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Abstract— The problem of global observer design for au-
tonomous systems is investigated in this paper. A construc-
tive approach is presented for the explicit design of global
observers for completely observable systems whose solution
trajectories are bounded from any initial condition. Since the
bound of a solution trajectory depends on the initial condition
and is therefore not known a priori, the idea of universal control
is employed to tune the observer gains on-line, achieving global
asymptotic convergence of the proposed high-gain observer.

I. INTRODUCTION

In this paper, we consider the problem of designing a
global observer that estimates the state z(t) ∈ IRn of the
autonomous system

ż = f(z), z(0) = z0

y = h(z) (1.1)

from the observation of the system output y(t). The vector
fields f : IRn → IRn and h : IRn → R are assumed to be
smooth functions with f(0) = 0 and h(0) = 0.

The objective of this paper is to develop, under appropri-
ate conditions, a constructive method for the explicit design
of a global convergent observer for the nonlinear system
(1.1). To achieve this goal, we assume that the autonomous
system (1.1) is globally observable in the sense of [3]. That
is, the mapping

Φ : IRn → IRn

z →
(
h(z), Lfh(z), · · · , Ln−1

f h(z)
)T

(1.2)

is a global diffeomorphism.
Under the global observability condition (1.2), there

exists a global change of coordinates

x = Φ(z) =
(
h(z), Lfh(z), · · · , Ln−1

f h(z)
)T

(1.3)

which transforms the autonomous system (1.1) into the

This work was supported in part by the NSF under grants DMS-0203387
and ECS-0400413, and in part by the Air Force Research Laboratory under
Grant FA8651-05-C-0110.

observable system

ẋ1 = x2

ẋ2 = x3

... (1.4)

ẋn−1 = xn

ẋn = F (x), y = x1,

where F (x) is a smooth function with F (0) = 0.
Obviously, if a global observer can be designed for the

observable system (1.4), it is straightforward to find a global
observer for the original nonlinear system (1.1) using the
global inverse transformation z = Φ−1(x). For this reason,
we shall focus our attention, in the rest of this paper, on the
question of how to explicitly construct a globally convergent
observer for the observable system (1.4).

In the case when F (x) = F (x1), system (1.4) reduces
to the so-called observer form [2], [9] for which the design
of an observer is straightforward. In fact, for a long time in
the literature a common observer design method has been
finding a change of coordinates and output injection so
that the nonlinear system (1.1) can be transformed into the
observer form: ẋ = Ax + ψ(y) and y = Cx [2], [9], [15],
[11], [19]. Notably, such an observer linearization technique
requires not only the state equation be transformed into
a linear system driven by a nonlinear output function,
but also the output of system (1.1) be linearized in the
new coordinates. The latter is restrictive and limits the
applications of the observer design techniques of [9], [11].

This restriction has been removed recently in [6], where
only a change of coordinates is sought transforming (1.1)
into a linear system steered by an output injection, without
linearizing the output map of (1.1). The paper [6] has
resulted in a new observer design technique based on the
solution of a first-order, singular, nonlinear PDE which can
be solved approximately by a series expansion method.
However, the method of [6] can only be applied to either
locally asymptotically stable or totally unstable systems
(1.1) (see Assumption 1 in [6]). By removing the restrictive
Assumption 1 in [6], the result of [6] has further been
extended to a wider class of observable systems (1.1) [12]
or certain nonlinear systems whose linearization is not
necessarily detectable [13].
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In the work [3], a high-gain observer was presented for
the observable system (1.4) under the additional require-
ment that F (x) be globally Lipschitz in IRn [3]. In the paper
[10], a recursive observer design method was proposed
for the construction of a local observer whose gains are
nonlinear functions of the estimated state. Recently, the
existence of a global observer has been proved for the
observable system (1.1) [1], under the hypotheses that
system (1.4) is output-to-state stable (OSS) [18]. However,
the proof given in [1] relies heavily on the information of
the Lyapunov function V (x) as well as the non-negative
functions γ1(·) and γ2(·), which are used to characterize the
output-to-state stability of the nonlinear system (1.4). As a
such, the result obtained in [1] is primarily an existence
result. It is hard to be applied to the design of a global
observer for the nonlinear system (1.4). In view of the
discussions above, an important question arises naturally:
when can a global observer be explicitly designed for the
observable system (1.1) or (1.4)?

In this paper, we shall address this question and provide
an answer under the following condition.

Assumption 1.1: For every initial state x(0) = x0 ∈
IRn, the corresponding solution trajectory x(t, x0) of the
observable system (1.1) or (1.4) is well-defined over the
interval [0, +∞). Moreover, x(t, x0) is globally bounded.
That is, there exists a constant C ≥ 0 depending on the
initial condition x0, such that

‖x(x0, t)‖ ≤ C ∀t ∈ [0,∞). (1.5)

Remark 1.2: Note that Assumption 1.1 encompasses an
important class of dynamic systems such as the well-known
Van der Pol equation and Duffing oscillator [4], [12], both of
them have the origin as an unstable equilibrium and thus are
not stable in the sense of Lyapunov. Yet, they have globally
bounded solution trajectories from any initial condition.

Assumption 1.1 requires essentially that all the solution
trajectories of the autonomous system (1.4) or (1.1) would
not blow up for all t ≥ 0. This appear to be a mild
requirement for nonlinear systems without control inputs.
However, the boundedness condition does limit the class of
nonlinear systems under consideration. Consequently, the
global observers proposed in this paper cannot be applied
to nonlinear systems with unbounded solutions or having a
finite escape time. This is a restriction of our work.

Under Assumption 1.1, we shall present in the next sec-
tion a global observer that is based on the traditional high-
gain observer with a subtle modification. Since the bound of
the solution trajectory of the nonlinear system (1.4) or (1.1),
namely C = C(x0), is usually unknown, a universal-type
gain tuning law will be introduced, which is inspired by
the recent work [17], where the idea of universal control is
integrated with the non-separational principle based output
feedback design method, yielding a solution to the problem
of global output feedback stabilization of nonlinear systems
with unknown parameters. In sharp contrast to the high-gain
observer [8], the observer gain in this paper consists of two

components, both of them are not constant and need to be
tuned on-line in an adaptive manner. Another new ingredient
of our global observer is to saturate the estimated states.
However, substantially different from the paper [7] where
the saturation level is a prescribed constant, the saturation
level used in our global observer is not known a priori (due
to the unknown bound C(x0)), and hence must be updated
delicately.

It should be pointed out that the explicit observer design
method proposed in the next section will depend only on the
knowledge of the system structure, i.e., the information of
F (x). There is no extra requirement on the nonlinear func-
tion F (x), such as global Lipschitz or growth conditions.
Moreover, the construction of the global observer involves
no knowledge of any kind of Lyapunov function. All of this
makes the proposed global observer easily implementable,
as illustrated by the two examples in section 3.

II. GLOBALLY CONVERGENT OBSERVERS

In this section, we show that under Assumption 1.1,
a globally observable system (1.1), or equivalently, (1.4)
permits a globally convergent observer. Moreover, it is
possible to explicitly design a universal-like high-gain ob-
server whose gains are adaptively updated. To make the
presentation easy to follow, we give a constructive design
procedure in section II-A, while in section II-B the stability
analysis and the proof of convergence are included.

A. Explicit Design of Universal-like High-Gain Observers

To introduce the main result of this paper, we first recall
the definition of a unit saturation function.

Definition 2.1: A unit saturation function sat(s) is de-
fined as

sat(s) =

⎧⎨
⎩

1 if s > 1
s if |s| ≤ 1
−1 if s < −1

(2.1)

According to the definition, it is not difficult to see that
a unit saturation function has the following useful property
to be used in the sequel.

Lemma 2.2: Given real numbers s1, s2 and m > 0,
suppose that |s1| ≤ m. Then,

|s1 − msat(
s2

m
)| ≤ |s1 − s2|. (2.2)

Theorem 2.3: Under Assumption 1.1, there exists a
global observer for the observable system (1.4). In particu-
lar, a globally convergent observer can be constructed as

˙̂x1 = x̂2 + (MN)a1(y − x̂1)

...
˙̂xn−1 = x̂n + (MN)n−1an−1(y − x̂1)

˙̂xn = F
(
satN (x̂))

)
+ (MN)nan(y − x̂1)

Ṅ = γ
(y − x̂1

MN

)2
, N(0) = 1

Ṁ = −M + ∆(N), M(0) = 1 (2.3)
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where ai > 0, i = 1, · · · , n are the coefficients of the Hur-
witz polynomial sn +

∑n
i=1 ais

n−i, γ ≥ 1 is a prescribed
constant and satN (x̂) :=

(
Nsat( x̂1

N
), · · · , Nsat( x̂n

N
)
)
.

Moreover, all the states of the closed-loop system (1.4)-
(2.3) are well-defined and bounded on [0,∞). In addition,

lim
t→∞

‖x(x0, t) − x̂(x̂0, t)‖ = 0, ∀(x0, x̂0) ∈ IRn × IRn.

Remark 2.4: Notably, (2.3) is an adapted high-gain ob-
server that is inspired by the idea of universal control [20],
[5]. The observer gain L = MN is composed of two parts.
One is N(t) — the level of saturation — which is updated
in a way similar to the one suggested in [17]. The other
one is the gain M(t) to be tuned through a linear ODE
driven by a nonlinear function of N(t). The novelty of
the global observer (2.3) lies in the introduction of the
moving saturation level N(t) enabling one to overcome the
difficulty caused by the lack of the knowledge of C(x0) —
the bound of solution trajectories of the observable system
(1.1) or (1.4).

It is important to point out that ∆(N) in the observer
(2.3) can be calculated directly based on the observable
system (1.4), in particular, by the nonlinear function F (x).
To see how, we introduce the following technical lemma
whose proof can be carried out in a fashion similar to that
of Lemma 2.2 in [16], and hence is omitted here.

Lemma 2.5: Let g : IRn → IR be a C1 real-valued
function. Then, there exist two smooth functions α, β :
[0, +∞) → [1, +∞), such that ∀x, z ∈ IRn,

|g(x) − g(z)| ≤ α(||x||)β(||z||)
( n∑

i=1

|xi − zi|
)
. (2.4)

With the help of inequality (2.5),
∣∣F (x) − F (satN (x̂))

∣∣
can be estimated as follows. By Assumption 1.1,
||x(t, x0)|| ≤ C, ∀t ≥ 0. Since ||satN (x̂)|| ≤ N , by Lemma
2.5 there exist two smooth positive functions α(·) and β(·)
such that ∣∣F (x) − F (satN (x̂))

∣∣
≤ α(C)β(N)

( n∑
i=1

∣∣xi − Nsat(
x̂i

N
)
∣∣) (2.5)

Using this estimation, one can simply choose

∆(N) = β2(N) ≥ 1. (2.6)

In the next subsection, it will be shown that such a choice
of ∆(N) suffices to ensure the dynamic system (2.3) being
a globally convergent observer of system (1.4). The reader
is also referred to the two examples in section 4 for further
details on how ∆(N) in the observer (2.3) can be explicitly
determined from the function F (x).

To sum up, a global observer for the observable system
(1.4) with bounded solutions trajectories can be constructed
in three steps:

Step 1. Pick a suitable γ > 0 and choose constants
ai > 0, i = 1, · · · , n, such that p(s) = sn +

∑n
i=1 ais

n−i

is Hurwitz;

Step 2. Use inequality (2.5) to estimate
∣∣F (x) −

F (satN (x̂))
∣∣ and find β(N) ≥ 1. Then, compute ∆(N) =

β2(N);
Step 3. With the obtained parameters γ, ai’s and ∆(N),

design the observer (2.3).

B. Analysis of Boundedness and Convergence

We now show that Theorem 2.3 holds. That is, the
observer (2.3) designed in the previous subsection works
and it is indeed a globally convergent observer for the
observable system (1.4).

We begin with the proof by examining the property of
the error dynamics. Let ei = xi − x̂i, i = 1, 2, · · · , n be
the estimate errors and denote L = MN . Then, the error
dynamics is given by

ėi = ei+1 − Liaie1, i = 1, 2, · · · , n − 1

ėn = F (x) − F (satN (x̂)) − Lnane1 (2.7)

Similar to the routine in the analysis of high-gain ob-
servers [8], we introduce the change of coordinates

εi =
ei

Li
, i = 1, 2, · · · , n. (2.8)

By construction, L(t) = M(t)N(t) ≥ 1 ∀t ≥ 0. This is
because N(t) is a non-decreasing function with N(0) = 1.
Moreover, M(t) ≥ 1 due to the choice of ∆(N) ≥ 1 and
M(0) = 1.

In the new coordinates, the error dynamics (2.7) can be
expressed in the following compact form

ε̇ = LAε +
1

Ln
b0

[
F (x) − F

(
satN (x̂))

)]
−

L̇

L
Dε (2.9)

where

ε =

⎡
⎢⎢⎢⎣

ε1

ε2

...
εn

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣

−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0

⎤
⎥⎥⎥⎦

b0 = [0, · · · , 0, 1]T , D = diag(1, 2, · · · , n)

Since ai’s are the coefficients of a stable polynomial,
A is a Hurwitz matrix. Therefore, by [14] (see inequality
(6)) there exist a positive definite matrix P = PT and real
constants c2 > c1 > 0, such that

AT P + PA ≤ −I

c1I ≤ DP + PD ≤ c2I (2.10)

Now, consider the Lyapunov function V (ε) = εT Pε for
the error dynamics (2.9). A direct calculation gives

V̇ ≤ −L‖ε‖2 −
L̇

L
εT (DP + PD)ε

+2εT Pb0
1

Ln

[
F (x) − F (satN (x̂))

]
(2.11)
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Observe that

L̇

L
=

Ṁ

M
+

Ṅ

N
, Ṅ = γε2

1 ≥ 0

Ṁ = −M + β2(N), N ≥ 1 and M ≥ 1.

With these in mind and using (2.10) and (2.5), we deduce
from (2.11) that

V̇ ≤ −L‖ε‖2 −
Ṁ

M
εT (DP + PD)ε

+
2

Ln
εT Pb0

[
F (x) − F (satN (x̂))

]

≤ −M(N − c2)‖ε‖
2 − c1

β2(N)

M
‖ε‖2 (2.12)

+
2‖Pb0‖α(C)β(N)

Ln

n∑
i=1

∣∣xi − Nsat(
x̂i

N
)
∣∣ · ‖ε‖.

Using inequality (2.12), we can prove that starting from
any initial condition (x0, x̂0) ∈ IRn × IRn and M(0) =
N(0) = 1, system (1.4)-(2.3) has the following properties:

(i) All the states of the dynamic system (1.4)-(2.3) are
well defined and globally bounded on [0, +∞);

(ii) limt→∞ e(t) = 0, limt→+∞ M(t) = M∞, and
limt→+∞ N(t) = N∞.

Since x(t, x0) of the observable system (1.4) is bounded
by C, the property (i) follows immediately if one can show
that the error signal e(t) = x(t)−x̂(t) and the observer gain
(M(t), N(t)) are well-defined and globally bounded on
[0, +∞). In what follows, we use a contradiction argument
to prove that this is indeed the case.

Consider the error dynamics (2.9) or, equivalently,
(2.7) and assume that it has a solution X(t) :=
(N(t), M(t), e(t)) which is neither well defined nor glob-
ally bounded on [0, +∞). Then, there is a maximal time
interval [0, tf) on which X(t) is well defined. In addition,

lim
t→tf

||(N(t), M(t), e(t))|| = +∞. (2.13)

That is, tf > 0 is a finite escape time of the dynamic system
(2.3)-(2.9).

Claim 1: N(t) cannot escape at t = tf .
If N(t) has a finite escape time tf , limt→tf

N(t) = +∞.
By construction, Ṅ ≥ 0 and N(t) is a monotone nonde-
creasing function. Thus, there exists a time t∗1 ∈ [0, tf ) such
that

N(t) ≥ C ≥ |xi(t)|, t ∈ [t∗1, tf).

This, together with Lemma 2.2, yields

∣∣xi − Nsat(
x̂i

N
)
∣∣ ≤ |ei|, t ∈ [t∗1, tf ). (2.14)

Using (2.14) and εi = ei/Li with L ≥ 1, we have

1

Ln
‖2Pb0‖α(C)β(N)

n∑
i=1

∣∣xi − Nsat(
x̂i

N
)
∣∣ · ‖ε‖

≤ ‖2Pb0‖α(C)β(N)
1

Ln

n∑
i=1

|ei| · ‖ε‖

≤
(M

c1
(c0α(C))2 +

c1β
2(N)

M

)
‖ε‖2, t ∈ [t∗1, tf )

where c0 > 0 is a suitable real constant.
In view of this estimation, it follows from (2.12) that

V̇ ≤ −M
(
N − c2 −

(c0α(C))2

c1

)
‖ε‖2, t ∈ [t∗1, tf ).

Since limt→tf
N(t) = +∞, there is a t∗2 ∈ [t∗1, tf ) such

that

N(t) ≥ 1 + c2 +
c0α(C))2

c1
, t ∈ [t∗2, tf ).

Using the last two inequalities and noting that M(t) ≥ 1,
we arrive at

V̇ ≤ −‖ε‖2 ≤ −ε2
1 = −

1

γ
Ṅ , ∀t ∈ [t∗2, tf ). (2.15)

Consequently,

+∞ = N(tf ) ≤ γV (ε(t∗2)) + N(t∗2) = constant, (2.16)

which is a contradiction.
Therefore, Claim 1 is true and N(t) is well-defined and

bounded on [0, tf ].
Claim 2 : M(t) is well-defined and bounded on [0, tf ].
By the boundedness of N(t), there exists a real constant

d > 1 such that ∆(N(t)) ≤ d, t ∈ [0, tf ]. Hence,

Ṁ = −M + ∆(N) ≤ −M + d, ∀t ∈ [0, tf ],

which implies that M(t) is bounded on [0, tf ].
Claim 3 : e(t) is well-defined and bounded on [0, tf ].
To show this claim, we rescale system (2.7) by introduc-

ing the transformation

ξi =
ei

L∗i
, L∗ = MN∗, i = 1, · · · , n, (2.17)

where N∗ > 0 is a constant to be determined later.
In the ξ-coordinates, the error dynamic system (2.7) can

be expressed as
ξ̇ = L∗Aξ + L∗aξ1 − LΓaξ1 −

Ṁ

M
Dξ

+b0
1

L∗n

[
F (x) − F (satN (x̂))

]
(2.18)

where ξ = (ξ1, · · · , ξn)T , a = (a1, · · · , an)T and Γ =
diag(1, N

N∗
, · · · , ( N

N∗
)n−1).

For the rescaled system (2.18), consider the Lyapunov
function W (ξ) = ξT Pξ with P satisfying (2.10). Then, a
straightforward calculation gives

Ẇ ≤ −(L∗ − c2)‖ξ‖
2 − c1

∆(N)

M
‖ξ‖2 + 2L∗ξT Paξ1

−2LξT PΓaξ1 +
2ξT Pb0

L∗n

([
F (x) − F (satC(x̂))

]

+
[
F (satC(x̂)) − F (satN (x̂))

])
(2.19)
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Using the boundedness of N(t) and M(t) and Lemma
2.5, we can obtain the following estimations:

|2L∗ξT Paξ1| ≤ ‖ξ‖2 + (L∗‖Pa‖)2ξ2
1

|2LξT PΓaξ1| ≤ ‖ξ‖2 + L2‖PΓa‖2ξ2
1∣∣2ξT Pb0

1

L∗n

[
F (x) − F (satC(x̂))

]∣∣ ≤ θ1‖ξ‖
2

∣∣2ξT Pb0
1

L∗n

(
F (satC(x̂)) − F (satN (x̂))

)∣∣
≤ θ2‖ξ‖ ≤ θ2

2‖ξ‖
2 + 1

where θ1 is a positive constant depending on C, while θ2 >
0 is a constant depending on C and the bound of N(t).

Substituting the four estimations into (2.19) and choosing
N∗ = max{3 + c2 + θ2

2 + θ1, N(tf )}, one has

Ẇ ≤ −‖ξ‖2 +
(
(L∗‖Pa‖)2 + L2‖PΓa‖2

)
ξ2
1 + 1

≤ −µW (ξ) + µ1ε
2
1 + 1, t ∈ [0, tf) (2.20)

where µ and µ1 are suitable positive constants.
From (2.20) it follows that d(eµtW )

dt
≤ eµt(µ1ε

2
1 + 1).

Hence,

W (ξ(t)) ≤ W (ξ(0)) + µ1

∫ tf

0

ε2
1ds +

1

µ
, ∀t ∈ [0, tf).

Note that Ṅ = γε2
1. Thus, the boundedness of N(t) on

[0, tf ] guarantees the boundedness of
∫ tf

0
ε2
1(t)dt. With this

in mind, it is concluded that W (ξ) is bounded on [0, tf ],
so is ξ(t). In view of (2.17) and (2.8), both e(t) and ε(t)
are bounded on [0, tf ] as well.

Putting the three claims together, we arrive at the con-
clusion that all signals N(t), M(t), e(t) are well-defined
and bounded on [0, tf ], which contradicts to the assumption
(2.13). Therefore, the dynamics system (2.3)-(2.9) has no
finite escape time over [0, +∞) and the property (i) holds.

By construction, N(t) is a monotone nondecreasing func-
tion. This, together with the boundedness property, implies
that limt→∞ N(t) = N∞. Consequently, it follows imme-
diately from the last equation of (2.3) that limt→∞ M(t) =
M∞.

Finally, we show that limt→∞ e(t) = 0. To this end,
observe that both ε1 and ε̇1 are bounded on [0, +∞).
Moreover, ε1 ∈ L2 as N(t) is globally bounded. By the
Barbalat’s Lemma, we have limt→∞ ε1 = limt→∞ e1 = 0.

On the other hand, boundedness of all the states
guarantees that the ω-limit set Ω of the dynamic sys-
tems composed of (1.4), (2.3) and (2.7) is nonempty,
closed and invariant. In view of limt→∞ e1 = 0, Ω ⊆
{(e1, e2, · · · , en, x, x̂, M, N)|e1 = 0}.

Note that ei+1 = ėi + Liaie1, i = 1, · · · , n − 1. By the
invariance of Ω, we conclude that e2 = e3 = · · · = en = 0
on Ω. Therefore,limt→∞ ‖e(t)‖ = 0. This completes the
proof of Theorem 2.3.

Using Theorem 2.3, it is easy to obtain an important
corollary which is devoted to the design of a global observer

for observable systems in the triangular form

żi = zi+1 + fi(z1, z2, · · · , zi), i = 1, 2, · · · , n − 1

żn = fn(z), y = z1 (2.21)

where z = (z1, · · · , zn)T ∈ IRn, and y ∈ IR are the system
state and output, respectively, fi(z1, · · · , zi), i = 1, · · · , n
are smooth functions with fi(0, · · · , 0) = 0.

Due to the lower-triangular structure, one can explicitly
construct a global change of coordinates x = Ψ(z) which
renders system (2.21) globally diffeomorphic to system
(1.4). As a consequence, we have the following conclusion.

Corollary 2.6: Assume that all the solution trajectories
of the lower-triangular system (2.21) from any initial con-
dition are well-defined and bounded on [0, +∞). Then,
a global convergent observer exists and can be explicitly
constructed.

III. APPLICATION AND SIMULATION

In this section, we give two examples to illustrate the
validity of the proposed global observer (2.3).

Example 3.1: Consider the Van der Pol oscillator

ẋ1 = x2

ẋ2 = −x1 + x2(1 − x2
1) (3.1)

y = x1

which is of the form (1.4).
It has been known that this oscillator is not stable at

the origin but its solution trajectories are well-defined and
globally bounded on [0. + ∞). In other word, Assumption
1.1 holds. By Theorem 2.3, one can explicitly design a
globally convergent observer for the planar system (3.1).

Following the algorithm given in section 2, we choose
a1 = a2 = 1 and γ = 5. To determine ∆(N) from F (x) =
−x1 + x2(1 − x2

1), we observe that

∣∣F (x) − F (satN (x̂))
∣∣ =

∣∣ 2∑
i=1

∂F

∂ξi

(ξ)(xi − Nsat(
x̂i

N
))

∣∣

≤ (| − 1 − 2ξ1ξ2| + |1 − ξ2
1 |)

( 2∑
i=1

∣∣xi − Nsat(
x̂i

N
)
∣∣)

≤
(
2 + 3(C + N)2

)( 2∑
i=1

∣∣xi − Nsat(
x̂i

N
)
∣∣) (3.2)

where C is the bound of x(x0, t) for any x0, and ξ ∈ IR2

is a point on the line between x and satN (x̂), and hence
|ξi| ≤ C + N, i = 1, 2. Noting that

(
2 + 3(C + N)2

)
≤

6(4
3 + C2)(N2 + 1), one can choose β(N) = N2 +1 , and

hence ∆(N) = (N2 + 1)2.
Substituting the parameters and function thus obtained

into (2.3) , one can get a global observer for system (3.1).
Fig. 1 shows the transient responses of the obtained ob-

server and Van der Pol oscillator, with the initial condition
(x1(0), x2(0), x̂1(0), x̂2(0)) = (1, 2, 3,−2).
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Fig. 1. Observation of Van der Pol oscillator
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Fig. 2. Estimation of the observable system (3.3)

Example 3.2: Consider the three-dimension system

ẋ1 = x2

ẋ2 = x3

ẋ3 = −x2 − 3x2
1x2, y = x1 (3.3)

whose solution trajectories from any initial condition are
closed orbits. In fact, it is easy to verify that for Lyapunov
function V (x) = 1

4x4
1 + 1

2x2
2 + 1

2 (x3
1 + x3)

2, its derivative
along the trajectories of system (3.3) is identical to zero.
Thus, system (3.3) satisfies Assumption 1.1.

Using the observer design method in section 2, one can
simply pick a1 = 1, a2 = 3, a3 = 1 and γ = 5. Similar
to what was done in the previous example, we can choose,
from the structure of F (x) = −x2−3x2

1x2, β(N) = N2+1
and hence ∆(N) = (1 + N2)2. Consequently, a globally
convergent observer of the form (2.3) can be obtained for
the autonomous system (3.3).

Fig. 2 gives the simulation results of the observer and the
autonomous system (3.3) starting from the initial condition
(x1, x2, x3, x̂1, x̂2, x̂3) = (2, 2, 2,−2, 4, 3).

IV. CONCLUSIONS

Under the global boundedness and observability condi-
tions, we have shown that a globally convergent observer

can be explicitly designed for autonomous systems. The
constructed observer is of high-gain type but different from
the traditional one [8] in the sense that the observer gains
here are composed of two time-varying components M(t)
and N(t), both of them are adaptively updated in order to
deal with the issue of the unknown bound of the solution
trajectories. The gain update law is reminiscent from the
recent work [17] on universal output control of nonlinear
systems with unknown parameters. What is new here is the
application of the saturated state estimates whose saturation
level N(t), compared with the one used in [7], is unknown
and required to be tuned on-line.

Although Assumption 1.1 does not require Lyapunov
stability of nonlinear systems, it prevents the observer (2.3)
being applicable to the autonomous system (1.1) or (2.21)
with unbounded solution trajectories. Relaxing Assumption
1.1 and extending Theorem 2.3 to nonlinear systems that
may not satisfy Assumption 1.1 will be an interesting topic
for future research.
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