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Abstract— The systems dealt with in flow control problems
are, in control terms, very complex, nonlinear and infinite
dimensional, even if the fluid flow is comparatively simple.
Plane Poiseuille flow, i.e. flow between two infinite parallel
plates is one of the simplest and best understood cases of
fluid dynamics. Controlling this flow is, however, still a very
challenging problem, even if it is assumed that deviations from
the steady-state are small enough for the governing equations
to be linearized. Recent work has shown that robust control
of 2D channel flow is possible without a spatial periodicity
assumption.

This paper will first execute an H∞ based robust control
law design for the 2D case and then proceed to the relatively
open problem of assessing the resulting performance using a
Navier Stokes CFD solver as a model of the ‘real’ process. The
results in this second part will be on the representation (to
ensure realistic results) and modelling of the disturbances used
and the control of 3D disturbances.

I. INTRODUCTION

Recently flow control has attracted considerable attention
in the fluids research community. One of the motivations
comes from the possibility of reducing drag on a body by
preventing or delaying transition from laminar to turbulent
flow. The systems dealt with in these problems are, in control
terms, very complex, nonlinear and infinite dimensional, even
if the fluid flow is comparatively simple. Plane Poiseuille
flow, i.e. flow between two infinite parallel plates is one of
the simplest and best understood cases of fluid dynamics.
Controlling this flow is, however, still a challenging problem,
even if it is assumed that deviations from the steady-state are
small enough for the governing equations to be linearized.

It has become a benchmark problem for developing control
algorithms for fluid flows and was considered in [1], [2], [3],
[4] among others. All these references make an assumption
that the flow is spatially periodical in the streamwise direc-
tion and subsequently, they use Fourier-Galerkin decompo-
sition to obtain independent dynamics for each respective
Fourier mode.

An interesting result is in [5] where tangential blowing
and suction was used instead of the normal one. Distributed
actuation and sensing was considered and a nonlinear decen-
tralized controller was developed. Conversely, this method is
applicable only for a limited range of viscosities.
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In [6], boundary control for ’discrete’ transpiration was
proposed, where blowing and suction takes place only along
short, periodically spaced sections of the wall. It is a model
of blowing/suction panels which are being developed and
considered for use in the aerospace industry. Then, assum-
ing point measurements, a reduced order multi-wavenumber
flow model was obtained. The modelling uncertainty was
estimated and taken into account in the H∞ control design.

In this paper we shall not impose the periodicity assump-
tion and we shall consider control of a spatially growing flow.
This practically important issue has not been addressed di-
rectly before, to the best of our knowledge. We shall consider
again the boundary control in the form of blowing/suction
panels and discrete-points measurements. Specifically, we
shall use four regularly spaced blowing/suction panels and
five sensors—which is sufficient to reduce the wall-shear
stress significantly near the actuation/sensing area and slow
down its growth further downstream. In this setting we
cannot apply Fourier decomposition and use finite differences
instead. By a technique based on the Redheffer star product
we obtain (pointwise) frequency-response data of the flow.
A low-order model is then fitted on these data. A modelling
uncertainty is estimated using a LMI-based procedure. This
procedure is derived from the frequency-domain model val-
idation ideas of [7]. Finally, a robustly stable H∞ controller
is designed for this model set.

The control design is tested in simulations with a nonlinear
Navier-Stokes solver in the loop and the main results are
reported in this paper. This paper will also give recent
results on the representation (to ensure realistic results) and
modelling of the disturbances used and the control of 3D
disturbances.

II. BACKGROUND

We consider a planar flow in an infinite channel of fixed
height. The flow is non-dimensionalised using the channel
half-height and the center-line velocity. We consider a coor-
dinate system as in Figure 1.
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Fig. 1. Coordinate system.
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Let p(x, y, t) be the pressure and, u(x, y, t) and v(x, y, t)
be the velocities in the direction of x and y axes, respectively.
The steady base flow is given by p(x, y, t) = −2x/Re,
u(x, y, t) = 1 − y2 =: U(y) and v(x, y, t) = 0 where
Re is the Reynolds number. Assume that the quantities
p̂(x, y, t) ≡ p(x, y, t)+2x/Re, û(x, y, t) ≡ u(x, y, t)−U(y),
and v̂(x, y, t) ≡ v(x, y, t) are small so flow is governed by
the linearized Navier-Stokes equations
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where ∇2 = ∂2/∂x2 + ∂2/∂y2. The boundary conditions
are û(x, 1, t) = v̂(x, 1, t) = 0, û(x,−1, t) = 0 and
v̂(x,−1, t) = −(dl(x)/dx). The last condition describes the
wall-normal blowing/suction. The function l(x) represents
the geometric configuration of the blowing and suction
elements. The function q(t) modifies the blowing/suction
according to the control law–it is the normalized suction
velocity through the wall. In the case of several independent
actuators we may consider q to be an m-dimensional column
vector and l an (1,m)-dimensional matrix.

To write the Navier-Stokes equations into the form used
in this study, we use the so-called modified stream function
as in e.g. [1]. Then a finite-dimensional approximation of
the result is obtained using (as in other work) a Chebyshev
expansion in the cross-channel direction and, since we do not
impose the periodicity assumption, finite-differences instead
of the Fourier expansion in the streamwise direction. Suppose
that the x-coordinate is discretized by regularly spaced
samples {xn, n = . . . ,−1, 0, 1, . . .} and let δ = xn −
xn−1. Then, approximating the partial derivatives present by
symmetric differences and a Galerkin procedure (see [8]) we
produce (the details are in [9]) for the n-th grid point a set of
2(M +1) ordinary first order equations which can be written
as

ẋn = Axn + B1nq + B2nq̇ + B−2xn−2

+ B−1xn−1 + B̂−1ẋn−1

+ B+1xn+1 + B̂+1ẋn+1 + B+2xn+2 (4)

where xn =
[

ξn0 · · · ξnM

]T
. Notice that the matrices

above are the same for all grid points, except for B1n and
B2n which express the effect of the boundary input and

depend on l(xn−2), . . . , l(xn+2).
The output approximating shear at the n-th gridpoint

becomes

zn =

N∑
n=−N

Cxn + Dnq (5)

To condense the notation, we combine the equations for a
set of 5 grid points as
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Here the sub-script ib and if stand for input-back and input-
forward, respectively. The outputs fed-back and fed-forward
from this system are denoted by
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(7)

These equations approximate the behavior of a channel
segment over 5 grid points, i.e. of length 4δ. We can con-
veniently form the transfer matrix G

n(s) mapping Laplace
transform images of vn

ib, vn
if to the Laplace images of

vn
ob, vn

of . To get a model of two adjacent segments of
total length 9δ we need a feedback interconnection of G

n(s)
and G

n+5(s) in the form of a Redheffer Star Product and
denoted as Gn ∗ Gn+5. Then, a long stretch of the channel
flow is obtained as a chain of star products,

Gn−5N1(s)∗. . .∗ Gn(s)∗ Gn+5(s)∗. . .∗ Gn+5N2(s) (8)

Theoretically, a state-space representation of a channel could
be build up this way as well, but that would require huge
computational costs and storing enormous amount of data
which would be of little use afterwards. Instead, we shall
store only frequency domain data, so the above cascade
of star products is computed pointwise, for a finite set of
{jωi, i = 1, . . . K}. Star-product over complex matrices is
a simple operation. Low-order transfer functions from the
boundary input to the shear output will be fitted on this
frequency-domain data.

The boundary conditions at the up- and down-stream ends
of the channel can be described as transfer matrices from
vn−5N1

ob to vn−5N1

ib and vn+5N2

of to vn+5N1

if , respectively.
In our case, we shall leave them zero and consider a
long enough channel so the conditions at its ends have an
negligible effect on the relevant mid-section. On the other
hand, if we connected vn−5N1

ib with vn+5N2

of and vn+5N1

if

with vn−5N1

ob we would obtain the periodic case, studied in,
for example, [1], [2], [3].

We assume that the dynamics of the actuator is described
by

ẋp = Apxp + Bpu, q = Cpxp (9)

where u is the control input. The derivative of q is then
obtained as

q̇ = CpApxp + CpBpu (10)
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In the following, we shall consider an actuator model of
Ap = −1, Bp = 100 and Cp = 1. We take Re = 104.

As for the controlled boundary condition, we consider
dl(x)/dx a rectangular pulse of width 0.5π and height
1. The function l(x) is zero at the upstream end. This
function is a model of blowing/suction panels which are
under development and considered for use in the aerospace
industry.

Strictly speaking, this function is not smooth enough and
hence the defining PDE has singularities at points where
dl(x)/dx is not continuous. Because of the non-zero grid
size, the numerical procedure overcomes these singularities.
This affects shear output data from channel segments con-
taining this singularities; elsewhere, the data converge well
as δ → 0. Hence, we must avoid these points when placing
shear sensors.

Up to now we have been discussing single-input-single-
output system; however, with no loss of generality, we can
obtain frequency-domain data directly from the scalar case.
Consider there is a set of k sensors regularly spaced in
the intervals of δs and a set of m panels with a distance
δp between their centers, we can get the transfer matrix
Guz(s) = [Guz(s, x+(i−1)δs+(1−j)δp)]i=1,...,k; j=1,...m

where the scalar function Guz(s, x) is as in the previous
section; x is now fixed. In what follows we shall consider
δs = δk = π. This separation between panels/sensors is
chosen so that the controller can most efficiently attack the
disturbance of 2π wavelength. The constant x was chosen as
x = 6.2π which means that sensors are placed at the distance
of 0.2π downstream from the panels.

Each of the above transfer matrices is chosen as an
Nij-order proper rational function. This separation between
panels/sensors is chosen so that the controller can most
efficiently attack the disturbance of 2π wavelength. The
constant x was chosen as x = 6.2π which means that sensors
are placed at the distance of 0.2π downstream from the
panels.

For uncertainty representation we use the well known left-
coprime factor uncertainty. Let the low-order representation
of the flow, obtained from the fitting procedure be Ĝuz(s)
and its left-coprime factorization Ĝuz(s) = M(s)−1N(s).
One possible choice is the normalized left-coprime factor-
ization. Then, we shall consider the model set

{
(M + W1∆1W2)

−1( N + W1∆2W3) (11)

such that ∆1, ∆2 stable, ‖[ ∆1, ∆2]‖∞ < 1. Here
W1, W2, W3 are stable and minimum phase weighting
matrices. First, we shall consider the following problem:
given fixed weights and set of frequency points {ωi}

k
i=1,

are the data Guz(jωi), i = 1, . . . K consistent with the
model? The details of how the consistency of this model is
checked can be found in [9]. In the following, for the sake
of simplicity, we shall restrict ourselves to diagonal weights
with W1 a constant, W2 band-pass and W4 band-stop.

For control system design we need a disturbance model.
Although its accuracy does not affect the closed-loop sta-
bility (and hence its error is not included to the overall

modelling uncertainty) it is important for the performance.
First we consider the problem: If we measure the shear
disturbance at a point x, can we estimate the value of shear
at x+∆x at the same time? The answer is yes, provided it is
far downstream from its source and ∆x is close to the basic
wavelengths for the fast growing components (i.e. approx
2π) (or their integer multiples). Hence we use

F2π(s, x) =
Guz(s, x + 2π)

Guz(s, x)
(12)

It follows from the sensor configuration proposed in the
previous section that we need to estimate the disturbance
also at x+π. This is not possible with the same accuracy as
in the previous case. It is due to the fact that the amplitude
gain grows with x not linearly but with a (spatial) harmonic
component with a period of about 2π. We fit a low-order
rational function F̂π(s) on −

√
F2π(s, x) to obtain at least a

good estimate for the phase.
For a more efficient disturbance attenuation we shall put

one additional sensor 4π upstream from the first sensor con-
sidered in the previous sub-section. It is far enough upstream
from all panels so that the effect of wall transpiration on this
sensor’s measurements is negligible. It measures directly the
oncomming wave-packet (assuming the measurement noise
is negligible in the relevant frequency range). The model of
F̂4π(s) is computed the same way as that of F̂2π(s). The
overall disturbance transfer matrix from the shear measured
far upstream to disturbance components at the other sensors
is then given by

F (s) =
(
F̂4π(s)

[
1 F̂π(s) F̂2π(s) F̂2π(s)F̂π(s)

])T

(13)
The control configuration in the H∞ control setting is

in Fig 2. There are two sets of external inputs—w1 dis-
turbs the coprime-factor model, and w2 which generates the
flow disturbance measured at the far upstream sensor. It is
filtered through W4(s) which passes only the frequencies
in the growth region and enters the disturbance model
F (s) discussed in the previous section, and is fed to the
controller as measurement y1. The measurements from the
other sensors are in the other measurement y2. The penalized
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Fig. 2. Control configuration

outputs z1, z2 are filtered shear measurements and controls,
respectively. Magnitudes plots of the frequency dependent
weights are shown in Fig 3 (with all other details regarding
the weight selection again given in [9]).
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Fig. 3. Magnitudes of weights w2(s) (solid), w3(s) (dashed), W4(s)
(dash-dotted)

For this weight combination, the model set is consistent
with our extensive data set. To guarantee robust stability for
this set of plants it is sufficient if the H∞ performance index
is less than 1. For the above problem formulation we found
a controller which guarantees the H∞ performance index
γ = 0.96.

The plant order is 127; of those, 38 is the order of the
model describing the relation between control and shear,
order of the disturbance model is 13; the rest belongs to the
weights. This will result in a controller of the same order,
which is very high for implementation. However, it can be
readily reduced by the standard Hankel-optimal reduction
procedure to 30 which is practically feasible, without per-
formance degradation. Reduction down to 20 results in a
slight but acceptable performance degradation.

A. Initial Testing

In this section we shall consider the full-order controller.
For the frequency-domain analysis, the disturbance has been
simulated as an action of a blowing-suction panel (the
same as those used for control) placed about 80π upstream
from the panels. This shows that control action reduces
shear magnitude significantly and slows its growth. Only
the frequencies around the growth interval are shown—
elsewhere, there is no significant difference between these
two cases. Moreover, the design directly penalizes shear only
at four points where the sensors are placed. These facts can
be observed on the magnitude versus distance plot for fixed
frequency ω in Fig 4. Notice, that here the magnitudes are
scaled linearly. The positions of panels and sensors are shown
in this figure.

III. 3D IMPLEMENTATION

A true test of ‘robust’ control in a fluid dynamics setting
comes in the form of the control of three-dimensional dis-
turbances. The control of coherent structures in the flow is
of obvious benefit, particularly if the structures can clearly
be identified as an active part of the transition process,
see, for example, [10], [11]. Here we seek to apply the
robust controller designed in the two-dimensional setting, to
3D disturbances in a three-dimensional flow. In particular a
disturbance is initiated upstream in the flow by means of
a blowing/suction panel of a short width in the spanwise
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Fig. 4. Magnitude versus distance: controlled shear (solid), uncontrolled
shear disturbance (dashed), control multiplied by 104 (dotted); triangles:
positions of four sensors (the fifth-one is further upstream)

direction. This generates Tollmien-Schlichting type distur-
bances, which retain their two-dimensional characteristics
downstream in the flow for values in the spanwise direction
z, close to that of the initial disturbance. Indeed if the
disturbance source was distributed completely across the
span, then essentially only a two-dimensional disturbance
would exist throughout the domain. However, as the dis-
turbance propagates from the top edge of the disturbance
source, three-dimensional characteristics of the disturbance
arc outwards and propagate both in the z and x directions.

The streamwise-dimension of the 3D domain (see Fig-
ure 5) considered for the long channel lengths are 24π.
The walls are located again at y = −1 and y = +1
and a spanwise (z) dimension of 20 non-dimensional units
is considered. The boundary conditions for the spanwise
limits consist of mirror symmetry conditions. This allows the
placement of the generating panel pair at z = 0 to effectively
double the domain considered in a spanwise sense to 40
non-dimensional units. Numerically the same resolutions in
wall-normal and streamwise directions to that of the 2D
case considered in the previous work are maintained. In the
spanwise sense for the long-channel-length runs a relatively
coarse resolution of 80 points across the span is used. This
choice of resolution was based upon investigative simulations
along a shorter channel length of 6π for finer and coarser
resolutions.

For resolutions of 50% or lower than this, it was found that
the 2D regions of the induced perturbation discussed below,
no longer maintain their growth rates analogous to the purely
two-dimensional cases of the previous section. In addition,
two times and four times greater resolutions in the spanwise
direction, were computed on still shorter channel lengths
to observe inner three-dimensional perturbations, which are
discussed elsewhere [12]. A non-dimensional time-step of
0.005 or smaller is used throughout, in keeping with the
time step requirements found in the purely 2D setting of the
previous work.

Mathematically the required time-varying boundary con-
dition for the disturbance-generating panel pair can be given
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by:

v(x, y = −1, z, t) =

⎧⎪⎨
⎪⎩

f(t) x ∈ [π
2
, π] and 0 ≤ z < 2

−f(t) x ∈ [ 3π
2

, 2π] and 0 ≤ z < 2

0 elsewhere
(14)

where f(t) is a prescribed time-varying amplitude. f(t) is
chosen so as to excite the 2D perturbation of ω = 0.2373,
that is f(t) = sin(t(0.2373)).

An ad-hoc control scheme is devised based upon the pre-
vious MIMO scheme for the 2-dimensional channel. A series
of rows of these 2-dimensional panel-pair-based controllers
are spread spanwise across the channel as can be seen in
Figure 6.

Each row is essentially an approximation of a two-
dimensional problem, with the shear perturbation being mea-
sured in the center of each row. In an effort to maintain a
practically realizable scheme, only a small number or rows
are taken in the spanwise direction. There is no compu-
tational reason why each point in the spanwise direction
couldn’t be set up as an independent 2D controller however,
this would be very far from being practicable. Although it
is more practical to have fewer rows of greater width in
the spanwise direction, the cost of this is that each row
deviates further away from the 2-dimensional assumption.
In the case that the flow differs abruptly in the spanwise
direction, we may find that whilst a given row may be
attenuating a disturbance on one side of the row, it may in
fact be simultaneously amplifying disturbances on the other
side.

Before the control was applied, the wall-shear-stress per-
turbation for this flow was taken across the entire bottom
wall as can be seen again in Figure 7. Note that this figure
makes use of the mirror symmetric boundary conditions,
to double the effective span of the domain. It can be seen
that the disturbance propagates in a similar fashion to a 2D
disturbance for all points that share a spanwise coordinate
with that of the disturbance-generating panel pair. As a result
it makes obvious sense to place the first controller row of
panels downstream of this generating panel pair of a panel
width roughly the same width to that of the generating panel
pair. The curvature of the wave then starts to increase slowly,
and so a series of thinner rows are placed across the span.

The configuration used here consists of four independent
rows (0−3) of the two-dimensional MIMO robust controller.
The width of the first row is 4 in the spanwise direction.
The widths of the remaining rows are all 2 respectively. The
start of the first blowing/sucking panel pair for all rows is at
10π in the streamwise direction. Consequently the end of the
last panel pair for each row is at 18π and sensor locations
in the streamwise sense at 8.8π, 12.8π, 14.8π, 16.8π and
18.8π respectively. The sensor locations for each row in the
spanwise sense are at the half width of each row, i.e. 2 for
the row 0, 5 for row 1, 7 for row 2 and 9 for row 3. Figure 8
gives the result after control is applied.

Note that these rows of 2D controllers only measure the

shear stress perturbations at single points for each of the
5 sensor locations. As expected, each row acting on its
sensor information attenuates its local approximation of a
two-dimensional wave. Note that two adjacent rows may be
blowing in opposite directions, e.g. rows 0 and 1 here. This
will cause a sudden change in the shear-stress when the
panels meet. Similar results to those given here have also
been obtained for this case, and hence this simple extension
of the controller designed for 2D disturbances can deal with
at least this simple 3D perturbation.

Y

X

Z

Disturbance

Source

Fig. 5. Three-dimensional channel showing disturbance source on the lower
wall.
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Row 2

Row 3
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6

8

10π 12π 14π 16π 18π

Fig. 6. Actuator configuration with four rows of the two-dimensional
controller placed across the lower wall of the channel.

IV. CONCLUSIONS

This paper has considered the problem of robust control
law design and evaluation for channel flow without the need
to make a spatial periodicity assumption (as in previous
work). A means of H∞ based robust control law design has
been given together with a sample result of this control law
in action with a CFD simulator used as the real plant model.

The above results are for 2D flow and here the first
results on the extension to the 3D case have been given. The
complexity of the control law for the 2D case clearly suggests
that this extension will be a non-trivial problem requiring
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Fig. 7. Wall shear stress perturbation on the lower wall before the control
is applied.
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Fig. 8. Wall shear stress perturbation on the lower wall after the control
is applied at a non-dimensional time of t = 384.

much further research. Here we have demonstrated that the
control law designed for the 2D flow has some capability
against 3D disturbances.
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