
 

Abstract—GPS navigation state processing using the extended
Kalman filter provides optimal solutions (in the mean square
sense) if the noise statistics for the measurement and system are
completely known. Covariance matching method is a
conventional adaptive approach for estimation of noise
covariance matrices. This innovation-based adaptive estimation
shows noisy result if the window size is small. To overcome the
problem, the fuzzy method combined with NN to identify the
noise covariance matrix is proposed. The structure of FNN can
automatically identify the fuzzy rules and tune the membership
functions by modifying the connection weights of the network
using back-propagation algorithm. Numerical simulations show
that the adaptation accuracy based on the proposed approach is
substantially improved.

I. INTRODUCTION

HE Kalman filter [1-2] provides optimal (minimum mean
square error) estimate of the system state vector has been

widely applied to the fields of GPS receiver position/velocity
determination [3], radar target tracking, and integrated
navigation system design. In practice, the Kalman filter will
provide the optimal result if the complete a priori knowledge
of the process noise covariance matrix and the measurement
noise covariance matrix are available.

Many efforts have been made to improve the estimation of
the covariance matrices. Mehra [4] classified the adaptive
approaches into four categories: Bayesian, maximum
likelihood, correlation and covariance matching. These
methods can be applied to the Kalman filtering algorithm for
realizing the adaptive Kalman filtering [4-6]. However, the
first two methods are computationally demanding so that their
practical applications are limited. As for the correlation
methods, a set of equations is derived to relate the functions to
the unknown parameter. The covariance matching technique
attempts to make the filter residuals consistent with their
theoretical covariances. Results from such innovation-based
adaptive estimation are too noisy if the window size is small.
On the other hand, the transient time needed to reach the
converged value will increase if the window size is increased. 

The application of artificial intelligence to adaptive Kalman
filter has been essentially based on the use of fuzzy logic, e.g.,
[7-10]. Sasiadek, Wang, and Zeremba introduced the Fuzzy
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Logic Adaptive System for adapting the process and
measurement noise covariance matrices for navigation data
fusion [7]. Abdelnour, Chand, and Chiu used the
exponential-weighting algorithm for detecting and correcting
the divergence of the Kalman filter [8]. Kobayashi, Cheok,
and Watanabe proposed a method for generating an accurate
estimate of the absolute speed of a vehicle from noisy
acceleration and erroneous wheel speed information [9]. The
method employed the fuzzy logic rule-based Kalman filter to
handle abrupt wheel skid and slip, and poor signal-to-noise
sensor data. Mostov and Soloviev proposed the method to
increase the Kalman filter order, which in turn enhances the
accuracy of smoothing and thus location finding for kinematic
GPS [10]. Nevertheless, the use of artificial neural networks
for adaptive Kalman filter has not been widely seen in the
open literature. 

Neural networks (NNs) [11] are trainable, dynamic systems
that can estimate input-output functions. NNs have been
applied to a wide variety of problems. The NN is motivated by
their ability to approximate an unknown nonlinear
input-output mapping through supervised training. They have 
been applied to a wide variety of problems since they are
model-free estimator, i.e., without a mathematical model.
Fuzzy modeling is the method of describing the characteristics
of a system using fuzzy inference rules. Takagi and Sugeno
proposed a fuzzy modeling approach to model nonlinear
systems [12]. The method has a distinguishing feature in that it
can express complex nonlinear systems linguistically.
However, it is difficult to identify the fuzzy rules and tune the 
membership functions of the fuzzy reasoning. Identification of
the rules takes a lot of times and tuning membership functions 
of the fuzzy reasoning needs “the fuzzy reasoning of experts”.
Several researches have been done to combine the learning
capability of NN and fuzzy reasoning [13-15]. The scheme is
fuzzy neural network (FNN) or neurofuzzy network.

The FNN can be realized as a neural network structure, and
the parameters of fuzzy rules can be expressed as the
connection weights of the neural network. It is easy to
translate the “expert priori knowledge” into the fuzzy if-then
rules. The back-propagation (BP) neural network has been the
most popular learning algorithm throughout all neural
applications. It is simple and requires a minimal amount of
storage. BPNN is a neural system with a BP algorithm that can
learn input-output functions from a series of samples. It is a
gradient-based algorithm, in the sense that the weight update
is performed along the direction of the gradient of an
appropriate error function. 
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Utilizing the FNN approach to aid the Kalman filter for
estimating the time varying variances results in better
performance than covariance matching method does. The
noise covariance is a complicated mapping with the
innovation. The innovation produced by the Kalman filter is
used as inputs of the fuzzy neural network, and the desired
outputs are the corresponding noise spectral strength. The
FNN is then trained off-line using the steepest descent (SD)
technique to minimize the differences between the outputs of
FNN and the desired outputs. Consequently, the estimation
accuracy of the noise parameters can be substantially
improved when the FNN is utilized to correctly estimate the
noise covariance matrices in the adaptive Kalman filter
mechanism.

This paper is organized as follows. In Section II, the
conventional adaptive extended Kalman filter (AEKF)
approaches are introduced. In Section III, the proposed FNN
aided AEKF algorithm is presented and in Section IV, the
results by applying FNN aided AEKF to GPS navigation
solution is presented. The conclusion is given in Section V. 

II. COVENTIONAL ADPTIVE EXTENDED KALMAN
FILTER (AEKF)

The process model and measurement model of the Kalman
filter are represented as 

Process model: GuFxx +=&                      (1a) 
Measurement model: vHxz +=                   (1b) 

where the vectors )(tu  and )(tv are white noise sequences
both with zero means and mutually independent: 

)()]()([ T tdt -= ttE Quu                         (2a) 
)()]()([ T tdt -= ttE Rvv                        (2b) 

0vu =)]()([ T ttE                              (2c) 
where )(td  is the Dirac delta function. Expressing (1a) and 
(1b) in discrete-time equivalent form leads to 

kk wxΦx +=+ kk1                          (3a) 

kkk vHxz +=                             (3b) 
where the vectors kw and kv are both zero mean white
sequences having zero crosscorrelation with each other: 
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The flow chart for the GPS navigation solutions using Kalman
filter approach is shown inside the right-hand-side block of
Fig. 1. Further discussion can be referred to [1-2]  for the KF, 
and [3] for the GPS receiver position/velocity determination.

The implementation of Kalman filter requires the a priori
statistical knowledge of the process noise and measurement
noise. Poor knowledge of the noise statistics may seriously
degrade the Kalman filter performance, and even provoke the 

filter divergence. To fulfil the requirement, an adaptive
Kalman filter can be utilized as the noise-adaptive filter to
estimate the noise covariance matrices.
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Fig. 1. Flow chart for the fuzzy neural network aided adaptive Kalman filter.

Mehra [4] classified the adaptive approaches into four
categories: Bayesian, maximum likelihood, correlation and
covariance matching. The innovation sequences have been
utilized by the correlation and covariance-matching
techniques to estimate the noise covariances. The basic idea
behind the covariance-matching approach is to make the
actual value of the covariance of the residual consistent with
its theoretical value. From the incoming measurement kz  and 
the optimal prediction -

kx̂  obtained in the previous step, the
innovations sequence is defined as 

--= kkkk xHzυ ˆ                                 (5) 
The innovation represents the additional information

available to the filter as a consequence of the new observation

kz . The weighted innovation, )ˆ( -- kkkk xHzK , acts as a

correction to the predicted estimate -
kx̂  to form the estimation

kx̂ . Substituting the measurement model (3b) into (5) gives 

kkkkk vxxHυ +-= -)ˆ(                           (6) 
which is a zero-mean Gaussian white noise sequence. By
taking variances on both sides, we have the theoretical
covariance

kkkkk
RHPHC += - T

u                           (7) 

This leads to an estimate of kR :
Tˆˆ
kkkk k

HPHCR --= u                           (8) 

where
kuĈ  is the statistical sample variance estimate of

kuC .

Matrix
kuĈ can be computed through averaging inside a

moving estimation window of size N
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where 10 +-= Nkj  is the first sample inside the estimation
window. Based on the residual based estimate, the estimate of 
process noise kQ  is obtained: 
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where --=D kkk xxx ˆˆ . This equation can be written in terms of 
the innovation sequence: 

Tˆˆ
kkk k

KCKQ u»                           (11) 

For further information of these equations, see Mohamed &
Schwarz [6]. If the window size N is too small, the estimation
of measurement covariance will be too noisy. On the other
hand, if a large window size is utilized, the estimation of
measurement covariance will be smoother, however, at the
expense of long transient time. The window size is chosen
empirically to give some statistical smoothing. In some
practical applications, there are chances in which the noise
spectral amplitudes rapidly change, then the conventional
approach will not suffice the adaptation requirement.

III. THE PROPOSE FUZZY NEURAL NETWORK AIDED
AEKF SCHEME

The NN is a network structure consisting of a number of
nodes connected through directional links. Each node
represents a process unit, and the links between nodes specify
the casual relationship between the connected nodes. The
learning rule specifies how these parameters should be
updated to minimize a prescribed error measure, which is a
mathematical expression that measures the discrepancy
between the network’s actual output and a desired output. The
FNN can be realized as a NN structure, and the parameters of 
fuzzy rules can be expressed as the connection weights of the
NN. It is easy to translate the “expert priori knowledge” into
the fuzzy if-then rules. The new scheme is based on the use of 
the BP algorithm, and it can acquire the fuzzy inference rules
and tune the membership functions simultaneously through
learning from experts’ inference data. 

A. Structure of the Fuzzy Neural Network 
The FNN to be employed in this paper is adopted from [13],

in which it was applied to a controller for robotic gait
synthesis. Fig. 2 shows topology of the FNN. In the network
structure, the fuzzy rules and membership functions are
expressed by the connection weights of a neural network. The
FNN employed in the present work is made of five layers.
There are 1+p  innovations from the Kalman filter as the
inputs, one output, which represents the noise covariance
strength, in the output layer and two membership functions in 
each premise. The premise part stands for the condition of the 
fuzzy rules and the consequence part stands for the result of
the fuzzy rules. 
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Fig .2. The topology of a fuzzy neural network.

In first layer, the innovations and bias were inputted to the
network directly and the weights were set as 1 and cw ,
respectively. The output from the first layer is 

i
COi u=1                                  (12) 

where i  represents the number of inputs, and 1 is the output in
the first layer. The symbol S  is the summation and the output
in the second layer is 

ci wCO
i

+= u
2                              (13) 

In the third layer, the inputs are the values by multiplying the
outputs from the second layer by the weights gw . The
function )(xf  employed in the current work is 

xe
xf -+

=
1

1)(                                (14) 

and therefore the output of the third layer is 

]exp[1
1)(

2
3

ig
i
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The membership function in the premises mnA
( 1,,2,1;2,1 +== pnm L ) can be allocated to the universe of
discourse by appropriately initializing the weights cw  and 

gw . The membership functions are shown as in Fig. 3. The
symbol P  in the fourth layer represents: 

mn
n

k AInput P=m:                           (16) 

å
==

k

k
kiOOutput

m
mm̂: 4                      (17) 

where mnA  is the fuzzy variables in the premises, km  is the
true value of the kth fuzzy rule and km̂  is the normalized value

of km . The number of neurons in the fourth layer is i2 , and
these neurons represent the amount of fuzzy rules. Moreover,

å km  represents the summation of km  from different 3
iO .

In the consequence part, the connection weights pw

represent control rules. The center of gravity defuzzifier
(COG) is used to infer the output of network. The final
inferred value is obtained from the sum of kpw m̂.  and the
network realizes the following fuzzy rules: 
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The above fuzzy rule is equivalent to
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where kR  is kth fuzzy rule, kB  is a constant and fR  is the
number of rules. 
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Fig. 3. Membership function in premise. 

B.  Back-Propagation Algorithm for Training the FNN

The back-propagation learning algorithm is employed to
train the connection weights. The adjustments to the
connection weights, cw , gw  and pw , are computed for the
purpose of minimizing a cost function defined as the sum of
squared errors: 

å -= 2)]()([
2
1)( nyndnE                      (19) 

where )(nE  is the total error energy value in n  iteration, 
)(nd  is the desired output and )(ny  is the output of FNN. Let 

M denote the total number of patterns contained in the training
set, the average percentage error is defined as 
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The weights cw , gw  and pw  are modified to identify
fuzzy rules and tune the membership functions in the premises.
The adjustment of weights is implemented by

)()()1( nwnwnw N
ji

N
ji

N
ji D+=+                     (21) 

where
)()()]()([)( 1 nOnfnyndnw N

ij
N
ji

-×¢×-×=D h

)()( 1 nOn N
i

N
j

-××= dh                              (22) 
where h  is a learning rate , f ¢  denotes the derivative of f

with respect to the weights, N
jd  is local gradient of the j  unit 

in N th layer and 1-N
iO  is the output of the i  unit in

)1( -N th layer. In the backward pass, the local gradient in the 
fifth layer is 

)()()()]()([ 55 nyndIfnynd i -=¢-=d               (23) 

and the weights pw  can be update via 
45)()1( ipp Onwnw ××+=+ dh                     (24) 

In the above equations, 4
iO  in (24) is actually equal to 5

iI  in 
(23), due to the fact that the output from the fourth layer is the 
input to the fifth layer. In the fourth layer, the weights are set 
as 1 so that the local gradient is calculated as 

p
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jkkjj wwIf ××=¢=
åå 55544 1)( d

m
dd                 (25) 

The connection weight pjk ww =5 , which represents the j th

unit in the fourth layer to k th unit in the fifth layer. Since the 
multiplication is done in the fourth layer, the local gradient in 
the third layer is 
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then the weights gw  can be updated by
23)()1( igg Onwnw ××+=+ dh                      (27) 

In the second layer, the weights cw  need to be updated and the
local gradient is 

å ×=¢=
k

gjjkkjj wwIf 33322 )( ddd                  (28) 

The connection weight gjk ww =3 , and the weights cw  can be
updated by

12)()1( icc Onwnw ××+=+ dh                      (29) 
Off-line training of network is conducted using the SD

technique to minimize the differences between the outputs of
FNN and the desired outputs. During the training phase, the
innovation

kuC  produced by the Kalman filter is employed as
the input to the FNN. Referring to Fig. 2, the inputs of neural
network are the innovations from the present instant t  to time

)( pt - , i.e., )(
1

tCC uu º , )1(
2

-º tCC uu ,… )(
1

ptCC
p

-º
+ uu .

The network output vectors ideally describe the actual noise
strength. It should be noted that the innovations need to be
normalized as inputs and the weights cw and gw  are 
initialized so that the membership functions in the premises
can be allocated to the normalized universe of discourse. 

At the time of recall, when the AEKF receives the
measurement kz , it provides the estimations of the state

vector and the -- kk zz ˆ  to calculate the innovation. When the
input nodes receive the innovation, the appropriate covariance

kR̂  is obtained. Thus, the Kalman filter is provided with the
adaptive capability for estimation by combining the filter and
the FNN. A flow chart of the FNN aided AEKF is presented in
Fig. 1, in which there are two main blocks in dash lines. The
left-hand-side block represents the covariance identification
loop, while the right-hand-side block is the standard Kalman
filter loop. 

As for the selection of training data, the FNN designer
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should have a rough idea on the ranges of noise strengths, kQ
and kR , for certain environment where the navigation will be 
performed. The proposed algorithm may not be a good choice
when the designer has not any knowledge about the ranges of
the noise strengths. Although the FNN still demonstrate its
adaptation capability, however, the performance will be
degraded if range of the training data does not cover all
possible range (in the testing phase). Wider range of training
data results in larger training time consumption for obtaining a
well-trained network.

IV. APPLYING FNN AIDED AKEF TO GPS
NAVIGATION SOLUTION

In this section, FNN aided AEKF to GPS navigation
application will be conducted. For simplicity, yet, without loss
of generality, a simple double-integrator model is first
employed to test the adaptive capability. Application to the
GPS navigation problem will then be performed. Simulation
was conducted using a personal computer with Pentium 4 1.7
GHz CPU. The computer codes were constructed using the
Matlabâ 6.0 version software.

A.  Algorithm Validation
Consider the continuous-time model governed by (1a) and

(1b) where

ú
û

ù
ê
ë

é
=

00
10

F ; ú
û

ù
ê
ë

é
=

1
0

G ; [ ]01=H

and these signals satisfy the following
)()]()([ T tdt -= tqtE uu                      (30a) 
)()]()([ T tdt -= trtE vv                     (30b) 

0)]()([ T =tvu tE                           (30c) 
In this example, q  value is assumed a priori known and the
measurement noise variance r  is to be identified. For testing
the identification capability, the r  value is originally set as
1 2m and suddenly increases to 5 2m . Based on the selection
of 6=p , the numbers of neurons employed in the present
work is as follows: 7 neurons in the first (i.e., input) layer; 14
neurons in both the second and third layers; 12827 =  neurons 
in the fourth layer; 1 neuron in the fifth layer. The following
parameter values are used: 1=bias ; three learning rates

9.0,7.0,5.0=h , respectively in the second, third and fifth
layers; three momentum coefficients 5.0,3.0,1.0=a ,
respectively in the second, third and fifth layers. The
parameters are tuned based on our experience. There may be
other sets of values that will provide better adaptation
capability. However, if one chooses the values deviating from
the present values within some range (for example, about

2.0±  for h ’s and about %50±  for a ’s, in the present case), 
the change of performance is not seen significant. A
comparison on the identification results using different
approaches for the example is provided in Fig. 4. It is seen that
substantial improvement on noise identification capability has
been achieved by using the proposed approach (by which the
variance is 0.16 2m ) as compared to the conventional
covariance-matching method (by which the variance is

0.72 2m ).
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Fig. 4. Comparison of measurement noise ( r ) identification results using
different approaches for the double integrator example. 

B. Application to GPS Navigation
When selecting Kalman filtering as the navigation state

estimator in the GPS receiver [2-3], using b  and d  to 
represent the GPS receiver clock bias and drift, the differential
equation for the clock error is written as 

d

b

ud

udb

=

+=
&

&
            (31)

where ),0(~ fb SNu  and ),0(~ gd SNu  are independent
Gaussianly distributed white sequences. The dynamic process 
of the GPS receiver in medium dynamic environment can be
represented by the PV (Position-Velocity) model [2]. Let each
of the white-noise spectral amplitudes that drive the random
walk position states be sec/sec)/(0.1 2 radmS p = . Also, let the
clock model spectral amplitudes be sec)10(4.0 18-=fS  and 

118 sec)10(58.1 --=gS . If only the pseudorange observables
are available, the measurement equation based on n
observables leads to 
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Assuming measurement errors among satellites are
uncorrelated, we have 
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Fig. 5 illustrates the system architecture for performing
GPS navigation solutions using FNN aided AEKF. The
scenario for simulation is as follow. The kinematics of the user
is assumed to move at a constant velocity with mean value
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sm /10  to East and sm /310  to North (which results in a
speed of sm /20 ), starting from the position of North 25.15
degrees, East 121.78 degrees. Assuming that the differential
GPS mode is used and most of the errors can be corrected, but
the multipath and receiver measurement thermal noise cannot
be eliminated. The initial measurement variance for each of
the pseudorange observables is assumed to be

29mr
i

=r (which is the sum of the variances of the code
multipath and measurement noise), for ni L1= . After a
while, the measurement noise standard deviations are raised
by ten times of the original one. Again, the FNN employed in 
the present case has the parameter values same as those used
in the double integrator model. Based on the parameter values
and scenario presented above, the simulation is conducted. A
comparison of GPS positioning errors based on three cases: (1)
without adaptation; (2) with adaptation by proposed approach; 
(3) perfect adaptation, are presented in Fig. 6. For clarity, the
corresponding error statistics are summarized in Table 1.
Substantial accuracy improvement is achieved by using the
proposed adaptive technique. 

V. CONCLUSION

This paper has presented a fuzzy neural network aided
adaptive extended Kalman filtering approach for GPS
navigation. The fuzzy neural network was employed as a noise
identification mechanism to implement the on-line
identification of noise covariance matrices. Based on the
proposed approach, the noise adaptive capability can be
significantly improved as compared to the conventional
innovation-based algorithms. The algorithm presented in this
paper can be applied to all the Kalman filtering related
applications, such as GPS/INS integration, radar target
tracking, and so forth. 
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Fig. 6. Comparison of three GPS positioning errors: (1) without adaptation
(x); (2) with adaptation by proposed approach (D); (3) perfect adaptation (·).

TABLE I

VARIANCES OF THE POSITIONING ERRORS (UNIT: 2m )
________________________________________________

Without              With Perfect
adaptation        adaptation        adaptation 

________________________________________________
East              17.5                  3.2                    2.8 

________________________________________________
North            12.1                  2.3                    2.1 

________________________________________________
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