expression for the derivative of the logarithm given
in the appendix, the (Gateaux) derivative of L in the direction
δ ∈ M becomes

dL(λ, ρ ; δ) := trace(−M−1
ρ δ) + 〈λ, L(δ)〉

= trace(−ρ−1δ) + 〈L∗(λ), δ〉.
In the above derivation, the “trace” is what allows re-
placing the “non-commutative division operator” M−1

ρ (cf.
(32)) with multiplication by ρ−1. The stationarity condition
dL(λ, ρ ; δ) ≡ 0 then gives

ρ = (L∗(λ))−1 . (7)

Thus, a necessary condition is that there exist λ ∈ Kdual such
that L∗(λ) is strictly positive, i.e., that Kdual

+ is nonempty.
It turns out that if R ∈ int(K) then this condition is also
sufficient as claimed below.

Theorem 1: Assume that R ∈ int(K). Then the entropy
functional S(I‖ρ) has a minimum in MR,+, which is also
unique, if and only if Kdual

+ is nonempty.
2) Minimizers of S(ρ‖I): We now focus on minimizers

of S(ρ‖I) = trace (ρ log(ρ)) in M+, subject to R = L(ρ).
The Lagrangian this time is

L(λ, ρ) := trace(ρ log(ρ)) − 〈λ, R − L(ρ)〉.
Once again, using the expression for the differential of the
logarithm given in the appendix, the (Gateaux) derivative of
L in the direction δ ∈ M becomes

dL(λ, ρ ; δ) := trace(δ log(ρ) + ρM−1
ρ (δ)) + 〈λ, L(δ)〉

= trace(δ log(ρ) + δ) + 〈L∗(λ), δ〉.
The last step follows from

trace(ρM−1
ρ (δ)) = trace(ρ

∫ ∞

0

(ρ + t)−1δ(ρ + t)−1dt)

= trace(

∫ ∞

0

(ρ + t)−1ρ(ρ + t)−1dt δ) = trace(δ).

The stationarity condition dL(λ, ρ ; δ) ≡ 0 then gives that

ρ = exp (−I − L∗(λ)) =
1

e
exp (−L∗(λ)) (8)

with L∗(λ) ∈ M (and not necessarily in M as before). It
turns out that if R ∈ int(K) a minimizer can always be
found. It should be noted that (5) is no longer a necessary
condition.

Theorem 2: If R ∈ int(K), then the entropy functional
S(ρ‖I) has a minimum in MR,+ which is unique and of
the form (8).
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B. Relative entropy and matricial distributions
The geometry of convex cones and of the moment problem

when ρ is a matricial density function on a compact set S, as
in (1-2), is quite similar to the case where ρ is only a positive
matrix as in Section III-A. Appropriate generalizations of the
relative entropy functionals allow computable expressions for
the corresponding extrema when S is a closed interval of the
real line, or even a multi-dimensional closed interval in Rk

(k > 1). We develop this theory focusing on (2).
We consider Hermitian m × m matrix-valued measurable

functions on S as a linear space over R with an inner product

〈m1, m2〉 =

∫
S

trace(m1(θ)m2(θ))dθ.

We use the notation M̃ to denote the Hilbert space of square
integrable elements, and the notation M̃ and M̃+ to denote
the cones of elements which are nonnegative and positive
definite, respectively, for all θ ∈ S. The linear operator

L : M̃ → R : ρ 	→ R =

∫
S

Gleft(θ)ρ(θ)Gright(θ)dθ (9)

maps M̃ into a subspace of C
left×right denoted by R as

before and viewed as a linear space over R. Both, moments
R and their duals λ reside in R and the geometry is always
based on (6). For simplicity of the exposition, we assume
that the integration kernels Gleft, Gright are continuously
differentiable on S. The closure of the range of M̃ is denoted
by K = L(M̃), while int(K) = L(M̃+). The adjoint
transformation is now

L∗ : R → M̃ : λ 	→ ρ = (Gleft(θ)
∗λGright(θ)

∗)Herm .

It is not difficult to show that the expressions for the dual
cone and its interior

Kdual = {λ ∈ R : L∗(λ) ∈ M̃}, and

Kdual
+ = {λ ∈ R : L∗(λ) ∈ M̃+}

remain valid (except for the obvious change where M̃

replaces our earlier M). The analog of (5) will be needed
(in Theorem 4) which, can also be expressed as

Kdual
+ �= ∅. (10)

Finally we define as before

M̃R,+ := M̃+ ∩ {ρ ∈ M̃ : R = L(ρ)}
as we seek to determine whether or not M̃R,+ = ∅, or
equivalently, whether R ∈ int(K).

For future reference we bring in a characterization of
elements R ∈ K analogous to the scalar real case given in
[22, page 14]. Given R ∈ R, define the real-valued functional

CR : R → R : λ 	→ 〈λ, R〉 (11)

Such a bounded functional is said to be nonnegative (resp.,
positive)—denoted by CR ≥ 0 (resp., CR > 0), if and only
if the infimum of CR(λ) over λ ∈ Kdual

+ of unit norm is
positive (resp. nonnegative).

Proposition 3: The following hold:

R ∈ K ⇔ CR ≥ 0

R ∈ int(K) ⇔ CR > 0.

We now turn to relative entropy functionals for matricial
distributions. Given ρ, σ ∈ M̃+,

S̃(ρ ‖σ) :=

∫
S

trace(ρ log ρ − ρ log σ)dθ. (12)

Once again, minimizers of relative entropy subject to the
moment constraints (2) take a particularly simple form
amenable to a numerical solution via continuation methods.
We follow the same plan as in Section III-A by focusing
successively on each of the two alternative choices, S̃(I‖ρ)
and then S̃(ρ ‖I). A significant departure from the case of
constant densities shows up when considering the dimension
of the support set S in the context of S̃(I‖ρ).

1) Minimizers of S̃(I‖ρ) = − ∫
S trace(log(ρ))dθ: In

complete analogy with constant case the derivative of

L(λ, ρ) := −
∫
S

trace(log(ρ))dθ − 〈λ, R − L(ρ)〉

in the direction δ ∈ M̃ is

dL(λ, ρ ; δ) := trace

∫
S
(−M−1

ρ(θ) + L∗(λ))δ(θ)dθ

= trace

∫
S
(−ρ(θ)−1 + L∗(λ))δ(θ)dθ,

where, once again, the presence of the trace allows replacing
the “super-operator” M−1

ρ(θ) by multiplication by ρ(θ)−1,
pointwise over S. The fundamental lemma in calculus of
variations now gives the stationarity condition

ρ = L∗(λ)−1. (13)

In order for ρ ∈ M̃ it is necessary that L∗(λ) is strictly
positive on S. Thus, we consider the “rational” family of
potential minimizers for S̃(I‖ρ)

M̃rat :=
{
ρ = L∗(λ)−1, with λ ∈ Kdual

+

}
,

where we seek a solution to the moment constraints (2).
It turns out that if a solution exists then, a particular one
exists in M̃rat and that it can be obtained by computing the
fixed point of an exponentially converging matrix differential
equation as stated below.

Theorem 4: If dim(S) = 1, condition (10) holds, and
R ∈ int(K), then S̃(I‖ρ) has a minimum in M̃R,+ which is
unique and belongs to M̃rat. Furthermore, for any λ0 ∈
Kdual

+ , the solution λt of the matrix differential equation

d

dt
λt = (∇h|λt

)−1 (R − L(L∗(λt)
−1)), (14)

where

∇h|λt
: R → R : δ 	→ L(L∗(λt)

−1L∗(δ)L∗(λt)
−1),

(15)
belongs to Kdual

+ for all t ∈ [0,∞), it converges to a point
λ̂ ∈ Kdual

+ as t → ∞ corresponding to this unique mini-
mizer ρ = L∗(λ̂)−1 for S̃(I‖ρ) satisfying R = L(ρ). The
differential equation (14) is exponentially convergent as
the square distance V (λt) = ‖R − L(L∗(λt)

−1)‖2 satis-
fies dV (λt)/dt = −2V (λt). Conversely, if R �∈ int(K) and
the dimension of S is one, then the differential equation
(14) diverges.
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Equation (14) is equivalent to

d

dτ
λτ = (∇h|λτ

)−1 (R − R0), (16)

modulo scaling of the integration variable (see below). The
latter can be integrated over [0, 1], and then λ̂ = λτ |τ=1, yet
(14) appears preferable for numerical reasons.

2) Minimizers of S̃(ρ‖I) =
∫
S trace(ρ log(ρ))dθ: Once

again, the derivative of the Lagrangian

L(λ, ρ) := −
∫
S

trace(ρ log(ρ))dθ − 〈λ, R − L(ρ)〉

in the direction δ ∈ M̃ is

dL(λ, ρ ; δ) := trace

∫
S
(log(ρ) + I + L∗(λ))δ(θ)dθ.

The stationarity condition leads to the expression

ρ =
1

e
exp(−L∗(λ)), (17)

for the minimizer, except that now ρ is a function of θ ∈ S.
We consider the “exponential” family

M̃exp :=

{
ρ =

1

e
exp(−L∗(λ)), with λ ∈ R

}
,

of potential minimizers for S̃(ρ ‖I), where we seek a solution
to (2). The development runs in parallel to the case where
ρ ∈ M̃rat with one important difference. The “Lagrange
multipliers” λ no longer need to be restricted to Kdual and
existence of solutions when R ∈ K can be guaranteed even
when dim(S) > 1. Moreover, (10) is no longer necessary
and existence of solution to the moment problem in M̃exp

is impervious to the dimension of the dual cone Kdual
+ .

Theorem 5: If R ∈ int(K) then the entropy functional
S̃(I‖ρ) has a minimum in M̃R,+ which is unique and
belongs to M̃exp. Furthermore, for any λ0 ∈ R, the
solution λt of

d

dt
λt = (∇k|λt

)−1 (R − L(λt)), (18)

where

∇k|λt
: R → R : δ 	→ −1

e
L(Mexp(−L∗(λt))(L

∗(δ)),
(19)

remains bounded for t ∈ [0,∞) and converges to λ̂ ∈
R as t → ∞ corresponding to the unique minimizer
ρ = 1

e exp(−L∗(λ̂)) for S̃(I‖ρ) subject to R = L(ρ).
The convergence is exponential as V (λt) = ‖R −
1
eL(exp(−L∗(λ̂t)))‖2 satisfies dV (λt)

dt = −2V (λt). Con-
versely, if R �∈ int(K) then the differential equation (18)
diverges.

C. Non-equispaced arrays (cont.)
We continue with Example II. We begin with a “true”

density ρtrue shown in Figure 2 and generate covariance
samples R. This “true” density does not need to be in any
particular form—computation of R is done via numerical
integration.

Next, we integrate (14) and (18) taking λ0 =
[1 0 0 0], and display in Figure 2 the resulting
ρexp(λ∞, θ) and ρrat(λ∞, θ), for comparison. Both are con-
structed using the fixed point of the corresponding differen-
tial equations.
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IV. The complete set of positive solutions

Reference [18] suggested that all positive solutions to the
moment problem may be obtained as minimizers of a suitable
entropy functional, e.g., as being

argmin{S(σ ‖ρ) : R = L(ρ)} (20)

with σ thought of as a parameter. This was carried out
successfully in [18] and [16] for the case where density
functions are scalar-valued, for different levels of generality.
Naturally, certain complications arise in the matricial setting.
We discuss this next in the context of constant ρ, σ as in
Section III-A). The generalization to the non-constant case
is straightforward and a positive result is given for the general
case.

Considering the Lagrangian and the stationarity conditions
for (20) we arive at

dL(λ, ρ ; δ) = trace(−δM−1
ρ (σ)) + 〈L∗(λ), δ〉

= trace
(−δM−1

ρ (σ) + δL∗(λ)
)
,

leading to

M−1
ρ (σ) = L∗(λ).

Although the “parameter” σ can be readily expressed as
Mρ(L

∗(λ)), the density ρ which we are interested in, cannot
be expressed in any effective way as a function of σ and the
dual variable λ. Thus, a convenient functional form for the
minimizer of (20) is unkown.

The option of minimizing S(ρ ‖σ) subject to R = L(ρ)
however, goes through. Analysis of the corresponding La-
grangian readily leads to

ρ =
1

e
exp(log(σ) − L∗(λ)).

A computational theory, following the lines of Sections III-
A.2 and III-B.2 easily carries through.

An attractive third alternative originates in the observation
that the geometry of the problem, throughout, was inherited
by the definiteness of the Jacobian maps. This suggests to
forgo an explicit form for the entropy functional and start
instead with a computable Jacobian. To this end we consider

hσ : λ 	→ L(σ1/2L∗(λ)−1σ1/2), and

κσ : λ 	→ L(σ1/2 1

e
exp(−L∗(λ))σ1/2).
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The respective Jacobians are

∇hσ|λ : δ 	→ L(σ1/2L∗(λ)−1L∗(δ)L∗(λ)−1σ1/2), and

∇κσ|λ : δ 	→ 1

e
L(σ1/2Mexp(−L∗(λ))(−L∗(δ))σ1/2).

They are both sign definite as before and, almost verbatim,
we can replicate the conclusions of Theorems 4 and 5. These
are combined into the following statement.

Theorem 6: Let R ∈ int(K) and σ ∈ M̃+. If dim(S) =
1, condition (10) holds, and λ0 ∈ int(K∗

+), then the
solution to

d

dt
λt = (∇hσ|λt

)
−1

(R − hσ(λt)) (21)

remains in Kdual
+ for t ≥ 0 and as t → ∞ converges to

a unique value λr ∈ Kdual
+ such that R = hσ(λr). On the

other hand, for any λ0 ∈ R the solution to

d

dt
λt = (∇κσ|λt

)
−1

(R − κσ(λt)) (22)

remains bounded for t ≥ 0 and as t → ∞ converges to
a unique value λe ∈ Kdual

+ such that R = κσ(λe). In case
R �∈ int(K), then (22) diverges. In case R �∈ int(K) and
dim(S) = 1, then (21) diverges as well.

The importance of recasting Theorems 4 and 5 as above,
by incorporating arbitrary σ’s in M̃+, allows obtaining any
density function which is consistent with the data R by such
a procedure. To see this note that, if ρ consistent with the
data, then working backwards we can select σ accordingly so
that ρ equals σ1/2L∗(λ)−1σ1/2 or 1

eσ1/2 exp(−L∗(λ))σ1/2

for any λ (in Kdual
+ and R, respectively). Thus, Theorem 6

gives descriptions of all positive densities that are consistent
with the data R—simply choose the “correct” σ.

A potentially important application is when prior informa-
tion may dictate a choice of σ. In this case, using Theorem
6 we may obtain an admissible density function which is
“closer to our expectations” (see [17]). Another interesting
usage of the above is, in the more structured setting of
analytic interpolation problems, to characterize a class of
solutions with a degree constraint, as we briefly explain next.

A. Analytic interpolation with degree constraint
Consider the linear discrete-time state equations

xk = Axk−1 + Buk, for k ∈ Z, (23)

where xk ∈ Cn, uk ∈ Cm, A ∈ Cn×n, B ∈ Cn×m, (A, B)
is a controllable pair, and the eigenvalues of A lie in the
open unit disk of the complex plane. Let {uk : k ∈ Z}
be a zero-mean stationary stochastic process with power
spectrum the non-negative matrix-valued measure dµ(θ) on
θ ∈ (−π, π]. Then, under stationarity conditions, the state
covariance R := E{xkx∗

k} can be expressed in the form of
the integral

R =

∫ π

−π

(
G(ejθ)

dµ(θ)

2π
G(ejθ)∗

)
(24)

where G(z) := (I − zA)−1B. is the transfer function
of system (23), and is characterized by the following two
equivalent conditions (see [15])

rank

[
R − ARA∗ B

B∗ 0

]
= 2m (25)

and,

R − ARA∗ = BH + H∗B∗ for some H ∈ C
m×n. (26)

Power spectral measures consistent with (24) are in corre-
spondence with matrix valued functions F (z) on the unit
circle D := {z ∈ C : |z| < 1} which have nonnegative real
part via the Herglotz representation

F (z) =

∫ π

−π

(
1 + zejθ

1 − zejθ

)
dµ(θ)

2π
+ jc, (27)

with jc an arbitrary skew-Hermitian constant. The measure
dµ can be recovered as the weak* limit of the real part of
F (z) as z tends to the boundary, i.e.,

dµ(θ) ∼ lim
r↗1

�(F (rejθ)). (28)

The class of nonnegative real matrix valued functions F
giving rise to admissible power spectral measures are also
characterized by the interpolation condition ([15])

F (z) = H(I − zA)−1B + Q(z)V (z) (29)

where Q is a matrix function analytic in D,

V (z) := D + zC(I − zA)−1B (30)

and C ∈ Cm×n, D ∈ Cm×m are selected so that V is inner,
i.e., V (ξ)∗V (ξ) = V (ξ)V (ξ)∗ = I for all |ξ| = 1.

The data A, B, H and V (z) in equation (29) specify an
analytic interpolation problem of the Nehari type. Positive-
real solutions to (29) can be given via (27) and solutions to
the moment problem (24). The characterization of solutions
to (24) given in Theorem 6 allows a non-classical characteri-
zation of solutions to (29) and in particular a characterization
of solutions of McMillan degree less than or equal to the
dimension of (23). In fact, the map hσ in Section IV, can be
rewritten as

λ 	→ L(ϕL∗(λ)−1ϕ∗)

where σ = ϕϕ∗ is a factorization of σ with ϕ not necessarily
Hermitian, with the obvious modifications in the expression
for the corresponding Jacobian. The statement of the theorem
holds with no changes. The same applies to κσ which can
also be cast with respect to an arbitrary factorization of σ—
but this will not concern us here since we focus on rational
solutions.

In the current setting,

L∗ : λ 	→ B∗(I − e−jθA∗)−1λ(I − ejθA)−1B.

If we take ϕ(z) = I + Cz(I − zA)−1B so that ϕ−1 is also
analytic in D (which corresponds to C chosen so that A−BC
is a Hurwitz matrix), then the resulting density function

ρ(θ) = ϕL∗(λ)−1ϕ∗

= (Go(e
jθ)∗λGo(e

jθ))−1,

with Go(z) = (I − z(A − BC))−1B. This is a rational
spectral density of degree at most twice the dimension of
(23), and hence, it gives rise to a positive-real interpolant F
of McMillan degree at most equal to the dimension of (23).
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V. Concluding remarks
Besides the Umegaki-von Neumann entropy S(·‖·) studied

in this paper, there is a plethora of alternatives due to a
dichotomy between matricial and scalar distributions [30],
[29]. In particular Araki’s theory [1], [28] helped characterize
a family of “quasi-entropies,” contractive under stochastic
maps. References [31], [28] in particular explore the Rie-
mannian geometry they induce on density matrices. It is
an interesting question as to which among this “garden of
entropies,” besides the Umegaki-von Neumann one, allows
a convenient representation of solutions for general moment
problems. The approach we have taken leads us to work
mostly with an induced metric (a Jacobian related to the
Hessian of S(·‖·)). A suitable normalization then recovers
any solution of the moment problem as a corresponding
extremal. It is not known whether, the “weighted metrics”
e.g., ∇hW in Section IV, are metrics induced by a quasi-
entropy in the language of Petz [31]. Finally, a counterpart
for discrete distributions relates to the theory of analytic
centers in semi-definite programming, e.g., see [3]. In fact, a
key construction in this paper—a homotopy for the numerical
computation of solutions, is analogous to tracing paths of
analytic centers in interior point methods.

The author would like to thank Pablo Parillo for technical
input, and Laurent Baratchart and Anders Lindquist for
inspiring discussions.

VI. Appendix: Differential of exp(·) and log(·)
We assemble certain formulae for the differentials of the

matrix exponential and logarithm. These seem to be largely
unknown in the controls literature. Following [20, page 164]
(see also [10]),

eA+∆ − eA =

∫ 1

0

e(1−τ)A∆eτAdτ + o(‖∆‖),

and the differential of the exponential in the direction ∆
(Fréchet) is given by

MC : ∆ 	→
∫ 1

0

C(1−τ)∆Cτdτ (31)

and C = eA. The map MC represents a “non-commutative
multiplication” of C with ∆. Similarly, up to o(‖∆‖),

log(A + ∆) − log(A) ∼
∫ ∞

0

(A + τI)−1∆(A + τI)−1dτ

= M−1
A (∆). (32)

Either expression represents the differential of log(A) (see
[33, page 4]).
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