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Abstract— In the last years, the control community has
developed several and powerful methods to control nonlinear
systems, especially for underactuated mechanical systems. Thus,
methods based on passivity, like Interconnection and damping
assignment passivity–based control (IDA-PBC) and Controlled
Lagrangians have solved many interesting control problems for
particular full classes of systems. Usually, the solutions of these
methods relies on solving a set of partial differential equations
(PDEs), which is not always possible.

This paper presents a constructive methodology to control
underactuated mechanical systems with 2-DOF, by means of
classical feedback linearization and Lyapunov design. The steps
of the design are presented following a simple pseudo-code1,
that allows us to redesign a proposed fictitious output in
a constructive way. The methodology has been tested with
three very well-known underactuated mechanical systems: the
inertia wheel pendulum, the pendulum on a cart and the
rotary pendulum. The obtained solution for the inertia wheel
pendulum takes into account the friction, since recent works
have shown that it cannot be neglected. In the case of the
planar pendulum on a cart, the solution is quite similar to
the one obtained by Controlled Lagrangians but with better
performance, and, furthermore, our planar pendulum solution
paves the way to obtain a new solution for the rotary pendulum,
or the so–called Furuta pendulum, that, to the best of our
knowledge, has the largest attraction basin presented and
experimentally tested so far. The attraction basin tends to the
whole upper half plane by increasing a control gain. The only
thing that hampers us to do this, is the actual saturation limit of
the control input. In spite of the latter, successful experimental
results for this rotary pendulum solution are given.

I. INTRODUCTION

The widely–used geometric control has solved success-
fully many classes of dynamical control problems. Moreover
these differential geometric techniques have been also used to
understand input-output approach and full state linearization,
normal forms and zero dynamics of nonlinear systems (see,
e.g. [1], [3]). In this sense, the flatness approach has been
related to the feedback linearization, and, for instance, in the
case of a system with a single control input the corresponding
output is called differentially flat when the system is fully
linearizable via static state feedback (see [2] and [5]). In
the cases in which it is not possible to linearize the whole
system by a static feedback, a partial feedback linearization
is still possible. This partial feedback linearization transforms
the system dynamics into two parts: the external dynamics,
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1Friendly called “cook-book” by a reviewer.

which becomes linear; and the internal nonlinear dynamics
(locally characterized by the zero dynamics). This paper
presents a methodology to control 2-DOF underactuated
mechanical systems by means of output redefinition, Feed-
back Linearization and Lyapunov design. The methodology
is based on the construction of a fictitious output through
which the asymptotic stabilization at the origin of the system
is achieved. We present three applications to show how to
construct a suitable fictitious output jointly with the design
of an external controller by means of Lyapunov’s theory.
The technique yields excellent results in the theoretical and
experimental issues. In fact, from the theoretical point of
view, the classical–state–feedback linearization jointly with
the proposed methodology yields relations with other control
techniques, which will be pointed out through the paper.

The methodology has been tested with three very well-
known underactuated mechanical systems: the inertia wheel
pendulum, the pendulum on a cart and the rotary pendulum.
In the case of the inertial wheel pendulum, the model
proposed takes into account the friction. The solution given
in [8] did not take into account the friction and the implemen-
tation of the controller did not succeed as expected. On the
other hand, in [19] the importance of the friction to stabilize
this system was shown. Even though, with friction, the
solution proposed shows a clear relation with the Differential
Flatness approach [2], [5].

For the pendulum on a cart, we start, motivated by a
cyclic variable2, choosing as the fictitious output a function
quite similar to the integral of the conjugate momentum.
Then, this could have a relation between the chosen output
and the phase shift [13] and, therefore, with the Controlled
Lagrangians method [6]. Since with this output, we cannot
fulfil the objective of stabilizing asymptotically the zero
dynamics, therefore we redesign this output using the con-
structive approach proposed. Due to this redesign the solution
obtained improves the performances obtained in [6] by
Controlled Lagrangians and, in [10] and [15] by Forwarding.
This improvement is due to a new control term which makes
the zero dynamics converge faster. The region of attraction
obtained is quite similar. The largest region of attraction for
this pendulum was given in [10], [21] by IDA–PBC, and it
was exactly the whole upper half plane, but, nevertheless,
we only use this application to pave the way to obtain the
solution of the rotary pendulum.

The last application we propose, is the natural extension
of the one before, the rotary pendulum. The main difference

2It does not appear in the equations of motion [20].

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeB02.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 4909



between the pendulum on a cart and the rotary pendulum
is that the latter does not have a feedforward form, then
it is not possible to control it with a cascade technique as
the one proposed in [16], due to that the main growth–
restriction assumption is not fulfilled. We only are interested
in stabilizing the upper position of the pendulum, not to
swing it up from any position, whose solution was given in
[18]. To prove stability we make use of an explicit Lyapunov
function (unknown so far for this system). The solution
proposed enlarges the largest region of attraction obtained
so far for this system in [7], which depends on the physical
parameters of the system. The solution can stabilize the
upper position from any point over the upper half plane3.
The excellent performance and a large region of attraction
was checked in the actual laboratory pendulum. For others
applications we refer the reader to [22].

The outline of the paper is: Section II describes the
constructive–design pseudo-code. In section III, the well-
known systems commented above are controlled by means
of this methodology. The experiments are given at the end
of this section. And, finally, a conclusion section.

II. CONSTRUCTIVE OUTPUT

The class of underactuated mechanical systems considered
is the one with a single control input and two degrees of
freedom (2-DOF). A simple iterative pseudo-code can be
stated in order to find an output, in a constructive way, which
allows to linearize the system by means of a static state
feedback. For, we start from the system obtained by applying
the collocated partial feedback linearization or so–called
Spong’s normal form [23]. The generalized coordinates for
the corresponding 2-DOF are: θ for the non–actuated joint,
and x for the actuated one.

For this kind of systems, we propose the following general
structure for the fictitious outputs:

a) η = θ + f(θ, x)
b) η = x + f(θ).

Next, a pseudo-code that explains how to design a con-
troller through a fictitious output, that in turn has to be
designed, is stated:

1. Check if the system is full state linearizable [1].
1.1 If so, choose an output of the form a).
1.2 If not, choose the option b) as the output.

2. Derive the output r times until the control signal appears
explicitly.

2.1 If r = n, with n the dimension of the system, the
system is full state linearizable by a static feedback of the
output, which will represent the flat output of the system.
Go to 5.

2.2 If r < n, then the system can be only partially
linearized and the resulting system is characterized by its
zero dynamics. Go to 3.

2.3 If r is not defined, then another function has to be
chosen as the output candidate. Go to 2.

3In [17] the existence of a semiglobal stabilization was pointed out.

3. Analyze the stability of the zero dynamics (ZD)
3.1 If the ZD is unstable, then another function has to be

chosen as the output candidate. Go to 2.
3.2 If the ZD is asymptotically stable, go to 6.
3.3 If the ZD is stable but not asymptotically, go to 4.

4. At this point there are two possibilities,
4.1 Add to the output candidate a term derived from the

passive output of the system, in such a way that a Lyapunov
function can be obtained to prove asymptotic stability of the
zero dynamics. If this is not possible to achieve or we are
also interested in local exponential stability (LES), then go
to 4.2. In other case go to 4.3.

4.2 To guarantee Local exponential stability, the Jacobian
of the zero dynamics will be computed and modified in order
to be Hurwitz. This will imply to add to the output candidate
an appropriate term derived from the new Jacobian. Go to
4.3.

4.3 At this point, integrate the output derivatives until
get the new output. If necessary define new states but taking
into account the relative degree of the system. Redefine
if necessary a new output from a derivative of the output
candidate. Go to 6 to achieve local asymptotic stability for
the full system, or go to 7 to try to achieve global asymptotic
stability.

5. A linear feedback of the external state, given by the output
and its derivatives, stabilizes global and asymptotically the
origin of the full system [3].

6. A linear feedback of the external state, given by the output
and its derivatives, stabilizes local and asymptotically the
origin of the full system [3]. In order to try to achieve global
asymptotic stability go to 7.

7. The following Lyapunov function candidate is proposed
V = E0 + ηT

v ηv , where E0 is the energy of the zero
dynamics sub–system and ηv is the new external state which
is related to the output. Compute V̇ and choose if possible
an appropriate u that makes V̇ be negative definite.

III. APPLICATIONS

A. Inertia Wheel Pendulum With Friction

As a motivating application we propose the Inertia Wheel
Pendulum. The equations of motion can be expressed as
follows:

(1 − ε)ϕ̈ = (sin ϕ − kϕ̇ − u) (1)

ε(1 − ε)γ̈ = (−ε sin ϕ + εkϕ̇ + u) (2)

where ϕ (θ in the pseudo-code) is the non-actuated variable,
γ is the actuated variable (x in the pseudo-code), ε < 1 is
the inertia relation and k > 0 the friction coefficient.

In this case, the system is full state linearizable considering
the state to be stabilized as the vector (ϕ̇, ϕ, γ̇). Thus, the
fictitious output will be like the one in the option a).

η = ϕ + f(·)
η̇ = ϕ̇ + ḟ(·)

(1 − ε)η̈ = (sinϕ − kϕ̇ − u) + (1 − ε)f̈(·)
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Since the system is full-state linearizable, the input control
can only appear at the nth derivative. Designing f̈(·) to
cancel the friction and the input control signal yields

(1 − ε)f̈(·) = kϕ̇ + u (3)

In this way, the second derivative of the chosen output
does not depend on the u and the third derivative can be
compute without introducing a new state variable.

(1 − ε)η̈ = sin ϕ

(1 − ε)η(3) = ϕ̇ cos ϕ

(1 − ε)η(4) =
(

sin ϕ − kϕ̇ − u

1 − ε

)
cos ϕ − ϕ̇2 sin ϕ = ν

It can be noticed that choosing f̈(·) the system has relative
degree 4. In this case, a linear controller is intended to be
applied in order to control a cascade of 4 integrators, where
the external law is given by: ν = −k1η−k2η̇−k3η̈−k4η

(3),
where ki; i = 1, ..., 4, are positive constants. In order to
apply this control law η and η̇ has to be computed, which
depend on f(·) and ḟ(·) respectively. To obtain f(·), we use
the expression (3) and the equations of motion (1–2) of the
system. In this way we get,

(1 − ε)f̈(·) = εϕ̈ + εγ̈ + kϕ̇

Integrating twice with respect to the time, the above
expression yields,

(1 − ε)f(·) = εϕ + εγ + k

∫ t

0

ϕdt

Substituting from the definition of η the equations for η
and η̇ read

(1 − ε)η = ϕ + εγ + k

∫ t

0

ϕdt

(1 − ε)η̇ = ϕ̇ + εγ̇ + kϕ

It can be seen that in the output η and in η̇ the variables
γ, γ̇ and

∫ t

0
ϕdt appear, where the last one is a new state

variable. If we are interesting in stabilizing asymptotically γ̇
the following change of coordinates is proposed.

F = εγ + k

∫ t

0

ϕdt

In this way the equations given by η and its derivatives
yield:

(1 − ε)η = ϕ + F

(1 − ε)η̇ = ϕ̇ + Ḟ

(1 − ε)η̈ = sin ϕ

(1 − ε)η(3) = ϕ̇ cos ϕ

(1 − ε)η(4) =
(

sin ϕ − kϕ̇ − u

1 − ε

)
cos ϕ − ϕ̇2 sin ϕ = ν

To recapitulate, there are 4 derivatives of the output
and 4 state variables to control, (ϕ, ϕ̇, γ, F ), therefore, the
considered dynamics is full state linearizable by a static state
feedback.

Isolating u, it is easy to notice that the linearizing feedback
law is not valid when cos ϕ = 0, therefore it is only useful to
stabilize asymptotically the origin with a domain of attraction
in the set (ϕ, ϕ̇, γ̇, F ) ∈ (−π

2 , π
2

) × R
3.

If an appropriate trajectory in ϕ is imposed, such that its
integral value goes to zero, then γ will go to a neighbourhood
of zero. This could be achieved taking advantage of the
flatness property of the output. Since the system is locally
linearizable by a static state feedback and in this system there
is a single input control signal, the chosen output is locally
flat (see [5]). In this way we can express the state variables
as functions of the output and its derivatives. In this case
expressing ϕ = arcsin((1−ε)η̈) and imposing an appropriate
trajectory in η̈, γ could be stabilized in a neighbourhood of
zero.

B. Pendulum on a cart

The dynamic equations of the pendulum on a cart can be
rewritten (see [11]) using the collocated partial state feedback
from [23] as

θ̈ = a sin θ − b cos θu (4)

ẍ = u, (5)

where a = g
l , b = 1

l , l is the length of the pendulum, g is
the gravity acceleration and u is the new control input. It
can be proved that the system is not full-state linearizable.
Thus, following the pseudo-code in section II and choosing
the output b) η1 = x+f(θ), the second derivative reads after
several manipulations 4

η̈1 = u(1 − f ′(θ)b cos θ) + f ′(θ)a sin θ + f ′′(θ)θ̇2 = ν (6)

where ν is the external control. The linearizing controller is
obtained isolating the input control u, thus,

u =
−ν + f ′(θ)a sin θ + f ′′(θ)θ̇2

f ′(θ)b cos θ − 1
.

The corresponding zero dynamics is obtained zeroing the
output η, its derivatives and ν, yielding

θ̈ = a sin θ − b cos θ

(
f ′(θ)a sin θ + f ′′(θ)θ̇2

f ′(θ)b cos θ − 1

)

u0 =
f ′(θ)a sin θ + f ′′(θ)θ̇2

f ′(θ)b cos θ − 1
, (7)

where u0 is the control input u for the zero dynamics. Now
we must choose the free function f(θ) in order to stabilize
the zero dynamics. Furthermore, we know by the output
definition if η1 = 0 and f(0) = 0 then x must be zero.
It is very interesting to enlighten that choosing f(θ) ∝ sin θ,
the linearizing controller u with ν = 0 is essentially the
conservative part of the controller obtained in [6], [10] and
[15]5. At this point we choose f(θ) = k1 sin θ. Now, it is

4For functions with one scalar argument we will use (·)′ to denote
differentiation with respect to its argument.

5The controllers given in [6], [10] and [15] were based on energy shaping
methods, and were compound of two parts, the conservative and dissipative
ones.
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easy to see that this zero dynamics has the following energy
function

E0 =
1
2
(k1b cos2 θ − 1)θ̇2 + a(1 − cos θ). (8)

Notice that this energy function is a Lyapunov function
candidate if and only if the set {θ : k1b cos2 θ−1} is positive.
Using this Lyapunov function candidate, the asymptotically
stability at the origin (θ, θ̇) = (0, 0) cannot be proved.
According to the proposed pseudo-code the output η will
be modified to achieve asymptotic stability of the origin.
Since the zero dynamics (7) is the dynamical equation of a
simple pendulum with energy (8), we only need to add a
term in the output η such that the derivative of the energy
function yields the passive output [12]. Thus, we split the
control action into two terms, i.e. u0 + u1, being u1 the
corresponding term added to the output η1. Thus, it yields

Ė0 = −(k1b cos2 θ − 1)b cos θθ̇u1, (9)

and then choosing u1 such that Ė0 ≤ 0, it has a zero dynamic
asymptotically stable. Thus, we choose

u1 � k2
θ̇ cos θ

(k1b cos2 θ − 1)
. (10)

Now, the new output η2 is built from the new zero dynamics
as follows,

η̈2 = η̈1 + k2θ̇ cos θ

η̇2 = η̇1 + k2 sin θ

At this point, we have a zero dynamics with the origin
asymptotically stable. Furthermore, it can be proved that
choosing suitable control gains, the origin of the zero dy-
namics is also LES6. Notice that the system considered is
of order 3, because we do not care about the x–coordinate
and then we will only need to use one derivative of the new
output redefined as η̇2. In this way, the output is derived once
and the system is of third order. Therefore the zero dynamics
is of order 2.

Proposition 1: The pendulum on a cart system (4–5) with
the state feedback given by

u =
k1 sin θ

(
a cos θ − θ̇2

)
k1b cos2 θ − 1

+
k2θ̇ cos θ

(k1b cos2 θ − 1)
, (11)

and the control gains k1 > 1/b > 0 and k2 > 0, ensures
local exponential stability of the origin of its zero dynamics
(θ, θ̇) = (0, 0).

Proof: By definition of the zero dynamics η̇2 = η̈2 = 0.
Linearizing this zero dynamics around the origin (θ, θ̇) =
(0, 0), it is straightforward to see that all eigenvalues λi,
i = 1, 2, of the characteristic polynomial satisfy Re[λi] < 0,
with the control gains given in the proposition.

6Locally Exponentially Stable

Local Asymptotic stability

Now, we need to design the external controller ν. Taking
into account that x is a cyclic variable of the system, the
new state to be stabilized will be chosen as [θ, θ̇, η̇2].

A linear external controller

ν = −k3η̇2 (12)

where η̇2 = ẋ + k1θ̇ cos θ + k2 sin θ, would be sufficient
to achieve local asymptotic stability (LAS) for the whole
system (4–5), since the origin of the zero dynamics is
asymptotically stable [3], furthermore in this case is also
LES. Since the main objective is to enlarge the region of
attraction, the external controller will be stabilized using a
Lyapunov function.

External controller based on Lyapunov

We proposed the following Lyapunov function candidate
composed of two terms: the energy function E0 above
mentioned, given by equation (8), and from (12) a quadratic
function of η̇2. Therefore the Lyapunov function candidate
reads

V = E0 +
1
2
k3η̇

2
2 . (13)

Proposition 2: The origin (θ, θ̇, ẋ) = (0, 0, 0) of the
pendulum on a cart system (4–5), with k1,k2 as defined
in Proposition 1 and positive k3 and k4, is locally asymp-
totically stable with a domain of attraction in the set
(θ, θ̇, ẋ) ∈ (− arccos(1/

√
k1b), arccos(1/

√
k1b))×R

2. Fur-
thermore the function (13) is a Lyapunov function in this set
with the state feedback given by

u =
−ν + k1 sin θ

(
a cos θ − θ̇2

)
+ k2θ̇ cos θ

k1b cos2 θ − 1
(14)

ν = −k4

(
bθ̇ cos θ + k3η̇2

)
Proof: The Lyapunov function candidate (13) is positive

definite in the set {θ : cos2 θ > 1/k1b} and its derivative
along the trajectories of the system (4–5) yields

V̇ = ν
(
bθ̇ cos θ + k3η̇2

)
− k2bθ̇

2 cos2 θ

and choosing the ν proposed, yields

V̇ = −k4

(
bθ̇ cos θ + k3η̇2

)2

− k2bθ̇
2 cos2 θ ≤ 0

It only remains to prove, from La Salle, that the largest
invariant set in which V̇ = 0 is the origin. It is easy to
see that in order to make V̇ = 0, the two terms have
to be zero, and from the second one θ̇ has to be zero,
since the cos θ �= 0 in the set given in the Proposition. If
θ̇ = 0 ⇒ V̇ = −k4(k3η̇2)2 = 0 and then η̇2 = 0. The
fact that η̇2 = 0 implies ẋ = −k2 sin θ. The derivative
with respect to the time of the latter identity yields ẍ = 0,
so ẋ = cst, and therefore u = 0 from the equations of
motion. Now, u = 0 implies u0 = 0 and therefore either
sin θ = 0 or cos θ = 0. Since cos θ �= 0, the only possibility
is sin θ = 0 ⇒ θ = 0 and therefore ẋ = 0.
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C. Rotary pendulum

Consider the pendulum shown in Fig. 3. The arm shaft
(corresponding to the angle ϕ) is subject to a torque, while
no torque is applied directly to the pendulum shaft (angle
θ). Therefore, this is an underactuated system. The system
coordinates are: θ = angle of pendulum from the upward
vertical, ϕ = angle of arm from a fixed vertical plane. As
pointed out in [10], we can rewrite the system using the
collocated partial state feedback [23]. Thus the equations of
motions are

θ̈ = a sin θ − b cos θu +
1
2
ϕ̇2 sin 2θ (15)

ϕ̈ = u, (16)

with a = mgl/J , b = mrl/J and m being the mass of the
pendulum, 2l the length of the pendulum, r the radius of the
arm, J moment of inertia of the pendulum with respect to
the pivot. Following the same procedure as described in the
pendulum on a cart, we choose an output equivalent to η̇2

of the pendulum on a cart, i.e. η̇ = ϕ̇ + k1θ̇ cos θ + k2 sin θ.
Proposition 3: The rotary pendulum system (15–16) with

the state feedback given by

u = (rhs of (11)) +
k1 sin θ cos2 θ

(k1b cos2 θ − 1)
ϕ̇2, (17)

and the control gains k1 > 1/b > 0 and k2 > 0, ensures
local exponential stability of the origin of its zero dynamics
(θ, θ̇) = (0, 0).

Proof: The linearization of the zero dynamics around
the origin is exactly the same as in the pendulum on a a cart
case. Thus, we can invoke the proposition 1.

External controller

We proposed the same Lyapunov function candidate as in
the pendulum on a cart system composed of the terms (8)
and the quadratic function of η̇. Thus, it yields

V = E0 +
1
2
k3η̇

2. (18)

Proposition 4: Consider the rotary pendulum (15–16). Fix
the positive constant k1 as indicated in Proposition 3, and
arbitrary positive constants k3, k4. Then, there exists a
positive constant k2 large enough such that the controller

u =
−ν + k1 sin θ

(
a cos θ − θ̇2 + cos2 θϕ̇2

)
+ k2θ̇ cos θ

k1b cos2 θ − 1
(19)

ν = −k4

(
θ̇b cos θ + k3η̇

)
ensures:

(i) The function (18) is a Lyapunov function in the set

Ω ≡ {(θ, θ̇, ϕ̇) ∈ (− arccos(1/
√

k1b), arccos(1/
√

k1b)) × R
2}.

(ii) The origin (θ, θ̇, ϕ̇) = (0, 0, 0) is (locally) asymptot-
ically stable with the Lyapunov function V given by
equation (18).

(iii) The domain of attraction is in the set Ω.

Proof: The Lyapunov function candidate (18) is positive
definite in the set {θ : cos2 θ > 1/k1b} and its derivative
along the trajectories of the system (15–16) yields

V̇ = ν
(
θ̇b cos θ + k3η̇

)
− k2θ̇

2 cos2 θ − sin θ cos θθ̇ϕ̇2.

In comparison with the pendulum on a cart control problem,
here there is the extra-term − sin θ cos θθ̇ϕ̇2. We need to
prove that V̇ ≤ 0. For, choosing the ν proposed in the
proposition and taking into account that 1

2
d
dt

(
cos2 θ

)
=

− sin θ cos θθ̇, the derivative of the Lyapunov function yields

V̇ = −k4

(
θ̇b cos θ + k3η̇

)2

+ ψ(θ, θ̇, ϕ̇),

where the function ψ(·) is defined as

ψ(θ, θ̇, ϕ̇) � −k2θ̇
2 cos2 θ +

1
2

d

dt

(
cos2 θ

)
ϕ̇2.

To do V̇ ≤ 0 we only need to prove that ψ(·) ≤ 0. To
this end, first assume that ϕ̇ �= 0, then we can write

d
dt

(
cos2 θ

)
cos2 θ

≤ 2k2b
θ̇2

ϕ̇2
.

The solution for this differential inequality reads7

cos2 θ(t) ≤ cos2 θ(0)e2k2b
∫ t
0

(
θ̇(τ)
ϕ̇(τ)

)2
dτ

.

Notice that the integral is well defined for any initial condi-
tion ∀ t > 0. The only possible point in which this integral
is not well defined is ϕ̇(0) = 0, but in this case the extra-
term in V̇ disappears and the system evolves with V̇ ≤ 0.
Therefore, for any initial condition there exists a k2

� > 0
such that for k2 > k2

� the function ψ(·) ≤ 0, ∀ t ≥ 0. The
worst case, which occurs when θ̇ remains at zero, is studied
jointly with the largest invariant set below.

In fact, from La Salle, now we prove that the largest
invariant set in the set {V̇ = 0} ∩ Ω is the origin. First, fix
k2 > k2

�. Then, as in the pendulum on a cart case, if V̇ = 0
then θ̇ = 0 and η̇ = 0, which implies that ϕ̇ = −k2 sin θ.
The derivative with respect to the time of the latter identity
yields ϕ̈ = 0, so ẋ = cst, and then u = 0. Now taking
into account that cos θ �= 0 in Ω, u = 0 implies either
sin θ = 0 or a + k2

2 cos θ sin2 θ = 0. For the first case,
sin θ = 0 then θ = 0 in Ω, and therefore ϕ̇ = 0 and the
pendulum is at the origin. The other case can be rewritten
as cos θ sin2 θ = −a/k2

2. The only solution for cos θ is
negative and therefore it is outside of the set Ω.

Experimental system. Benchmark

This subsection shows experimental results on the actual
rotary pendulum depicted in Fig. 3. In order to approach
to a Hamiltonian system, a LuGre model [14] to partially
compensate the friction of the arm of the pendulum has
been used. Particular values of the parameters used in the
experimental framework can be found in [18].

7Alternatively we can invoke the Comparison Lemma starting from the
solution of the differential equation ψ(·) = 0.
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Fig. 3. Experimental rotary pendulum system.

We show two experiments. The constants were k1 = 100,
k2 = 500, k3 = 30 and k4 = 10. In both experiments the
initial condition for the angular position of the pendulum was
θ(0) = 1.45 rad. To the best of our knowledge this is the
largest region of attraction achieved in experimental results
to stabilize this kind of pendula. The maximum theoretical
value of θ is given by Proposition 4 and for that value of
k1 is 1.5 rad. In fact, in [7] the maximum theoretical θ
is given by the equation sin2 θ = R2/(R2 + L2), where
R and L are the radius of the arm and the length of the
pendulum, respectively. This formula is not tunable, since
depends only on the physical parameters, and gives rise in
our pendulum to a maximum θ = 0.7 rad, which is half the
value presented above. Figure 1 shows an experiment with
initial conditions for the velocities near to zero. In Fig. 2 the
initial conditions for velocities are not near to zero. From
the theoretical point of view, the region of attraction tends
to the horizontal position of the pendulum, by increasing k1.
Unfortunately, the system saturates and it was not possible
enlarge more this practical region of attraction.

IV. CONCLUSIONS

This paper presents an easy constructive methodology
to control underactuated mechanical systems with 2-DOF,
by means of classical feedback linearization and Lyapunov
design. The design follows a simple pseudo-code, that allows
to redesign a proposed fictitious output in a constructive

way. The obtained solution for the inertia wheel pendulum
takes into account the friction. The solution for the planar
pendulum on a cart paves the way to obtain a new solution
for the rotary pendulum that, to the best of our knowledge,
has the largest attraction basin presented and experimentally
tested so far. Successful experimental results for this rotary
pendulum solution are given.
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