
The Linear Periodic Output Regulation Problem

Zhen Zhang, Andrea Serrani∗

Abstract— The problem of asymptotic output regulation for
linear systems driven by time-varying, T -periodic exosystems
is considered in this paper. Necessary and sufficient condition
for its solvability based on the existence of periodic solutions
of differential Sylvester equations are derived. These conditions
constitute a generalization to the periodic case of the celebrated
algebraic regulator equations of Francis. A general algorithm
for the synthesis of an error-feedback regulator is given. For
the special case of minimum-phase systems, it is shown that
the regulator design can be carried out without the knowledge
of the Floquet decomposition of the exosystem. The issue of
robust regulation by error feedback is also briefly addressed.

I. INTRODUCTION

The output regulation problem is one of the central themes
in control theory. A complete solution for LTI systems has
been known since the seminal works [5], [7], and since the
trend-setting work of Isidori and Byrnes [9] for the case
of nonlinear systems. More recently, considerable research
efforts have been spent to extend the class of exosystems
that can be dealt with using internal-model based design,
including parameter-dependent linear systems [12], and spe-
cial classes of nonlinear models [4]. As a fundamental step
towards a more comprehensive theory, we consider in this
paper the output regulation problem for time-invariant linear
plant models driven by time-varying periodic exosystems.
We give explicit conditions for the solvability of the problem
which constitute a generalization of the celebrated regulator
equations of Francis [7]. We shown that the solvability of
the full-information problem is necessary and sufficient for
the existence of an error-feedback regulator, and a general
algorithm for a controller synthesis is readily obtained. In
case the plant model is minimum-phase with respect to
the regulated error, the regulator design can be carried out
without the explicit knowledge of the Floquet factors of the
exosystem, whose computation may be intractable for some
exosystem models of interest. We also provide preliminary
results on the design of robust regulators for minimum-phase
systems, based on the concept of system immersion.

The paper is organized as follows: In Section II, we
give some background and the formulation of the problem.
Necessary and sufficient conditions for the existence of the
solution are given in Section III. A general algorithm for
the regulator synthesis is outlined in Section IV. Sections V
and VI deal respectively with the design of a regulator for
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general minimum-phase plant models, and the construction
of its robust version when appropriate conditions are met.

II. PROBLEM FORMULATION

We consider LTI plant models of the form

ẋ = Ax + Bu + d

e = Cx − r
(1)

with state x ∈ R
n, control input u ∈ R

m and regulated error
e ∈ R

m, satisfying the obvious assumption
Assumption 2.1: The pair (A,B) is stabilizable, and the

pair (A,C) is detectable. �

The disturbance d ∈ R
n to be rejected and the reference

output r ∈ R
m to be tracked are generated by the time-

varying exosystem

ẇ = S(t)w
d = P (t)w
r = −Q(t)w

(2)

with state w ∈ R
q. The following assumption broadly

characterizes the class of exosystems under consideration.
Assumption 2.2: The entries of the matrix-valued func-

tions S : R → R
q×q , P : R → R

n×q , and Q : R → R
m×q

are smooth T -periodic functions, for some T > 0. �

In what follows, the transition matrix of the system (2)
is denoted by ΦS(t, τ), and the corresponding monodromy
matrix by Φ̄S = ΦS(T, 0). Let U(t) : t → R

q×q and
R ∈ C

q×q denote the Floquet factors of S(t), i.e.,

Φ̄S = eRT , U(t) = ΦS(t, 0)e−Rt ,

with U(t + T ) = U(t) for all t ∈ R. In particular,

ΦS(t, τ) = U(t)eR(t−τ)U−1(τ) . (3)

While in general the matrix R has complex entries, it is
always possible to obtain a Floquet factorization with a real
matrix R simply redefining the period as T̄ = 2T (see [6]).
Since this involves no loss of generality for our purposes,
we assume that R ∈ R

q×q . For the interconnection

ẇ = S(t)w
ẋ = Ax + Bu + P (t)w
e = Cx + Q(t)w ,

(4)

we consider in this paper the design of a smooth T -periodic
error-feedback controller of the form

ξ̇ = F (t)ξ + G(t)e
u = H(t)ξ + K(t)e

(5)
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with state ξ ∈ R
ν , such that (i) the origin is an asymptotically

stable equilibrium of the unforced closed-loop system

ẋ = (A + BK(t)C)x + BH(t)ξ

ξ̇ = F (t)ξ + G(t)Cx ,
(6)

and (ii) the trajectories of the closed-loop system (4)-(5)
originating from any initial condition (w0, x0, ξ0) ∈ R

q+n+ν

satisfy limt→∞ e(t) = 0. It is customary to exclude from the
analysis the presence of converging trajectories of (2), for
which the solution of the problem (ii) is a trivial consequence
of the closed-loop stability requirement (i). Therefore, we
make the following additional assumption.

Assumption 2.3: The eigenvalues of the monodromy ma-
trix Φ̄S have magnitude greater or equal to one. �
By virtue of (3), the above assumption implies that

‖ΦS(t, τ)‖ ≥ µ eσ(t−τ)

for some µ > 0 and σ ≥ 0.

III. SOLVABILITY OF THE PROBLEM

The following lemma characterizes the class of stabilizing
controllers of the form (5) capable of achieving regulation.

Lemma 3.1: Assume that the controller (5) asymptotically
stabilizes the origin of (6). Then, the same controller yields
asymptotic regulation of the error e(t) if and only if the
unique T -periodic solution X(t) = (Π′(t),Σ′(t))′ of the
differential Sylvester equation (DSE)

Π̇ + ΠS = (A + BKC)Π + BHΣ + P + BKQ

Σ̇ + ΣS = FΣ + GCΠ + GQ

satisfies CΠ(t) + Q(t) = 0 for all t ∈ [0, T ).

Proof: Denote with Acl(t) and Pcl(t) the matrices
(omitting the argument t for brevity)

Acl =

(
A + BKC BH

GC F

)
, Pcl =

(
P + BKQ

GQ

)
,

and let x = col(x, ξ). Since by assumption the transition
matrix ΦAcl

(t, τ) of (6) satisfies

‖ΦAcl
(t, τ)‖ ≤ κe−λ(t−τ)

for some κ, λ > 0, Lemma 1.1 in the appendix guarantees
that there exists a unique solution X(t) of the DSE

Ẋ(t) + X(t)S(t) = Acl(t)X(t) + Pcl(t) , X(t0) = X0

satisfying X(t + T ) = X(t) for all t ∈ R. Since X(t) is
bounded, the transformation x̃ := x − X(t)w = col(x̃, ξ̃) is
a Lyapunov transformation, yielding a closed-loop system in
the form

ẇ = S(t)w
˙̃
x = Acl(t)x̃ .

(7)

The solution of (7) from arbitrary initial conditions (w0, x̃0)
at t0 generates the error trajectory

e(t) = Cx̃(t, t0, x̃0) + [CΠ(t) + Q(t)]w(t, t0, w0) .

Letting t = t0 + kT , k ∈ N, and keeping in mind that
limt→∞ x̃(t, t0, x̃0) = 0, one obtains

lim
k→∞

e(t0 + kT ) = [CΠ(t0) + Q(t0)]w0

and therefore limk→∞ e(t0 + kT ) = 0 if and only if
w0 ∈ ker (CΠ(t0) + Q(t0)). Then, the result follows from
the arbitrariness of w0 ∈ R

q and t0 ∈ [0, T )
An equivalent characterization of Lemma 3.1, which con-

stitutes the counterpart of the celebrated result by Francis [7]
to the case of T -periodic systems is stated as follows.

Proposition 3.2: Assume that the controller (5) is such
that the system (6) is asymptotically stable. Then, asymptotic
regulation is achieved if and only if there exist T -periodic
matrix-valued functions Π(t), Γ(t), and Σ(t) satisfying

Π̇(t) + Π(t)S(t) = AΠ(t) + BΓ(t) + P (t)
0 = CΠ(t) + Q(t)

(8)

and
Σ̇(t) + Σ(t)S(t) = F (t)Σ(t)

Γ(t) = H(t)Σ(t)
(9)

for all t ∈ [0, T ). �
The proof of Proposition 3.2 follows directly from that
of Lemma 3.1, and need not be repeated. The differential
equation (8) is the extension to the T -periodic case of the
regulator equations of [7]. It is easy to show that the existence
of a periodic solution of (8) is a necessary and sufficient
condition for the solvability of the full information output
regulation problem by means of a memoryless control law
of the form

u = Kx + L(t)w ,

where L(t) satisfies L(t+T ) = L(t) for all t ∈ R. Necessity
of (8) can be proven following arguments similar to those
employed in the proof of Lemma 3.1, while sufficiency is
easily shown selecting K in such a way that A + BK is
Hurwitz, and taking L(t) = Γ(t) − KΠ(t). What remains
to be seen is if, analogously to the time-invariant case, the
existence of a solution of the regulator equations (8) alone
is sufficient for the existence of a regulator.

IV. REGULATOR SYNTHESIS

In this section, we will show that the solvability of the
regulator equations (8) is a sufficient condition for the syn-
thesis of a regulator. Following [10], we look for a solution
under a slightly more restrictive hypotheses than the mere
detectability of (A,C), that however does not result in any
loss of generality. Specifically, we replace Assumption 2.2
with the following:

Assumption 4.1: The pair (A,B) is stabilizable, and the
pair (Aa(t), Ca(t)), where

Aa(t) =

(
S(t) 0
P (t) A

)
, Ca(t) =

(
Q(t) C

)
,

is detectable. �
The fact that there is no loss of generality in considering
Assumption 4.1 in place of Assumption 2.2 is made clear
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by the following proposition, which is an extension of [10,
Prop. 1.4.1] to our case.

Proposition 4.2: Assume that (A,C) is detectable, but
(Aa(t), Ca(t)) is not. Denote with xa the state of the aug-
mented plant, xa = col(w, x). Then, there exists a periodic
Lyapunov transformation x̃a = T a(t)xa such that in the new
coordinates the augmented system matrices have the form

Ãa =

(
S̃ 0

P̃ A

)
=

⎛
⎝ S11 S12 0

0 S22 0
0 P2 A

⎞
⎠ =

(
Ãa

11 Ãa
12

0 Ãa
22

)
,

B̃a = Ba =

⎛
⎝ 0

0
B

⎞
⎠ =

(
0

B̃a
2

)
,

C̃a(t) =
(
Q̃(t) C

)
=

(
0 Q2(t) C

)
=

(
0 C̃a

2 (t)
)

,

and the pair (Ãa
22, C̃

a
2 (t)) is detectable. �

The result shows that there is no loss of generality in
considering Assumption 4.1 in place of Assumption 2.2. As
a matter of fact, according to Proposition 4.2, there exists a
realization of the exosystem such that a certain number of
component of the exosystem state (those corresponding to the
matrix S11) do not affect neither the plant nor the regulated
error. The unobservable exosystem dynamics can be factored
out, yielding a reduced exosystem for which Assumption 4.1
holds. We are now in the position to state that the solvability
of the regulator equations is a sufficient condition for the
synthesis of a regulator. Due to space limitations, the proof
is omitted.

Theorem 4.3: Let Assumptions 2.3 and 4.1 hold. Then,
there exists a controller of the form (5) that solves the output
regulation problem if there exist T -periodic matrix-valued
functions Π(t) and Γ(t) that solve (8). �

V. REGULATOR DESIGN FOR MINIMUM-PHASE SYSTEMS

The previous section shows that, under mild detectability
assumptions, the solvability of the full-information problem
is a necessary as well as a sufficient condition for the
existence of a solution to the error-feedback problem, in a
fashion that is completely analogous to the LTI case. While
this result is of methodological importance, the construction
of the regulator outlined in the previous section may not be
entirely satisfactory, as it suffers from the potentially serious
drawback of requiring the explicit knowledge of the transi-
tion matrix of the exosystem, as well as the reconstructibility
Gramian of the augmented system. For this reason, we have
referred to the content of Section IV as a regulator synthesis
rather than a regulator design. In general, stabilization meth-
ods for linear periodic systems require de facto the explicit
use of the real Floquet-Lyapunov decomposition (see [11] for
an exposition of recent results, and references therein). For
the problem at issue here, however, the particular structure
of (4) suggests that the stabilization of the plant model may
be achieved in some cases with a time-invariant controller,
and the use of Floquet factors can be avoided. The approach
we follow is to look for a controller that is decomposed into
the parallel interconnection of a time-invariant error-feedback

stabilizer and a T -periodic internal model of the exosystem,
whose role is solely that of reconstructing asymptotically
the feedforward control u = Γ(t)w(t), where Γ(t) is given
by the second equation in (9). To this end, we restrict our
attention to the case of SISO plant models (1) and exosystem
models (2) satisfying the following assumptions.

Assumption 5.1: The system (1), where m = 1, is mini-
mum phase and has relative degree one. �

Assumption 5.2: The exosystem (2) is neutrally stable. �

Neither the assumption of relative degree one or the single-
input single-output case for the plant model are restric-
tive. Systems with higher relative degree can be dealt with
by using dynamic extensions or high-gain observers. The
assumption on the exosystem is indeed quite natural, as
it corresponds to the case in which every trajectory w(t)
generated by the exosystem is T -periodic. Consequently, the
monodromy matrix of S(t) is the identity, and its Floquet
factors are R = 0 and U(t) = ΦS(t, 0).

It is well known that, if Assumption 5.1 holds, the inter-
connected system (4) can be put in the following form

ẇ = S(t)w

ż = A11z + A12y + P1(t)w

ẏ = A21z + a22y + P2(t)w + bu

e = y + Q(t)w ,

where the matrix A11 is Hurwitz and b �= 0 by assumption.
Consequently, Lemma 1.1 guarantees the existence of a T -
periodic solution Ξ(t) of the Sylvester differential equation

Ξ̇(t) + Ξ(t)S(t) = A11Ξ(t) + P1(t) − A12Q(t) .

Changing coordinates as z̃ = z − Ξ(t)w, e = y + Q(t)w,
one obtains

ẇ = S(t)w

˙̃z = A11z̃ + A12e

ė = A21z̃ + a22e + b[u − Γ(t)w] ,

(10)

where

Γ(t) = 1
b
[A12Q(t) − A21Ξ(t) − P2(t) − Q̇(t) − Q(t)S(t)] .

Note that it possible to assume without loss of generality
that the pair (S(t),Γ(t)) is completely observable, as the
trajectories w(t) which lie in the unobservable subspace
of (S(t),Γ(t)) do no affect the trajectories (z̃(t), e(t)) of
(10), and can be factored out by means of a canonical
decomposition [1].

When the exosystem is disconnected, the equilibrium
(z̃, e) = (0, 0) of (10) can be rendered asymptotically stable
by the application of the static output feedback control
ust = −sign(b)k e, if the gain k > 0 is chosen sufficiently
large. The system (10) is then augmented with a T -periodic
internal model of the form

ξ̇ = F (t)ξ + G(t)u

uim = H(t)ξ
(11)
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with ξ ∈ R
q , and the control input is selected as u = ust +

uim. The design of the internal model proceeds as follows.
Fix arbitrarily α > 0, and choose

F (t) = −αI − S′(t) .

It can be easily verified that the transition matrix of F (t) is
given by

ΦF (t, τ) = e−α(t−τ)Φ′

S(τ, t) ,

and thus the T -periodic system (11) is asymptotically stable,
since its monodromy matrix is Φ̄F = e−αT I .

Proposition 5.3: Assume that (S(t),Γ(t)) is completely
observable. Then, a T -periodic solution L∞(t) of the
Sylvester differential equation

L̇(t)+L(t)S(t) = F (t)L(t)+Γ′(t)Γ(t) , L(t0) = L0 (12)

exists, is unique, and is nonsingular for all t ∈ [0, T ).
Proof: Existence and uniqueness of L∞(t) follow

directly from Lemma 1.1. To prove that L∞(t) is nonsingular
for any t, note that since L∞(t+T ) = L∞(t) for all t ∈ R,
necessarily

L∞(t) = e−αT L∞(t) + Mα(t, t + T ) ,

where the matrix Mα(t, t+T ) is analogous to the one defined
in (??), and reads in this case as

Mα(t, t + T ) =∫ t+T

t

e−α(t+T−τ)Φ′

S(τ, t + T )Γ′(τ)Γ(τ)ΦS(τ, t + T )dτ .

It is clear that L∞(t) is invertible for all t ∈ [0, T ) if
and only if so is Mα(t, t + T ). In turn, Mα(t, t + T ) is
nonsingular for all t if and only if so is the reconstructibility
Gramian M(t, t + T ) of (S(t),Γ(t)). Due to the fact that
by assumption the transition matrix of S(t) satisfies Φ(t +
T, t) = I for all t, it is not difficult to show that

M(t, t + T ) = Φ′

S(0, t)M(0, T )ΦS(0, t) , ∀ t ∈ [0, T )

and that

M(0, kT ) = kM(0, T ) , for all k = 1, 2, . . .

Since the pair (S(t),Γ(t)) is assumed to be completely
observable, the reconstructibility matrix M(0, qT ) is non-
singular, being q the order of the exosystem (see [2], [3]),
and this completes the proof.
The result of Proposition 5.3 allows to define the periodic
Lyapunov transformation w̄ = L∞(t)w yielding a system
which is topologically equivalent to (2), given by

˙̄w = (F (t) + Γ′(t)Γ(t)N∞(t)) w̄ , (13)

where, for ease of notation, we have denoted the inverse
of L∞(t) by N∞(t). Next, the matrices G(t) and H(t) of
the internal model (11) are selected as G(t) = Γ′(t) and
H(t) = Γ(t)N∞(t), to obtain the controller

ξ̇ = (F (t) + Γ′(t)Γ(t)N∞(t))ξ − sign(b)kΓ′(t)e

u = Γ(t)N∞(t)ξ − sign(b)k e . (14)

Following [12], the change of coordinates

χ = ξ − w̄ − 1
b
Γ(t)e

after easy algebraic manipulations yields the interconnection
of (10) and (14) in the form

χ̇ = F (t)χ + J1(t)z̃ + J2(t)e

˙̃z = A11z̃ + A12e (15)

ė = bΨ∞(t)χ + A21z̃ + (a22 + Ψ∞(t)Γ′(t) − k|b|)e ,

where (omitting the argument t for brevity)

J1 = − 1
b
Γ′A21 , J2 = 1

b
(F −a22I)Γ′− 1

b
Γ̇′ , Ψ∞ = ΓN∞ .

The next proposition shows that the controller (14) solves
the output regulation problem.

Proposition 5.4: There exists a number k� > 0 such that
for all k ≥ k� the system (15) is asymptotically stable. �

Proof: First of all, note that (15) is still a T -periodic
system, and that J1(t), J2(t), Γ(t), and Ψ∞(t) are all
continuous and bounded functions. Moreover, it is clear that
the zero dynamics of (15) with respect to e, that is, the system

χ̇ = F (t)χ + J1(t)z̃

˙̃z = A11z̃

is asymptotically stable. Therefore, standard arguments can
be invoked to show that (15) is rendered asymptotically
stable choosing k > 0 sufficiently large.

Note that the construction of the regulator (14) still re-
quires the knowledge of N∞(t), which once again requires
Mα(t, t + T ) to be computed explicitly and inverted.

A. Certainty-equivalence implementation

In what follows, we look for an implementation of the
controller (14) that does not require the a priori computation
of N∞(t). In regard to this, we apply the principle of cer-
tainty equivalence, and look for a suitable estimate to replace
N∞(t) in (14). It can be verified by direct substitution that
N∞(t) is indeed the solution of the Riccati-type differential
equation

Ṅ(t) = S(t)N(t) − N(t)F (t) − N(t)Γ(t)′Γ(t)N(t) (16)

corresponding to the initial condition

N(t0) = L−1
∞

(t0) = (1 − e−αT )M−1
α (t0, t0 + T ) ,

and thus equation (16) may be used in principle to obtain
N∞(t). However, it should be kept in mind that N∞(t) is
an attracting solution for (16) in forward time only when
the inverse of L(t) makes sense. As a matter of fact, the
trajectory N(t) of (16) starting from an arbitrary nonsingular
initial condition N(t0) ∈ R

q×q exhibits a finite escape time
at t1 > t0, whenever the solution L(t) of (12) originat-
ing from L(t0) = N−1(t0) is such that det L(t1) = 0.
Therefore, a correct initialization of (16) is crucial to obtain
a trajectory N(t) which is well defined and converges to
N∞(t). Note that equation (12) does generate a trajectory
which converges exponentially to L∞(t) from any initial
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condition, and therefore an initial condition L(t0) which
is “close” to L∞(t0) can be computed from numerical
simulations, looking at the solution L(t0 + kT ) for k ∈ N

large enough. Using open loop simulations, it is also possible
to compute bounds on the norm of L∞(t) and N∞(t) for all
t ∈ [0, T ). In particular, it is reasonable to assume that an
initial condition L(t0) = L0 for (12) and a positive number
ε0 can be determined such that the solution L(t) originating
from L0 at t = t0 satisfies

σmin (L(t)) ≥ ε0 , for all t ≥ t0 ,

where σmin (L(t)) stands for the smallest singular value of
L(t). The given bound ensures that the solution of (16)
originating from N(t0) = L−1

0 does not have a finite escape
time, converges to N∞(t), and satisfies

‖N(t)‖2 ≤ ε−1
0 , for all t ≥ t0 .

The dynamic controller (14) is then replaced by

Ṅ = S(t)N − NF (t) − NΓ(t)′Γ(t)N , N(t0) = L−1
0

ξ̇ = (F (t) + Γ′(t)Γ(t)N(t))ξ − sign(b)kΓ′(t)e

u = Γ(t)N(t)ξ − sign(b)k e , (17)

yielding the closed-loop system

χ̇ = F (t)χ + J1(t)z̃ + J2(t)e

˙̃z = A11z̃ + A12e (18)

ė = bΨ(t)χ + A21z̃ + (a22 + Ψ(t)Γ′(t) − k|b|)e + d(t)

driven by the time-varying disturbance

d(t) = Γ(t)Ñ(t)w̄(t) ,

where w̄(t) is the trajectory generated by (13). Note that,
since w̄(t) is T -periodic and Ñ(t) converges to zero, the
disturbance d(t) is asymptotically vanishing for any initial
condition of (13). Since Ψ(t) is a bounded matrix-valued
function of t (though not necessarily periodic), the result of
Proposition 5.4 still holds for the system (18) when d(t) ≡ 0.
Therefore, for k > 0 large enough, the time-varying linear
system (18) is uniformly globally asymptotically stable. As
the perturbation d(t) vanishes asymptotically, the trajectories
(χ(t), z̃(t), e(t)) of (18) originating from any initial condi-
tions (χ(t0), z̃(t0), e(t0)) ∈ R

q+n converge to the origin,
and asymptotic regulation is achieved.

VI. TOWARDS ROBUST REGULATION

The last section of this paper is devoted to the problem
of designing controllers to achieve asymptotic regulation in
spite of possibly large parametric uncertainties in the plant
model. In particular, we consider again the error system (10),
and assume that the plant matrices depend on a vector µ of
uncertain parameters, ranging over a compact subset P of
R

p. This yields a system of the form

ẇ = S(t)w

˙̃z = A11(µ)z̃ + A12(µ)e

ė = A21(µ)z̃ + a22(µ)e + b(µ)[u − Γ(t, µ)w] ,

(19)

where the matrix A11(µ) is Hurwitz, and b(µ) ≥ b0 > 0
for all µ ∈ P . The pair (S(t),Γ(t, µ)) is assumed to be
completely observable for all µ ∈ P . It is also assumed that
the vector fields of the system (19) depends continuously on
µ. While asymptotic stabilization of the origin (z̃, e) = (0, 0)
of the unforced system (19) can still be achieved by static
high-gain feedback, it is clear that the applicability of the
method developed in the previous section is precluded by
the dependence of Γ(t, µ) on the unknown parameter vector
µ. The solvability of the problem reposes precisely upon the
possibility of reconstructing Γ(t, µ)w(t) independently of the
actual value of µ. For linear time-invariant systems (and in
some cases, for nonlinear systems), this is always possible,
and follows from the fact that the Cayley-Hamilton theorem
guarantees that the system with µ-dependent output

ẇ = Sw , v = Γ(µ)w

can always be immersed into an observable system inde-
pendent of µ. For T -periodic systems, the situation is much
more complicated, and such an immersion may not be found.
Whenever this is possible, however, the construction of a
robust regulator follows easily from the availability of a
canonical realization of the internal model. We begin with
the following definition.

Definition 6.1: The system

ẇ = S(t)w
µ̇ = 0
v = Γ(t, µ)w

(20)

is strongly immersible into a finite dimensional T -periodic
uniformly observable system if there exist an integer 	 and
T -periodic functions a0(t), a1(t), . . . , a�−1(t) such that

∆�
SΓ′(t, µ) +

�−1∑
i=0

ai(t)∆
i
SΓ′(t, µ) = 0

for all t ∈ [0, T ), where ∆S = S′(t) + ∂
∂t

I . �
We refer to the above property as a strong immersibility, to
stress the fact that the functions ai(t) are independent of µ.
If (20) is strongly immersible, then its output trajectories can
be generated as output trajectories of the system

η̇ = Φ(t)η

v = Γη ,
(21)

where

Φ(t) =

⎛
⎜⎜⎜⎝

0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
−a0(t) −a1(t) · · · −a�−1(t)

⎞
⎟⎟⎟⎠ , Γ′ =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ .

Note that the original pair (S(t),Γ(t, µ)) need not be uni-
formly observable to admit an immersion into a uniformly
observable system. Clearly, (21) is uniformly observable, as
its observability matrix is the identity, and thus there exists
a periodic Lyapunov transformation Po(t) yielding a system
in observer companion form [13], that is[

Po(t)Φ(t) + Ṗo(t)
]
P−1

o (t) = Φo(t) , ΓP−1
o (t) = Γ ,
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where

Φo(t) =

⎛
⎜⎜⎜⎝
−α�−1(t) 1 0 · · · 0

...
...

...
. . .

...
−α1(t) 0 0 · · · 1
−α0(t) 0 0 · · · 0

⎞
⎟⎟⎟⎠ .

It can be easily verified that P−1
o (t) = Θo(t), being Θo(t)

the observability matrix of (Φo(t),Γ), and that the equation

Θo(t)
[
Φo(t)Θ

−1
o (t) − Θ̇−1

o (t)
]

= Φ(t)

can always be solved for αi(t), i = 0, . . . , 	 − 1. This
result allows a systematic design of an internal model-based
controller for the prototype system (19). Assume that (20)
is strongly immersed, in the sense of Definition 6.1, into
(Φ(t),Γ). Then, (20) is also immersed into (Φo(t),Γ), and
system (19) can be replaced with

η̇ = Φo(t)η

˙̃z = A11(µ)z̃ + A12(µ)e

ė = A21(µ)z̃ + a22(µ)e + b(µ)[u − Γη] .

Let Φb ∈ R
�×� be in Brunowsky form, and let L0 be such

that F := Φb − L0Γ is Hurwitz. Denote with α(t) the first
column of Φo(t), that is,

α(t) =
(
−α�−1(t) −α�−2(t) . . . −α0(t)

)
′

and define L(t) = α(t) + L0. Clearly, the output injection
matrix L(t) exponentially stabilizes (Φo(t),Γ), as Φo(t) −
L(t)Γ = F . Consider the internal model-based controller

ξ̇ = Φo(t)ξ − kL(t)e

u = Γξ − k e ,
(22)

where k > 0 is a gain parameter, and change coordinate as
χ = ξ − η − L(t)e. This yields the closed-loop system

χ̇ = Fχ + J1(t, µ)z̃ + J2(t, µ)e

˙̃z = A11(µ)z̃ + A12(µ)e (23)

ė = b(µ)Γχ + A21(µ)z̃ + (a22(µ) + ΓL(t) − k)e ,

where (omitting the arguments t and µ for brevity)

J1 = − 1
b
LA21 , J2 = 1

b
(F − a22I)L − 1

b
L̇ .

Since J1(t, µ), J2(t, µ), and L(t) are T -periodic and con-
tinuous functions of t, and continuous functions of µ, the
result of Proposition 5.4 applies for (23). In particular, one
can easily prove the following.

Proposition 6.1: Let the compact set P ⊂ R
p be given.

Then, there exists a number k� > 0 such that for all k ≥ k�

the system (23) is asymptotically stable for all µ ∈ P . �

APPENDIX

Lemma 1.1: Let S(t) ∈ R
q×q, A(t) ∈ R

n×n, and P (t) ∈
R

n×q be continuous and T -periodic matrix-valued functions,
for some T > 0. Assume that there exist constants κ, λ, µ >

0, and σ ≥ 0 such that

‖ΦA(t, τ)‖ ≤ κ e−λ(t−τ) , ‖ΦS(t, τ)‖ ≥ µ eσ(t−τ)

for all t, τ ∈ R. Then, the matrix-valued function

X∞(t) =

∫ t

−∞

ΦA(t, τ)P (τ)ΦS(τ, t) dτ

is the unique solution of the Sylvester differential equation

Ẋ(t) + X(t)S(t) = A(t)X(t) + P (t) (24)

satisfying X(t + T ) = X(t) for all t ∈ R. �
Proof: First of all, the assumptions on the transition ma-

trices of A(t) and S(t) guarantee that X∞(t) is well defined.
By direct differentiation and by application of Liebnitz’s rule,
it can be verified that X(t) indeed satisfies the differential
equation (24). Moreover, by virtue of (3)

X∞(t + T ) =
∫ t+T

−∞
ΦA(t + T, τ)P (τ)ΦS(τ, t + T ) dτ

=
∫ t

−∞
ΦA(t + T, s + T )P (s + T )ΦS(s + T, t + T ) ds

=
∫ t

−∞
ΦA(t, s)P (s)ΦS(s, t) ds = X∞(t) , ∀ t ∈ R .

Finally, fix t0 arbitrarily, and let X0 = X∞(t0) be the initial
condition corresponding to the periodic solution X∞(t). De-
note by X̄(t) = X(t, t0, X̄0) the solution of (24) originating
from an arbitrary initial condition X̄0 �= X0. It can be easily
verified that the explicit solution of (24) is given by

X(t) = ΦA(t, t0)X(t0)ΦS(t0, t)

+

∫ t

t0

ΦA(t, τ)P (τ)ΦS(τ, t) dτ .

Therefore, the difference X̃(t) � X∞(t) − X̄(t) satisfies

X̃(t) = ΦA(t, t0)X̃(t0)ΦS(t0, t) , t ≥ t0

and thus limt→∞ X̃(t) = 0 no matter what X̄0 is. Since all
trajectories of (24) are attracted to X∞(t) in forward time,
no periodic solution other than X∞(t) may exist.
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