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Abstract— We address multi-user scheduling over the down-
link channel in wireless data systems. Specifically, we consider
a time-slotted system with a single transmitter serving multiple
users. With fixed power transmission, the channel condition of a
user determines the reliable rate of communication to that user
in a particular time-slot. The user set consists of, (i) throughput
guaranteed (QoS) users, and, (ii) best effort (BE) users. For such
a system we obtain the optimal policy that serves the QoS users
with minimum time-slot utilization, thereby, maximizing the
remaining fraction of time-slots allocated to the BE users. We
present a simple geometric visualization of the optimal policy. In
the special scenario of symmetric Rayleigh fading, we obtain
explicit formulas that relate the achievable throughput rate
guarantee to the number of QoS users supportable and the
fraction of time-slots allocated to the BE users. Finally, we
compare the throughput results for the optimal policy with the
random-scheduling policy and show that gains on the order of
ln(N) can be achieved by exploiting multi-user diversity, where
N is the number of QoS users.

Index Terms— Downlink, Opportunistic scheduling, Multi-
user diversity, Quality of Service, Wireless fading channel.

I. INTRODUCTION

Rapid growth of the internet and multi-media applications
has created an ever increasing demand for wireless data
systems. Development of data systems, such as the 1xEV-
DO system in [3], introduces new challenges in providing
Quality of Service (QoS) over a wireless channel. In contrast
to conventional voice traffic, data streams are inherently
bursty and can tolerate much higher delays. Hence, reserving
resources to provide QoS is inefficient which means that
to share a common resource one needs efficient scheduling
algorithms. Also, as the wireless channel is time-varying, one
can exploit the varying channel conditions among various
users to increase the system throughput. In the literature,
such an approach is referred to as Opportunistic scheduling
[1], [2], [4] or exploiting Multi-user diversity [6].

In this work, we consider the downlink scenario with a
single server that represents the base station and multiple
users that represent the mobile handsets. The set of users are
divided into two classes: (i) throughput rate guaranteed QoS
users and (ii) “best effort” (BE) users. The QoS users have
high priority service and are guaranteed average throughput
rates if these rates are feasible; while, the BE users have a
low priority service and are served when the resources are
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available. The goal of this work is to design a scheduling
policy that serves the QoS users with the least time-slot
utilization so as to maximize the remaining fraction of time-
slots available for the BE users.

Down-link scheduling is an active area of research with
recent work that includes [1], [2], [4], [5]. The work in
[1] presented various formulations based on utility max-
imization. The work in [2] considered the objective of
maximizing the minimum throughput rate, [4] maximized
the throughput with fairness constraints while [5] presented
algorithms with delay considerations. Our work differs in
presenting a simple formulation that combines the QoS and
the BE users by abstracting the service of BE users as
the fraction of allocated time-slots. We give the optimality
conditions and show that a policy is optimal if and only
if it satisfies a certain simple geometric structure. Under
symmetric Rayleigh fading, we obtain explicit formulas that
relate the achievable throughput rate guarantee to the number
of QoS users supportable and the fraction of time-slots
assigned to the BE users. Finally, we analytically compare
the optimal and the random-scheduling policy and quantify
the gains achieved by exploiting multi-user diversity.

II. SYSTEM AND PROBLEM DESCRIPTION

A. System Model

We consider the wireless downlink scenario, i.e. commu-
nication from the base station to the mobile handsets in a
time slotted system. There are multiple users in the system,
each user experiencing time varying channel conditions. The
channel state of a user is assumed constant in a single time
slot but varies over multiple time slots. We assume that the
underlying stochastic process driving the channels’ states is
stationary. This, however, does not preclude the possibility
of channel correlations over time and among users. At the
beginning of a time-slot, the transmitter knows the channel
state of each user for that particular slot1. In a time-slot,
it serves at most one user with full power P . Since the
users have different channel conditions the reliable rate of
communication per time slot to the users is variable. Clearly,
the transmitter can exploit this variability and select the
“best user” for transmission in a time-slot based on some
performance measure. The above system models a TDMA
system and the recently proposed 1xEV-DO data system [3]
and is a commonly used model in the literature to study
opportunistic scheduling in wireless networks [1], [2], [4].

1This is a simplifying assumption that models one step channel prediction
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Let r̄ = {ri} denote the vector of reliable rate of
communication to the users in a generic time-slot, say for
example the kth time-slot. This means that if user i is
chosen to be served in time-slot k, the throughput for that
user is simply ri. The transmitter has knowledge of r̄ at
the beginning of slot k but does not know this vector for
future slots. Let Ω be the set comprising of all possible rate
vectors. In the kth time-slot, r̄ is a particular realization from
the set Ω which has a probability distribution induced by
the underlying stochastic model of the channels’ states. A
scheduling policy, denoted as Γk(r̄), is a rule that specifies
which user the transmitter serves in time-slot k. A stationary
scheduling policy, denoted Γ(r̄), is one that does not depend
on the time index and can be represented as a map from the
set Ω to the user index; i.e. each r̄ ∈ Ω is mapped to a unique
user index. As the underlying processes are stationary, it is
well-known that a stationary optimal policy exists, hence,
it suffices to focus on stationary policies. In the rest of the
paper, a scheduling policy refers to the above map.

Let Xi denote the throughput per time-slot of user i, then,

Xi(r̄) =

{
ri, if Γ(r̄) = i (i.e. user i selected)

0, otherwise
(1)

The expected throughput per time slot is E[Xi]. Under
ergodicity of the channel process and stationarity of the
scheduling rule, it’s well known that E[Xi] equals the long
term throughput per slot (called throughput rate) of user i.

B. Problem Description

As mentioned earlier, the set of users are divided into two
priority classes: (i) the throughput rate guaranteed (QoS)
users and (ii) the “best effort” (BE) users. The QoS users
are guaranteed average throughput rates while the BE users
have no such guarantees. Let there be N QoS users that
are guaranteed throughput rates R̄ = (R1, .., RN ), if such a
vector is feasible. By feasibility we mean that there exists
a scheduling policy such that E[Xi] ≥ Ri,∀i = 1, .., N ,
where Xi is defined as in (1). The objective, now, is to
serve the QoS users with the least time-slot utilization and
share the remaining time-slots among the BE users. This
objective provides a simple and tractable way of integrating
the two classes of service. Also, typically in most practical
systems, the population of BE users is large and a natural
objective while serving such users is simply maximizing the
sum-throughput. Clearly, under a large population of BE
users maximizing the time-slot allocation is equivalent to
maximizing the total throughput of such users2.

Let Ii be the indicator function for selection of user i,

Ii(r̄) =

{
1, if Γ(r̄) = i

0, otherwise
(2)

With this notation we can re-write Xi as Xi = riIi. The

2Time slots allocated for BE users can be shared in a greedy fashion,
thus, maximizing the sum throughput of these users.

optimization problem can now be stated as follows,

min
N∑

i=1

E[Ii]

subject to E[riIi] ≥ Ri, i = 1, .., N (3)

where the expectation is taken over the joint distribution of
r̄ for the N QoS users. Note that minimizing

∑N
i=1 E[Ii] is

equivalent to maximizing 1 − ∑N
i=1 E[Ii] which equals the

fraction of time-slots available for the BE users. We assume
that R̄ > 0, i.e. (R1 > 0, .., RN > 0). If some Rk = 0,
we can neglect that user and the problem reduces to N − 1
dimensions. We assume that R̄ is feasible and away from
the boundary of the set comprising all achievable through-
put rate vectors. This assumption is solely to simplify the
mathematical exposition by avoiding the limiting conditions
at the boundary and does not affect the results presented
throughout this paper.

III. OPTIMAL POLICY

The QoS users experience different time-varying channel
conditions, hence, intuitively the optimal policy must exploit
the variable communication rates to the users by selecting the
best user to have a high throughput per time slot. The choice
of which user to serve must also account for the different
throughput rate guarantees among the users and their varying
channel statistics. Clearly, for optimality the inequality in (3)
must also be met with equality.

Let r̄ = (r1, . . . , rN ) be the rate vector in a generic
time-slot for the N QoS users3; this vector lies in the set
Ω ⊆ R

+N . Let the joint probability density function be f(r̄)
such that the probability of some region Z ⊂ Ω is given
as

∫
Z

f(r̄)dr̄. The restriction on f(r̄) is that subsets with
zero volume in Ω (or individual points) have zero probability.
Since a scheduling policy maps r̄ ∈ Ω to a unique user index,
we can represent it as a partition of the set Ω into N + 1
regions denoted as Z1, .., ZN , Zf . In a particular time-slot,
if the transmission rate vector r̄ ∈ Zi, user i is selected
for service whereas if r̄ ∈ Zf , no QoS user is selected and
the slot is used to serve the BE users. The problem thus
reduces to choosing these regions optimally to minimize the
objective function and satisfy the throughput rate constraint,∫

Zi
rif(r̄)dr̄ ≥ Ri, i = 1, . . . , N .

As individual points in Ω have zero probability, we will
refer to regions within Ω4. The notation r̄ → Z (̄r �→ Z)
means that there is a neighborhood around r̄ that lies (does
not lie) in Z. Formally, r̄ → Z implies that there exists ε > 0
such that r̂ ∈ Ω, ||̂r − r̄|| < ε ⇒ r̂ ∈ Z. The following
lemma gives the necessary condition for the optimality of
region Zf . It states that if r̄ is mapped to Zi, all rate vectors
with ith component larger than ri cannot be mapped to Zf .

Lemma 1: Under the optimal policy, suppose r̄ =
(r1, .., rN ) → Zi then r̂ = (r̂1, .., (r̂i > ri), .., r̂N ) �→ Zf .

3To make the notations simple, r̄, depending on the context denotes a
random vector and also a particular realization for a generic time-slot.

4Regions with zero probability density can be removed from Ω as their
mapping does not affect optimality.
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Fig. 1. The Zf region for N = 3, threshold vector ā = (a1, a2, a3) and
Ω = R

+N . Note Zf = {r̄ : 0 ≤ ri ≤ ai, ∀i = 1, . . . , N}.

Proof: We omit a rigorous proof for brevity but the
main idea is that if there is a r̂ → Zf with r̂i > ri then we
can re-map the regions such that the objective function in (3)
decreases. This is achieved by mapping a small neighborhood
of r̂ to Zi and mapping a neighborhood of r̄ to Zf while
ensuring that the throughput constraints still hold. As r̂i > ri

one can show that the objective function under the new map
is strictly lower than the earlier map.

Interestingly, Lemma 1 implies a special structure on Zf as
follows. Let a1 be the infimum value of the first component
among all vectors r̄ → Z1; i.e. a1 = inf(r̄→Z1) r1. Now,
any r̂ → Zf must be such that r̂1 ≤ a1; otherwise the
above lemma will be violated. As this holds for all Zi, the
optimal policy is such that there exists constants {ai} and if
ri ≤ ai,∀i then r̄ ∈ Zf . The region Zf is shown in Figure 1.
This implication is quite intuitive as it suggests that when
the rate vector of the QoS users is below some threshold
vector (bad channel conditions), the QoS users must not be
scheduled and the slot must be used to serve the BE users.

The vector ā depends on the throughput vector R̄ and
the density function f(r̄). Given that R̄ does not lie on the
boundary of feasible throughput rates, it follows that ā is
at least a positive vector (a1 > 0, . . . , aN > 0) and the
region Zf = {r̄ : r̄ ∈ Ω, ri ≤ ai∀i} is not null (non-zero
probability). We now proceed to obtain the structure of the
regions Zi, i = 1, . . . , N .

Lemma 2: Consider regions Zi, Zj , j �= i and the corre-
sponding thresholds ai, aj . Suppose r̄ �∈ Zf and satisfies,

ri

ai
>

rj

aj
(4)

then under the optimal policy r̄ �→ Zj

Proof: Appendix I
The above lemma states that if the weighted comparison

of the ith and the jth component of r̄ is in favour of user i,
it is not optimal to serve user j. The weights are the inverse
values of the corresponding components of the threshold
vector ā. The above implication is intuitive as condition
(4) means that in some sense user i has a better channel
condition than user j and hence serving user j is not optimal.
Combining the above two lemmas, we obtain the following
necessary conditions for the optimal policy.
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Fig. 2. Optimal policy structure for N = 3, threshold vector ā =

(a1, a2, a3) and Ω = R
+N . The Zi regions are top truncated pyramids.

Theorem I: (Necessary Conditions) Consider r̄ =
(r1, . . . , rN ) then the optimal policy is such that there exists
a threshold vector ā with the following structure,

1) r̄ → Zf if it satisfies,

ri < ai, ∀i = 1, . . . , N (5)

2) r̄ → Zi, (i = 1, . . . , N ) if it satisfies,
ri

ai
>

rj

aj
, ∀j = 1, . . . , N, j �= i (6)

ri > ai (7)

3) ∫
Zi

rif(r̄)dr̄ = Ri, ∀i = 1, . . . , N (8)

Proof: Conditions 1 and 2 follow from Lemmas 1
and 2. Clearly, as stated in Condition 3, for optimality the
throughput constraint must be met with equality.

The set of r̄ that lie on the boundaries for which there
is equality in (5) and (6) can be mapped to any Zi without
affecting optimality. It can also be observed that the set of
conditions in Theorem I are exhaustive and map every r̄ ∈ Ω
to a unique user index. Thus, given ā, we have a unique
partition of Ω into regions Z1, . . . , ZN , Zf . In Figure 2, we
present a geometric picture of these regions for N = 3.
As seen from the figure the Zi regions are top truncated
pyramids and it can be verified (say, for example Z2 region)
that (6) is satisfied.

Next, we present the sufficiency argument by proving that
a scheduling policy of the form as in Theorem I minimizes
the objective in (3) and hence is optimal. First, observe that
a scheduling policy outlined in Theorem I can be re-written
in a simplified way as a maximum weighted rule as follows,

Γ(r̄) =

{
Zf (no QoS user) , if ri ≤ ai,∀i = 1, .., N

argmaxi
ri

ai
, otherwise

(9)
where {ai} are such that E[riIi] = Ri,∀i.

Theorem II: (Sufficiency) Consider the optimization
problem in (3) and let R̄ be feasible, then policy Γ defined
in (9) is optimal.

Proof: Appendix II.
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Thus, Theorem I states that the optimal policy must satisfy
certain conditions which impose a weighted comparison
structure on the policy and conversely, Theorem II completes
the argument by stating that any policy with that structure is
optimal. Now, vector ā is chosen such that

∫
Zi

rif(r̄)dr̄ =
Ri, i = 1, .., N . This can be solved using techniques of
finding the positive root of a non-linear vector equation.
For general density functions, it is difficult to obtain an-
alytical expressions for ā. In practice, however, vector ā
can be adjusted in real time using stochastic approximation
algorithms similar to those outlined in [1], [2], [8], [9].
Interestingly, as discussed next in Section IV, one can solve
for ā in closed form under a symmetric Rayleigh fading
model. From a system perspective, this analytical study helps
us obtain explicit results for various important performance
measures such as the achievable throughput rate guarantee,
the number of QoS users supportable and the fraction of
time-slots allocated to the BE users.

IV. DIMENSIONING

We have shown that an optimal policy has a weighted
structure as represented in (9) for some threshold vector ā.
Here, we consider a symmetric Rayleigh fading scenario
under which closed form expressions can be obtained for
various performance measures. To proceed, we make the
following specializations to the earlier model. The rate per
time slot of a user is assumed proportional to the fade state
(square magnitude); i.e. r = k(|h|2P ), where k is a constant,
|h| is the magnitude of the fade state and P is the transmis-
sion power. This linear relationship is a good approximation
of the Shannon capacity formula in the low SNR regime
and in ultra-wideband transmission and has been studied
earlier in the literature [7]. The users experience independent
identically distributed (i.i.d) flat Rayleigh fading, hence, |h|2
is Exponentially distributed. As r is proportional to |h|2,
the distribution of r is also Exponential and is given as
f(r) = e−r/µ/µ, r ≥ 0 where µ = E[r] is the average
throughput rate of a user if it is served in all the time-slots.
Finally, the guaranteed throughput rate is the same for all N
QoS users, i.e. R̄ = (R, . . . , R).

A. Throughput Characterization

Intuitively, the fraction of time-slots remaining for the
BE users, denoted as γ, will depend on the parameters
R,N, µ. As R, N increases, γ should decrease whereas if
µ increases (higher communication rates to the QoS users),
the throughput guarantee can be achieved in fewer slots and
γ should increase. Equivalently, given γ,N, µ, one can also
ask for the maximum throughput-rate guarantee achievable
for the QoS users. Our goal in the subsequent analysis is to
obtain expressions for all these performance measures.

It’s clear that due to symmetry in f(r̄) and R̄, the regions
Zi, i = 1, .., N are identical (Ω = R

+N ). Hence, the {ai}’s
are equal and the threshold vector is given as ā = (a, .., a).
The following lemma relates the threshold value a with γ.

Lemma 3: Let γ be the fraction of time-slots allocated to
the BE users, the threshold value a for the optimal policy is

given by,

a = µ ln
(

1
1 − γ1/N

)
(10)

Proof: From Theorem I, the region Zf is given as
Zf = {r̄ : 0 ≤ ri ≤ a, ∀i = 1, . . . , N}. By ergodicity, the
probability of this region equals γ and by the i.i.d channel
assumption, f(r̄) =

∏
i fi(ri) =

∏
i f(ri). Thus we get,∫ a

0

. . .

∫ a

0

∏
i

f(ri)dri = γ (11)

Evaluating the integrals for the exponential distribution gives,

γ =
(
1 − e−a/µ

)N

(12)

Re-writing the above expression gives the result in (10).
Observe from (10) that γ = 0 ⇒ a = 0 and γ = 1 ⇒ a →

∞ which corroborates the intuition that γ = 0 implies Zf is
null and γ = 1 (all slots for BE users) implies Zf = R

+N .
Lemma 4: Under the optimal policy, the throughput rate

guarantee R for a given threshold value a is given by,

R =
N−1∑
k=0

(
N − 1

k

)
(−1)k

(
a +

µ

k + 1

)
e−(k+1)a/µ

k + 1
(13)

Proof: Given a threshold vector ā = (a, . . . , a), the
region Zi is given as, Zi = {r̄ : a ≤ ri < ∞, 0 ≤ rj ≤
ri, j �= i}. As R = E[riIi] we get,

R =
∫ ∞

a

∫ ri

0

. . .

∫ ri

0

rif(ri)dri

∏
j �=i

f(rj)drj (14)

where f(r̄) =
∏

i fi(ri) =
∏

i f(ri) by the i.i.d assumption.
For the exponential distribution, (14) simplifies to,

R =
∫ ∞

a

rie
−ri/µ

µ

(
1 − e−ri/µ

)N−1

dri (15)

Using the binomial expansion, (1 − e−ri/µ)N−1 =∑N−1
k=0

(
N−1

k

)
(−1)ke−kri/µ, (15) can be solved to give (13).

Conversely, one can also solve (13) to obtain the value of a
that would achieve rate R. As R is monotonically decreasing
in a, the value of a ≥ 0 that achieves R in (13) is unique.

Eliminating a from (10) and (13) we obtain a unified
relationship among the system quantities: (i) Throughput rate
R, (ii) Fraction of time-slots, γ, allocated to the BE users
and (iii) Number of QoS users, N , in the system.

Theorem III: Under the model assumptions stated earlier
with N QoS users in the system and γ ∈ [0, 1] fraction of
time-slots allocated to the BE users, the maximum through-
put rate R for each QoS user is given as,

R

µ
=

N−1∑
k=0

(
N − 1

k

)
(−1)k ×

(− ln(1 − γ1/N )
k + 1

+
1

(k + 1)2

)
(1 − γ

1
N )(k+1) (16)

Proof: The result follows from Lemmas 3 and 4.

6025



2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plot of R/mu for various values of gamma

Number of users, N

R
 / 

m
u

gamma = 0
gamma = 0.2
gamma = 0.4
gamma = 0.6
gamma = 0.8

Fig. 3. Plot of R/µ versus N for the optimal policy for various γ values.

An interesting observation is that R varies linearly with µ
where µ is the average channel condition of the QoS users.
Re-phrasing (16) we see that given R0 and γ, Nmax =
maxN≥1 (R ≥ R0) is the maximum number of supportable
QoS users with rate guarantee R0, if a solution exists. Finally,
given R and N , the value of γ in (16) is the maximum
fraction of slots that can be allocated to the BE users.
Figure 3 is a plot of R/µ versus N for different γ values.

B. Comparison with Random-scheduling

We, now, compare the performance of the optimal policy
with the random scheduling policy that is very simple to im-
plement and does not exploit the varying channel conditions
among the users. Specifically, the random policy assigns a
time-slot to the BE users with probability γ and to the QoS
users with probability 1 − γ. Among the QoS users the slot
is then randomly assigned to one of the users with equal
probability 1/N . Due to the random nature of the assignment
each QoS user gets (1− γ)/N fraction of time-slots and the
users have statistically identical channel conditions. Thus the
throughput rate of each QoS user, denoted Rr, is given as,

Rr = µ
(1 − γ)

N
(17)

Figure 4 plots Ropt/µ and Rr/µ versus N for γ = 0.2, 0.4,
where Ropt is the throughput for the optimal policy as given
in (16). We, next, quantify the gain, defined as Ropt/Rr, for
large N and show that it is on the order of ln(N).

Proposition 1: The throughput gain, defined as Ropt/Rr,
of the optimal policy as compared to the random policy is,

Ropt

Rr
= Θ(ln(N)) (18)

Proof: Starting with (16), the summation over the first
terms can be evaluated as follows. Let α = (1− γ

1
N ), then,

taking γ ∈ (0, 1) we have α ∈ (0, 1).

N−1∑
k=0

(
N − 1

k

)
(−1)k α(k+1)

k + 1
=

N−1∑
k=0

(
N − 1

k

) ∫ α

0

(−x)kdx

=
∫ α

0

(1 − x)N−1dx =
1 − (1 − α)N

N
=

1 − γ

N
(19)
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Fig. 4. Plot comparing R/µ for the optimal and the random policy.

We can now re-write (16) as,

R

µ
=

1 − γ

N

(
ln

(
1
α

)
+

N

1 − γ

N−1∑
k=0

(
N − 1

k

)−1kαk+1

(k + 1)2

)
(20)

Since (19) holds for all α, we get the identity,∑N−1
k=0

(
N−1

k

)
(−1)k x(k+1)

k+1 = 1−(1−x)N

N . Dividing both sides
of this equation by x and integrating from 0 to α, we get,

N−1∑
k=0

(
N − 1

k

)−1kαk+1

(k + 1)2
=

∫ α

0

(
1 − (1 − x)N

Nx

)
dx

≤
∫ α

0

dx = α = (1 − γ
1
N ) (21)

The inequality above follows by noting that 1−(1−x)N

Nx is
positive, monotonically decreasing for x ∈ [0, 1], N ≥ 1
and has a maximum value equal to 1 at x = 0. Us-
ing (21) we can bound the summation term in (20) as,

N
1−γ

∑N−1
k=0

(
N−1

k

)−1kαk+1

(k+1)2 ≤ N
1−γ (1 − γ

1
N ) N→∞−−−−→ − ln(γ)

1−γ
(which is finite for γ > 0). Considering the log term in (20)
we see that, ln( 1

α ) = − ln(1−γ
1
N ) = γ1/N + γ2/N

2 + γ3/N

3 +
. . . = Θ(ln(N)). Thus, for any 0 < γ < 1 and large N , the
log term in (20) dominates and we can express Ropt as,

Ropt

µ
=

1 − γ

N
Θ(ln(N)) (22)

From (17) and (22) we get the result in (18),
Observe that as N → ∞ the throughput for both the

optimal and the random policy tends to zero. Equation (22)
simply states that Ropt decreases as ln(N)/N while (17)
states that Rr decreases as 1/N . Hence, we get a gain on
the order of ln(N). The above logarithmic behavior arises
due to the infinite support and the exponential distribution of
the rate under Rayleigh fading. While such channel statistics
are simplified models, in practice one could expect gains
along these orders for moderate QoS user population.

V. CONCLUSION

We addressed the issue of downlink scheduling over
a wireless channel incorporating the QoS and best effort
services. We considered a set of N rate guaranteed users and
obtained an optimal policy that serves these users with the
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least time-slot utilization, thereby, maximizing the time-slot
allocation to the BE users. This work opens up interesting
questions about QoS guarantees over wireless channels.
While we considered long-term rate guarantee as a QoS
measure, future work seeks to address scheduling over a
wireless channel with more general QoS requirements, for
example, strict delay constraints on the data such as those
that arise in video streaming and multimedia applications.
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APPENDIX I
PROOF OF LEMMA 2

For brevity, we simply outline the steps involved in the
proof and omit the technical steps. The proof is based on
a contradiction argument. To begin, consider r̄ �∈ Zf and
suppose that for the optimal policy, r̄ → Zj such that
ri

ai
>

rj

aj
. We now give a re-mapping of the regions such

that the objective function decreases or equivalently the
probability of Zf region increases, thereby, showing that the
earlier mapping cannot be optimal. As the lemma involves
only the ith and jth component, we will focus only on
these components. Let the neighborhood around r̄ that is
mapped to Zj be denoted as S1. We can represent S1 as
S1 = {x̄ : x̄ ∈ Ω, ||x̄ − r̄|| < δ1} for some 0 < δ1 ≤ δm

1

where δm
1 is the largest δ1 such that S1 ∈ Zj . By the

assumption r̄ → Zj , there exists δm
1 > 0. Now, since the

optimal policy satisfies Lemma 1 we know that ai is the
infimum value of the ith component among x̄ → Zi. Thus,
there exists a point m̄ with mi = ai and a region around
m̄, denoted S2, that maps to Zi. The region S2 can be
represented as S2 = {x̄ : x̄ ∈ Zi, 0 < (xi − mi) < δ2}
for δ2 > 0. Finally, since R̄ does not lie on the boundary of
feasible throughput vectors there exists n̄ with nj = aj > 0
and a region around n̄, denoted S3, that maps to Zf . The
region S3 is S3 = {x̄ : x̄ ∈ Zf , 0 < (nj − xj) < δ3} for
δ3 > 0. Thus, we have regions S1, S2, S3 that are not null and
as defined above. Now re-map these regions as follows. Map
S1 ⇒ Zi, S2 ⇒ Zf and S3 ⇒ Zj as shown in Figure 5(b).
By appropriately choosing the δ′is, one can ensure that the
throughput constraints are satisfied and also show that the
objective function is smaller under the new mapping.

a i

x j

a j

x ia i

S ε Zj1

x j

a j

x i

= x i
a ia j

x j

S2 ZfS ε Zi2

ZjS3

Fig. (a): Original mapping Fig. (b): New mapping

r.
S1 Zi

r.
S ε Zf3

Fig. 5. Figure showing the mappings for the proof of Lemma 2.

APPENDIX II
PROOF OF THEOREM II

We will prove optimality of policy Γ, defined in (9),
by showing that for any other feasible policy Γ̃ we have∑N

i=1 E[Ii] ≤ ∑N
i=1 E[Ĩi] where Ii(r̄) and Ĩi(r̄) are the

indicator functions for the respective policies. We know
that policy Γ satisfies the throughput-rate constraints with
equality, i.e. E[riIi] = Ri. If Γ̃ does not, its trivial to prove
that Γ̃ cannot be optimal. Now, suppose Γ̃ also satisfies the
rate constraints with equality, i.e. E[riĨi] = Ri, then, the
objective function for policy Γ̃ can be re-written as,

N∑
i=1

E[Ĩi] =
N∑

i=1

E[Ĩi] −
N∑

i=1

1
ai

(E[riĨi] − Ri) (23)

where {ai} is the threshold vector for policy Γ. Note that
the second term in (23) is zero. Re-arranging (23) we get,

N∑
i=1

E[Ĩi] = E

[
N∑

i=1

(
1 − ri

ai

)
Ĩi

]
+

N∑
i=1

Ri

ai
(24)

For any vector r̄ we have the following two cases.
Case 1: Suppose ri ≤ ai,∀i, then, policy Γ does not

choose any QoS user (Equation (9)) and Ii = 0,∀i =
1, . . . , N . Now, since ri ≤ ai, we have (1 − ri

ai
) ≥ 0,∀i.

This implies that whether Γ̃ chooses or does not choose a
QoS user we have the following inequality,

N∑
i=1

(
1 − ri

ai

)
Ĩi ≥ 0 =

N∑
i=1

(
1 − ri

ai

)
Ii (25)

Case 2: Suppose ri > ai for some index i. Let j be the
chosen index for policy Γ, then, from (9) we see that rj/aj

has the maximum value. Thus, (1 − rj

aj
) ≤ (1 − ri

ai
),∀i and

also (1 − rj

aj
) < 0. Again irrespective of what Γ̃ chooses,

N∑
i=1

(
1 − ri

ai

)
Ĩi ≥

(
1 − rj

aj

)
=

N∑
i=1

(
1 − ri

ai

)
Ii (26)

From (24), (25) and (26) we get,
N∑

i=1

E[Ĩi] ≥ E

[
N∑

i=1

(
1 − ri

ai

)
Ii

]
+

N∑
i=1

Ri

ai
=

N∑
i=1

E[Ii]

where the last equality follows from (23) replacing Ĩi with
Ii. This completes the proof.
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