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Abstract— Recent literature has reported symbolic time series
analysis of complex systems for real-time anomaly detection. A
crucial aspect in this analysis is symbol sequence generation
from the observed time series data. This paper presents a
wavelet-based partitioning, instead of the currently practiced
method of phase-space partitioning, for symbol generation.
The partitioning algorithm makes use of the maximum en-
tropy method. The wavelet-space and phase-space partitioning
methods are compared with regard to anomaly detection using
experimental data.

I. INTRODUCTION

The concept of symbolic time series analysis has been
recently proposed for anomaly detection in complex sys-
tems [8] [2]. A crucial step in symbolic time series analysis
is partitioning of the phase space for symbol sequence
generation [3]. Several techniques have been suggested in
literature for symbol generation, primarily based on symbolic
false neighbors [5] [4]. These techniques rely on partitioning
the phase space of the system and may become cumbersome
if the dimension of the phase space is large. Moreover, if
the time series data is noise-corrupted, then the symbolic
false neighbors would rapidly grow in number and require a
large symbol alphabet to capture the pertinent information
on the system dynamics. The wavelet transform largely
alleviates these shortcomings and is particulary effective
with noisy data obtained from higher dimensional dynamical
systems. Usage of wavelet transform for symbolization was
introduced by Ray [8] for real-time anomaly detection. This
paper elaborates the underlying concept of partitioning the
space of wavelet coefficients, instead of the phase-space
partitioning [5], for symbol generation.

II. WAVELET BASED SYMBOL GENERATION

Preprocessing of time series data is often necessary for ex-
traction of pertinent information. Fourier analysis is adequate
if the signal to be analyzed is stationary and if the time period
is accurately known. However, Fourier analysis may not be
appropriate if the signal has non-stationary characteristics
such as drifts, abrupt asynchronous changes and frequency
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trends. The wavelet analysis alleviates these difficulties via
adaptive usage of long windows for retrieving low frequency
information and short windows for high frequency informa-
tion [6] [9]. The ability to perform flexible localized analysis
is one of the striking features of the wavelet transform.

In multi-resolution analysis (MRA) of wavelet transform,
a continuous signal f ∈ H, where H is a Hilbert space,
is expressed as a linear combination of time translations
of scaled versions of a suitably chosen scaling function
φ(t) and the derived wavelet function ψ(t). For a periodic
signal, the difference between the original signal f and the
reconstructed signal f# can be made arbitrarily small by (i)
choosing the shape of the scaling function φ to be close to
one period of f , and (ii) matching the frame set with the
signal through appropriate shifting across the time axis. This
suggests that it would be possible to achieve high energy
compaction at a suitable scale, if the shape of φ or ψ closely
matches the shape of the signal f .

If the set {φk} is a frame for a Hilbert space H with the
frame representation operator L, then there exist positive real
scalars A and B such that

A||f ||2 ≤ ||Lf ||2 ≤ B||f ||2 ∀f ∈ H (1)

The above relationship is a norm equivalence and represents
the degree of coherence of the signal f with respect to the
frame set of scaling functions; it may be interpreted as en-
forcing an approximate energy transfer between the domains
H and L(H). In other words, for all signals f ∈ H, a scaled
amount of energy is distributed in the coefficient domain
where the scale factor lies between A and B [6]. However,
the energy distribution is dependent on the signal’s degree
of coherence with the underlying frame {φk}. For a signal
f , a tight frame representation in Eq. (1) implies that only
a few coefficients contain the bulk of the signal energy and
hence have a relatively large magnitude. Similarly, since a
noise signal w is incoherent with the set {φk}, the associated
frame representation must be spread out over a very large
number of coefficients. Consequently, these coefficients have
a relatively small magnitude [9].

Let f̃ be a noise corrupted version of the original signal f
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expressed as
f̃ = f + σ w (2)

where w is additive white gaussian noise with zero mean
and unit variance and σ is the noise level. Then, the inner
products with φk are related as:

< f̃, φk >= < f, φk >︸ ︷︷ ︸ +σ < w, φk >︸ ︷︷ ︸ (3)

large small
The term due to noise may further be reduced if the scales
over which coefficients are obtained are properly chosen.

For every wavelet, there exists a certain frequency called
the center frequency Fc that has the maximum modulus in the
Fourier transform of the wavelet. The pseudo-frequency fp of
the wavelet at a particular scale α is given by the following
formula [1]:

fp =
Fc

α ∆t
(4)

where ∆t is the sampling interval. Figure 1 depicts the center
frequency associated with the Daubechies wavelet ‘db4’.
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Fig. 1. Center Frequency Approximation for Wavelet db4

The Power Spectral Density (PSD) of the signal provides
the information about the frequency content of the signal.
This information along with Eq. (4) can be used for scale
selection. The procedure of selecting the scales is summa-
rized below:

• PSD analysis of the time series data over a selected
period to find the frequencies of interest.

• Substitution of the above frequencies in place of fp in
Eq. (4) to obtain the respective scale α in terms of the
known parameters Fc and ∆t

The wavelet coefficients of the signal are significantly
large when the pseudo-frequency fp of the wavelet corre-
sponds to the locally dominant frequencies in the underlying
signal. Example 1 in section III illustrates how the choice
of wavelet and scale affect the coefficients. Examples 2 and
3 illustrate suppression of noise and robustness issues. Ex-
ample 4 illustrates enhancement of anomaly detection using
symbolic dynamics and compares wavelet-space partitioning
with phase-space partitioning for anomaly detection.

Once the wavelet and the scales are chosen, the wavelet
coefficients are evaluated for each scale. The graphs of

wavelet coefficients versus scale, at selected time shifts, are
stacked starting with the smallest value of scale and ending
with its largest value and then back from the largest value to
the smallest value of the scale at the next instant of time
shift. The arrangement of the resulting scale series data
in the wavelet space is similar to that of the time series
data in the phase space. The wavelet space is partitioned
into segments of coefficients on the ordinate separated by
horizontal lines [8].

A threshold-based partitioning scheme was used in [8] [2].
In this approach, the maximum and minimum of the scale
series are evaluated and the ordinates between the maximum
and minimum are divided into equal-sized regions. These
regions are obviously mutually disjoint and thus form a
partition. Each region is then labelled with one symbol from
the alphabet. If the data point lies in a particular region,
it is coded with the symbol associated with that region.
Thus, a sequence of symbols is created from a sequence of
scale series data. This type of partitioning is called uniform
partitioning in the sequel.

Intuitively, it is more reasonable if the regions with more
information are partitioned finer and those with sparse in-
formation are partitioned coarser. To achieve this objective,
an alternative approach is proposed for partitioning, which
is based on maximization of entropy and is called maximum
entropy partitioning in the sequel. In this approach, the
maximum entropy is achieved by the partition that induces
uniform probability distribution of the symbols in the al-
phabet Σ. The procedure for obtaining such a partition is
presented below.

Let N be the length of the scale series data and |Σ| be the
cardinality of the (finite) alphabet. The scale series data is
sorted in ascending order. Starting from the first point in the
sorted set, every consecutive segment of length � N

|Σ|� forms
a distinct element of the partition, where �x� represents the
greatest integer less than or equal to x.

With such a partition, a region with large information
content is allotted more symbols and hence a finer partition-
ing is achieved in such a region. Similarly, a region with
sparse information content is allotted fewer symbols and
hence a coarser partitioning is achieved in such a region.
So, if there is a small change in the system behavior, it is
more likely to be reflected in the symbol sequence obtained
under maximum entropy partitioning than under uniform
partitioning.

The choice of the alphabet size |Σ| also plays a vital role
in the extraction of information. This is an area of active
research. An entropy rate based approach, which has been
adopted in this paper, is briefly described. Let H(k) denote
the entropy of the symbol sequence obtained by partitioning
the data with k symbols.

H(k) = −
i=k∑
i=1

pilog2pi (5)

where pi represents the probability of occurrence of the
symbol σi and obviously H(1) = 0. If the underlying data
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has sufficient information content, then the entropy achieved
under maximum entropy partitioning would be log2(k) cor-
responding to the uniform distribution. The entropy rate, with
respect to the number of symbols, is given by

h(k) = H(k) − H(k − 1) ∀k ≥ 2 (6)

An algorithm for choosing the number of symbols is pro-
vided below.

1. Set k = 2. Choose a threshold εh, where 0 < εh << 1.
2. Sort the scale series data set (of length N ) in the ascending
order.
3. Every consecutive segment of length � N

|Σ|� in the sorted
data set (of length N ) forms a distinct element of the
partition.
4. Convert the scale series sequence to a symbol sequence
with the partitions obtained in Step 3. If the data point lies
within or on the lower bound of a partition, it is coded with
the symbol associated with that partition.
5. Compute the symbol probabilities pi, i=1,2,...k.
6. Compute the entropy H(k) = −∑i=k

i=1 pilog2pi and the
entropy rate h(k) = H(k) − H(k − 1)
7. If h(k) < εh, then exit; else increment k by 1 and go to
Step 3.

A primary objective of symbolic time series analysis is
achieving increased computational efficiency and accuracy
for real-time anomaly detection [8]. The choice of the
threshold εh depends on the signal that is analyzed and
may vary for individual systems. A small εh leads to a
large size of the symbol alphabet, resulting in increased
computation. On the other hand, a larger εh may fail to
capture the small changes in dynamics because of excessive
coarse graining resulting from reduced number of symbols.
Hence, εh should be chosen based on these constraints and
the available computational resources.

III. SIMULATION AND LABORATORY EXPERIMENTATION

This section presents the proposed methodology for sym-
bolization of time series data with examples and illustrates
the advantages.

A. Example 1: Choice of Wavelet Parameters

This example illustrates how the choice of wavelet and
scales affect the coefficients that, in turn, determine the sym-
bolic dynamics for anomaly detection [8]. Let us consider the
following sinusoidal signal.

y(t) = cos(2πt) ∀t ∈ [−5, +5] (7)

The frequency of y(t) in Eq. (7) is 1.00 Hz. The Gaussian
wavelet 9 (‘gaus9’) closely matches the shape of y(t), in
the sense that the inner product of the signal and wavelet
‘gaus9’ over the effective support of the wavelet is relatively
large (i.e., good mean-square fit) when compared with other
wavelets. A suitably scaled and translated version of the
wavelet is depicted along with y(t) in Figure 2.
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Fig. 2. Signal and Wavelet Plots

To demonstrate the impact of the chosen wavelet parame-
ters on the coefficients, the wavelet ‘db1’ is also considered
for comparison purposes. The signal y(t) is sampled at 100
Hz (∆t = 0.01s). The wavelet coefficients of the signal
y(t) are obtained for various scales with both the wavelets.
The norm of the coefficients corresponding to each scale
and the pseudo-frequencies of the wavelet corresponding to
the chosen scales are calculated. Figure 3 shows the plot of
the norm of coefficients and the pseudo-frequencies of the
wavelet.
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Fig. 3. Coefficient Norm and Pseudo-Frequency for Different Wavelets

It is observed from Figure 3 that, for both wavelets
‘gaus9’ and ‘db1’, the maximum of the norm is obtained
at fp ≈ 1.00 Hz. In fact, it is exactly at 1.00 Hz for
‘gaus9’. Furthermore, the value of the peak norm achieved
with ‘gaus9’ is appreciably greater than that with wavelet
‘db1’. In other words, the coefficients obtained with ‘gaus9’
are more significant than those obtained with ‘db1’. Another
observation is that the norm curve for ‘gaus9’ shows a greater
rate of decay across pseudo-frequencies than that of ‘db1’.
More energy is concentrated in a narrow band frequencies
around 1.00 Hz in the case of ‘gaus9’. These observations
imply that high energy compaction can be achieved with
fewer coefficients if the wavelet and the scales are chosen
as stated in section II. A favorable implication of fewer
coefficients is fewer number of symbols for analysis and
hence an improvement in computational efficiency.
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B. Example 2: Noise Suppression

This example demonstrates the noise suppression achieved
with wavelets. Let the signal y(t) in Eq. (7) be corrupted with
additive zero-mean white Gaussian noise w(t).

ỹ(t) = y(t) + σ w(t) (8)

A common measure of noise in a noise-corrupted signal
is the signal-to-noise (SNR) ratio that is defined as:

SNRt � ||y||2
||σ w||2 (9)

The subscript t denotes that y and w are functions of time.
Similar to the above definition, SNR in the wavelet scale
domain is defined as:

SNRs � ||Ly||2
||σ Lw||2 (10)

Numerical experiments have been performed with σ ∈
{0.05, 0.1}. The signal is sampled at 100 Hz (i.e., ∆t =
0.01s). The scales are determined following Eq. (4), such that
the pseudo-frequency of the wavelet matches the frequency
of the signal. Figure 4 depicts the time domain plot and
coefficient plot of the signal y and the noise. The top plate
corresponds to noise level σ = 0.05 while the bottom plate
corresponds to σ = 0.10. Table I lists the values of SNRt

and SNRs, averaged over 20 simulation runs.

TABLE I

SNR VALUES

σ = 0.05 σ = 0.1

SNRt 191.55 50.89
SNRs 25195 4281.5
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Fig. 4. Signal Denoising

Figure 4 shows that SNRs is significantly larger than
SNRt. That is, the wavelet-transformed signal is signifi-
cantly de-noised relative to the time-domain signal. This is
expected because the noise is incoherent with the wavelet

while the signal enjoys a great degree of coherence with
the same. Thus, symbols generated from wavelet coefficients
would reflect the characteristics of the signal with more
fidelity than those obtained with time domain signals.

C. Example 3: Robustness of Symbol Probability Vector

The proposed symbolization scheme was developed to
enhance real-time anomaly detection in complex systems [8].
Of critical importance is the symbol probability vector p
whose elements denote the probability of occurrence of
individual symbols in the symbol sequence. The vector p
must be robust relative to measurement noise and, at the
same time, be sensitive enough to detect small slowly-
varying anomalies from the observed data set. Two distortion
measures of a noise-corrupted signal are introduced below.

δt � ||pt − p̃t||1 (11)

The subscript t denotes that the probability vectors corre-
spond to symbols generated from time domain signals; and
|| • ||1 is the sum of the absolute values of the elements of
the vector •. The vector pt, with ||pt||1 = 1, corresponds to
the uncorrupted signal and p̃t corresponds to the corrupted
signal. Similar to the above definition, distortion ratio in the
wavelet scale domain is defined as

δs � ||ps − p̃s||1 (12)

Therefore, if the distortion ratio is lower, the probabilistic
representation of the corrupted signal is closer to that of
the uncorrupted signal, i.e., the probability vector p is more
robust to noise.

The partitions are obtained, in case of time domain, by
employing the maximum entropy criterion on the time series
data of the signal. In the wavelet domain, the partitions are
obtained with the wavelet coefficients of the the time series
data. In both time domain and wavelet domain, the respective
probability vectors p and p̃ are computed with the same
partitions for the uncorrupted and corrupted signals.

The cardinality |Σ| of the symbol alphabet Σ is chosen
to be 4 in this example. The partitions are obtained as
mentioned before for the signal y and its transform, i.e., the
coefficient vector Ly. Table II lists the values of distortion
ratios δt and δs, averaged over 20 simulation runs.

TABLE II

DISTORTION RATIOS

σ = 0.05 σ = 0.1

δt 0.040 0.054
δs 0.006 0.010

It is seen that distortion ratios are far smaller in the wavelet
scale domain than those in the time domain. This observation
implies that the symbol probabilities are significantly more
robust to measurement noise in the wavelet domain than in
the time domain. Hence, it may be inferred that symbols
generated from the wavelet coefficients would be better for
anomaly detection as the effects of noise to induce errors in
the symbol probabilities are significantly mitigated.
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D. Anomaly Detection in Nonlinear Electronic Systems

This example demonstrates efficacy of symbolic time
series analysis for anomaly detection in nonlinear electronic
systems. Experiments have been conducted on a laboratory
apparatus [8] that emulates the forced Duffing equation. The
details of the experimental apparatus are provided in [7].

d2y

dt2
+ β

dy

dt
+ y(t) + y3(t) = A cos(Ωt) (13)

The dissipation parameter β varies slowly with respect to the
response time t of the dynamical system; β = 0.1 represents
the nominal condition; and a change in the value of β is
considered as an anomaly. With amplitude A = 22.0 and
Ω = 5.0 rad/sec, a sharp change in the behavior was noticed
around β = 0.29, possibly due to bifurcation. The phase
plots and time-response plots, depicting this drastic change
behavior, are not presented here as they are provided in an
earlier publication [8]. The objective of anomaly detection
is to identify small changes in the parameter β as early as
possible and well before it manifests a drastic change in the
system dynamics.
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Fig. 5. Profiles of Signal and Wavelet

Choosing the wavelet basis forms the first step in the
analysis. The time series data of the signal and a scaled and
translated version of the wavelet ‘gaus17’ are shown in the
left hand plate of Figure 5. For the purpose of comparison,
the right hand plate of Figure 5 shows the same time series
data of the signal and a scaled and translated version of
the wavelet ‘db1’ that was used in [8] for wavelet analysis.
Since the wavelet ‘gaus17’ matches the shape of the signal
better than ‘db1’, in the sense of 	2 distance, ‘gaus17’
should be more appropriate for symbolic time series analysis
than ‘db1’. Once the wavelet is chosen, the next step is
identification of the frequencies of interest.

While frequencies in the neighborhood of 0.54 Hz are
present at the nominal condition (β = 0.10), they are
absent at β ≥ 0.29. Therefore, the wavelet coefficients at
scales, corresponding to the pseudo-frequency of 0.54 Hz,
would be smaller in magnitude in the anomalous condition(s)
when compared with those in the nominal condition. Hence,
by choosing scales that correspond to pseudo-frequencies
around 0.54 Hz, early detection can be achieved more
effectively.

The next aspect of anomaly detection via symbolic time
series analysis is the choice of number of symbols, i.e.,
cardinality |Σ| of the symbol alphabet Σ. The scale series
data, at the nominal condition, is partitioned into a symbol
sequence starting with |Σ| = 2 and the threshold parameter
εh is chosen to be 0.2. Figure 6 depicts the plot of entropy
rate vs number of symbols |Σ|. It is seen that as |Σ| is
monotonically increased and reaches the value of 8, the
entropy rate h(•) becomes less than εh. Accordingly, the
number of symbols |Σ| was chosen to be 8. A smaller value
of εh would result in increased number |Σ| of symbols,
which will increase computation with no significant gain in
accuracy of anomaly detection.
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The partitions are obtained using data obtained under
the nominal (β = 0.1) condition. Once the partition is
generated, it remains invariant. As the dynamical behavior
of the system changes due to variations in β, the statistical
characteristics of the symbol sequences are also altered and
so are the symbol probabilities. A measure could be induced
on the symbol probability vectors obtained under different
anomalous conditions, to quantify these changes. Such a
measure is called the anomaly measure M. The metric
Mk = d(p0,pk) is an anomaly measure, where p0 and
pk represent the symbol probability vectors under nominal
and anomalous conditions, respectively. A candidate anomaly
measure is the angle between the symbol probability vectors
under nominal and anomalous conditions. This measure is
defined as:

Mk = arccos
(

< p0,pk >

||p0||2||pk||2

)
(14)

where < x, y > is the inner product between the vectors x
and y; and ||x||2 is the Euclidean norm of x.

Figure 7 depicts the anomaly measures obtained with
wavelet ‘gaus17’ under maximum entropy and uniform par-
titioning. It also compares the anomaly measures with those
obtained with ‘db1’ wavelet partitioning, which was used in
an earlier publication [8], and phase-space partitioning via
symbolic false nearest neighbor (SFNN) [5].

The number of symbols |Σ| is chosen to be eight in all
four cases.With β increasing from 0.1, there is a gradual
increase in the anomaly measure much before the abrupt
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Fig. 7. Anomaly Detection on the Electronic System Apparatus

change in the vicinity of β = 0.29 takes place. This indicates
growth of the anomaly even before any noticeable change
in the dynamical behavior takes place. At this point, the
measure starts increasing relatively more rapidly suggesting
the onset of a forthcoming catastrophic failure. Under max-
imum entropy partitioning, the larger values of the anomaly
measure at smaller values of β and gradual increase in both
slope and curvature of the anomaly measure curve would
facilitate anomaly detection significantly before it is possible
to do so under uniform partitioning. Therefore, with regard to
early detection of anomalies, maximum entropy partitioning
appears to be more effective than uniform partitioning.

While the SFNN partitioning yields slightly higher values
of the anomaly measure and comparable slope (i.e., dM/dβ)
in range of 0.2 ≤ β ≤ 0.25, the wavelet partitioning is
relatively more smooth and yields a significant change in the
curvature (i.e., d2M/dβ2) around β = 0.25, which is a clear
early warning for a forthcoming disruption. Simultaneous
consideration of the anomaly measure, slope, and curvature
provides a robust method of failure prediction and reduces
the probability of false alarms.

Although the detection performance is largely similar, the
computation time for SFNN partitioning is observed to be
several orders of magnitude larger than those for both cases
of wavelet partitioning. For wavelet partitioning, while ‘db1’
uses 128 scales to generate coefficients, very few (three in
this example) scales are needed for ‘gaus17’. This means
that, a much smaller number of coefficients are necessary for
the ‘gaus17’ wavelet partitioning, all of which are significant,
and hence much fewer symbols. Thus, choosing a small
number of symbols with an appropriate wavelet leads to
a substantial increase in computational efficiency without
any noticeable degradation in the performance of anomaly
detection.

IV. SUMMARY AND CONCLUSIONS

This paper presents a novel method of symbol sequence
generation from time series data for anomaly detection
in complex systems. In this approach, the wavelet trans-
form coefficients of the time-domain signal are utilized for
symbol generation instead of the time series data. Various
aspects of this method, such as selection of the wavelet

and scales, are systematically investigated. The advantages
of using wavelet coefficient-space partitioning, instead of
phase-space partitioning, are demonstrated with simulation
and experimental data. It has been shown that use of wavelet
coefficients suppresses the measurement noise and results in
smaller symbol distortion ratios. That is, symbol sequences,
generated from the wavelet coefficients of a noisy signal,
capture the signal information better than those obtained
directly from the time series data of the signal. It is also
shown that the choice of an appropriate wavelet and scales
significantly improves computational efficiency and thereby
enhances implementation of the anomaly detection technique
for real-time applications. An algorithm, based on entropy
rate, is introduced for selection of the symbol alphabet size,
i.e., the the number of symbols.

A partitioning method, based on maximum entropy, is
presented and compared with the previously used method
of uniform partitioning [8]. It is demonstrated that maxi-
mum entropy partitioning yields better detection performance
than uniform partitioning. Wavelet-based maximum entropy
partitioning has been compared with symbolic false nearest
neighbor (SFNN) partitioning [5] with regard to anomaly
detection. It is observed that the afore-mentioned partitioning
methods yield comparable results while the computation
time for SFNN partitioning is observed to be several orders
of magnitude larger than wavelet-based maximum entropy
partitioning.

A major conclusion based on this investigation is that
maximum entropy partitioning, combined with an appro-
priate choice of wavelet and scales, significantly enhances
computational efficiency and anomaly detection capabilities
beyond what has been reported in literature [8] [2]. The field
of symbolic time series analysis is relatively new and its
application to anomaly detection is very recent. Therefore,
the proposed method of symbol generation for anomaly
detection requires further theoretical and experimental re-
search in laboratory environment as suggested in an earlier
publication [8].
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