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Abstract— This paper investigates links between the problem
of determining a decomposition of a polynomial as a sum-of-
squares of polynomials and the S-Procedure. We first show
that the S-Procedure can be used to check whether a given
polynomial is non-negative. Then, using mostly linear algebra
arguments, we show that this non-negativity test leads to an
affirmative answer if and only if such polynomial admits a
decomposition as a sum-of-squares of polynomials.

I. INTRODUCTION

Determining whether a real valued polynomial p(x) :
R

n → R is non-negative for all values of x ∈ Rn is, in
general, an NP-hard problem. A sufficient condition for non-
negativeness of a polynomial is the existence of a decom-
position as a Sum-Of-Squares (SOS) of polynomials. When
such decomposition exists, one says that p(x) is SOS. The
problem of checking whether p(x) is SOS can be converted
into a convex optimization problem, more specifically, into a
semi-definite program [1], [2]. This observation has recently
motivated several successful applications in the context of
systems and control [3], [4], [5], [6], [7], [8], [9].

A technique known as the S-Procedure has found
widespread use in systems and control for more than three
decades [10], [11] (see also [12]). The S-Procedure provides
sufficient conditions for the positivity of a set of quadratic
forms, i.e., a set of polynomials forms of degree two, also
in the form of a semi-definite program.

The result of this paper provides a link between SOS
polynomials and the S-Procedure.

It is well known that the S-Procedure can be interpreted,
in some cases, as a particular decomposition of a polyno-
mial as a sum-of-squares of polynomials. Indeed, SOS of
polynomials provide a nice and clean generalization of the
S-Procedure for polynomials and polynomial forms of degree
higher than two. It is also known that the S-Procedure will
typically lead to results that can be conservative when used
with sets of more than two quadratic forms.

In this paper we pose and answer the converse question:
can the decomposition of a polynomial as a sum-of-squares
of polynomials be interpreted as a particular case of the S-
Procedure? Surprisingly, the answer is yes.

To obtain this result we first shown how the S-Procedure
can be used to provide a sufficient condition for non-
negativity of a given polynomial. We use a version of the
S-Procedure where some quadratic forms are required to be
identically null, and not only non-negative, as usual. We then
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use linear algebra to prove that a certain polynomial p(x) is
non-negative according to the S-Procedure if and only if p(x)
is SOS.

In addition, the S-Procedure also suggests some extra
terms that could be incorporated in the positivity test while
still preserving the underlying optimization problem in the
form of a semi-definite program. We show that these refine-
ments can provide no improvement with respect to a standard
SOS decomposition.

II. PRELIMINARIES

Let x = (x1, . . . , xn) ∈ R
n and α = (α1, . . . , αn) ∈ N

n.
Definition 1 (Monomial): A monomial xα is a product in

the form xα = xα1
1 · · ·xαn

n . The degree of the monomial xα

is α1 + · · · + αn.
Definition 2 (Polynomial): The real valued function

p(x) : R
n → R is a polynomial when it is a finite linear

combination of monomials, i. e., p(x) =
∑

α bαxα. The
degree of the polynomial p(x) is the largest degree of its
monomials.

Definition 3 (Form): The polynomial p(x) is a form of
degree m if all its monomials have degree m.

Definition 4 (Polynomial vector): The vector of real val-
ued function r(x) : R

n → R
m is a real polynomial vector

when all its entries are real polynomial functions. The degree
of the vector r(x) is the largest degree of its polynomial
entries.

Definition 5 (Linear Space): The set of polynomials
(forms) of degree m is associated with a linear vector space
of dimension pm =

(
n + m

m

)
(
(

n + m − 1
m

)
).

Definition 6 (Basis vector): A polynomial vector
sm(x) ∈ R

pm of degree m is a basis vector if it
spans the entire set of polynomials (forms) of degree m
and there exists no vector b ∈ R

pm , b �= 0, such that
bT sm(x) = 0 for all x ∈ R

n .
Definition 7 (Representation): Given a basis vector

sm(x), any real polynomial (form) p(x) of degree m have
a unique representation p(x) = bT sm(x).

The operator vec(X) : R
p×p → R

p(p+1)/2 take the entries
of a given symmetric matrix into a vector. For a symmetric
matrix X ∈ R

p×p and a vector y ∈ R
p, the operator

vec(yyT ) is such that yT Xy = vec(X)T vec(yyT ).

A. The S-Procedure

The S-Procedure [10], [11], in its most usual form, is a
technique that provides sufficient conditions for which

q0(x) ≥ 0, ∀x ∈ R
p, qj(x) ≥ 0, j = 1, . . . , l, (1)
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where qj(x) : R
p → R, j = 0, . . . , l, are quadratic functions,

i. e., polynomials of degree two. In this paper we consider
the slightly more general problem of determining sufficient
conditions for

q0(x) ≥ 0, ∀x ∈ R
p, qi(x) = 0, i = 1, . . . , r,

qj(x) ≥ 0, j = 1, . . . , l. (2)

Lemma 1 (S-Procedure): Let q0(x), qi(x), i = 1, . . . , r,
and qj(x), j = 1, . . . , l, be quadratic functions of x ∈ R

p.
If there exist τi ∈ R, i = 1, . . . , r, and γj ∈ R, j = 1, . . . , l,
such that

q0(x) −
r∑

i=1

τiqi(x) −
l∑

j=1

γjqj(x) ≥ 0, ∀x ∈ R
p,

γj ≥ 0, j = 1, . . . , l. (3)

then q0(x) ≥ 0 for all x ∈ R
p such that qi(x) = 0, i =

1, . . . , r, and qj(x) ≥ 0, j = 1, . . . , l.
If q(x) is a quadratic form, then q(x) admits a rep-

resentation as q(x) = xT Qx for some symmetric matrix
Q ∈ R

p×p. Therefore, when q0(x), qi(x), i = 1, . . . , r, and
qj(x), j = 1, . . . , l, are quadratic forms, condition (3) is
equivalent to the semi-definite constraint

Q0 −
r∑

i=1

τiQi −
l∑

j=1

γjQj � 0,

γj ≥ 0, j = 1, . . . , l. (4)

The existence of a solution to the above inequality relative
to a certain specified precision ε > 0 can be verified in poly-
nomial time by solving a convex semi-definite program [13].

B. Sum-of-Squares of Polynomials

A sufficient condition for a polynomial p(x) of degree 2m
to be non-negative is the existence of a decomposition as a
sum-of-squares of polynomials. That is, p(x) is non-negative
if there exists polynomials qi(x) of degree m such that

p(x) =
∑

k

qk(x)2. (5)

Representing

p(x) = bT s2m(x), (6)

qk(x) = qT
k sm(x), ∀k, (7)

where s2m(x) ∈ R
p2m and sm(x) ∈ R

pm are basis vectors
for the space of all polynomials of degree 2m and m,
respectively, we can rewrite (5) in the form

bT s2m(x) = p(x) =
∑

k

qk(x)2

=
∑

k

sm(x)T qkqT
k sm(x) = sm(x)T Qsm(x), (8)

where Q :=
∑

k qkqT
k . It is clear that Q ∈ R

pm×pm

must be a symmetric positive semi-definite matrix. The
following lemma characterizes the existence of SOS decom-
positions [1], [2].

Lemma 2 (SOS): The polynomial p(x) of degree 2m ad-
mits a decomposition as a sum-of-squares of polynomials,
in which case we say p(x) is SOS, if and only if there
exists a positive semi-definite matrix Q ∈ R

pm×pm such
that bT s2m(x) = sm(x)T Qsm(x) for all x ∈ R

n, where
s2m(x) ∈ R

p2m and sm(x) ∈ R
pm are basis vectors for the

space of all polynomials of degree 2m and m, respectively.
The condition that (8) must hold for any x ∈ R

n can
be converted into a linear constraint on Q, which means
that the verification of the condition in Lemma 2 can be
done by solving a semi-definite program. Indeed, consider
the polynomial vector vec(sm(x)sm(x)T ) of degree 2m. It
certainly admits a representation in the form

vec(sm(x)sm(x)T ) = As2m(x), (9)

for some constant matrix A ∈ R
pm(pm+1)/2×p2m (more on

that later). Therefore, equation (8) can be rewritten as

sm(x)T Qsm(x) = vec(Q)T vec(sm(x)sm(x)T )

= vec(Q)T As2m(x) = bT s2m(x), (10)

from which it is clear that p(x) is SOS whenever the next
semi-definite problem has some solution.

Problem 1: Find Q � 0 such that AT vec(Q) = b.

C. Illustrative Example

Consider n = 1 and m = 2 and the polynomial

p(x) = 5 + 2x − 3x2 + x4

of degree 2m. Consider the monomial basis

sm(x) =
(
1 x x2

)T
,

s2m(x) =
(
1 x x2 x3 x4

)T
,

Compute

vec(sm(x)sm(x)T ) =
(
1 x2 x4 2x 2x2 2x3

)T
,

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, b =

⎛
⎜⎜⎜⎜⎝

5
2
−3
0
1

⎞
⎟⎟⎟⎟⎠ .

Problem 1 reads as: find Q ∈ R
3×3 such that Q � 0, and

AT vec(Q) = b. For this example, one can verify that

Q =

⎡
⎣ 5 1 −9/5

1 3/5 0
−9/5 0 1

⎤
⎦ ,

is a possible solution to Problem 1.
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III. AUXILIARY LINEAR ALGEBRA RESULTS

In this section we derive some auxiliary linear algebra
results that will be used later in this paper.

Lemma 3: Matrix A ∈ R
s×t, where s = pm(pm + 1)/2,

t = p2m, which has been implicitly defined by (9), has a
non-empty left null-space and is full column-rank for any
integer n, and m, except n = m = 1.

Proof: First note that the matrix A is such that

1
2
pm(pm + 1) =

1
2

[(
n + m

m

)2

+
(

n + m
m

)]

>
(

n + 2m
2m

)
= p2m,

∀n ≥ 1, m ≥ 1, (11)

except for n = m = 1, when the left and right sides are both
equal to three. This implies that A is a tall matrix, therefore,
always has a non-empty left null-space.

Assume now that A is not full column-rank. In this case,
there exists v ∈ R

p2m such that Av = 0 with v �= 0. Now
pick an appropriate matrix V ∈ R

p2m×(p2m−1) that makes
the following square matrix

T :=
[
v V

] ∈ R
p2m×p2m

non-singular. Clearly, the polynomial vector

s̄2m(x) := T−1s2m(x)

is also a basis.
Now consider the polynomial u(x) = eT

1 s̄2m(x) �= 0,
where e1 ∈ R

p2m is the vector e1 := (1, 0, . . . , 0)T .
Recall that vec(sm(x)sm(x)T ) spans the entire space of
polynomials of degree 2m (for instance, if sm(x) is a basis
of monomials, this conclusion is immediate), to conclude
that there exists c ∈ R

p2m such that

cT vec(sm(x)sm(x)T ) = u(x) = eT
1 s̄2m(x)

Now observe that

cT vec(sm(x)sm(x)T ) = cT As2m(x)

= cT AT s̄2m(x) =
(

0
V T AT c

)T

s̄2m(x).

This establishes a contradiction since

e1 �=
(

0
V T AT c

)
,

which implies that u(x) has two distinct realizations on the
basis s̄2m(x). Therefore, A must be full column-rank.

The next corollary follows immediately from the previous
result.

Corollary 1: There exists a full row-rank matrix C ∈
R

r×s, where r = pm(pm + 1)/2− p2m, s = pm(pm + 1)/2,
such that CA = 0.

IV. TESTING WHEN POLYNOMIALS ARE NON-NEGATIVE

BY THE S-PROCEDURE

We now return to the original question of non-negativeness
of the polynomial p(x) of degree 2m. We want to use the
S-Procedure, Lemma 1, so our first task is to write a set
of quadratic relations in the form (2). That is, to restate the
original problem as a test of whether

p(x) = sm(x)T Qsm(x) ≥ 0, ∀x ∈ R
n. (12)

where p(x) is a given polynomial of degree 2m. Note that we
do not require that Q be necessarily positive semi-definite!

It is straightforward to find some Q such that p(x) =
sm(x)T Qsm(x). Clearly, Q is not unique except for n =
m = 1 (recall that vec(sm(x)sm(x)T ) is not a basis.) If
Q � 0 then p(x) is SOS. Indeed, a solution to Problem 1,
if one exists, provides such positive semi-definite Q.

In order to use the S-Procedure we define the quadratic
form

q0(y) := yT Q0y, y ∈ R
pm , (13)

where Q0 ∈ R
pm×pm is any symmetric matrix (not neces-

sarily positive semi-definite) such that

q0(sm(x)) = p(x), ∀x ∈ R
n. (14)

We now look for relationships in the original problem
that would provide equalities and inequalities that can be
formulated as quadratic functions of y when y = sm(x).

We first consider the equalities. We use Corollary 1 and
multiply both sides of the relation (9) by a full row-rank
constant matrix C such that CA = 0 on the left to obtain

C vec(sm(x)sm(x)T ) = 0, ∀x ∈ R
n. (15)

Then we compute r = pm(pm + 1)/2 − p2m constant
matrices Qi ∈ R

pm×pm such that

vec(Qi) = CT
i , i = 1, . . . , r, (16)

where Ci denotes the ith row of matrix C. For all matrices Qi

so constructed we define the quadratic forms

qi(y) := yT Qiy, i = 1, . . . , r. (17)

It follows that

qi(sm(x)) = 0, ∀x ∈ R
n, i = 1, . . . , r. (18)

Now for the inequalities, we observe that some entries
of vec(sm(x)sm(x)T ) are non-negative for all values of
x ∈ R

n. For example, when sm(x) is a basis of monomials,
these non-negative terms include all diagonals and some off-
diagonal terms of the matrix sm(x)sm(x)T , the ones which
contain only monomials xα where all exponents αi, i =
1, . . . , n, are even. We represent these inequality constraints
generically as

D vec(sm(x)sm(x)T ) ≥ 0, ∀x ∈ R
n, (19)

for some constant matrix D ∈ R
l×pm(pm+1)/2. We will

provide more details on the structure of D in the next
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sections. As before, we compute l matrices Qj ∈ R
pm×pm

such that
vec(Qj) = DT

j , j = 1, . . . , l, (20)

where Dj denotes the jth row of matrix D. We then define

qj(y) := yT Qjy, j = 1, . . . , l, (21)

such that

qj(sm(x)) ≥ 0, ∀x ∈ R
n, j = 1, . . . , l. (22)

The following lemma provides a sufficient condition for
non-negativeness of polynomials.

Lemma 4: Let q0(y), qi(y), i = 1, . . . , r, and qj(y), j =
1, . . . , l, be quadratic functions constructed to satisfy (14),
(18) and (22). If there exist τi ∈ R, i = 1, . . . , r, and γj ∈ R,
j = 1, . . . , l such that

q0(y) −
r∑

i=1

τiqi(y) −
l∑

i=1

γjqj(y) ≥ 0, ∀y ∈ R
pm ,

γj ≥ 0, i = 1, . . . , l, (23)

then the polynomial p(x) of degree 2m is non-negative for
all x ∈ R

n.
Condition (23) can be verified by solving the following

semi-definite program.
Problem 2: Find τi, i = 1, . . . , r, and γj , j = 1, . . . , l

such that Q0 − ∑r
i=1 τiQi −

∑l
i=1 γjQj � 0, and γj ≥ 0,

j = 1, . . . , l.
Illustrative examples can be found in the next sections.

V. PUTTING THE PIECES TOGETHER

In this section we establish a link between Problems 1
and 2, that is, the relationship between polynomials that ad-
mit an SOS decomposition, as in Lemma 2, and polynomials
that are non-negative according to Lemma 4.

A. Positivity Without Inequalities

The next theorem is the key result of this section.
Theorem 1: Let a polynomial p(x) of degree 2m, vector

b and matrices A, Q0, Qj , j = 1, . . . , r, constructed to
satisfy (6), (9), (14) and (18), respectively, be given. The
following statements are equivalent:
a) p(x) is SOS.
b) There exists Q ∈ R

pm×pm such that

Q � 0, AT vec(Q) = b. (24)

c) There exists τi, i = 1, . . . , r, such that

Q0 −
r∑

i=1

τiQi � 0. (25)

Furthermore, if the above conditions are satisfied, then con-
ditions (24) are satisfied by Q = Q0 −

∑r
i=1 τiQi.

Proof: The equivalence of a) and b) is given by
Lemma 2. We now prove the equivalence of b) and c). Use
Lemma 3 and Corollary 1 to show that all solutions to the
linear equation AT vec(Q) = b are given by

vec(Q) = vec(Q0) + CT z,

where z ∈ R
r, r = pm(pm +1)/2−p2m and Q0 ∈ R

pm×pm

is any symmetric matrix such that

AT vec(Q0) = b.

In other words, any vector such that its associated quadratic
form satisfies (14). Therefore, since Qi, i = 1, . . . , r are
defined as in (16), we have immediately the correspondence
zi = τi, i = 1, . . . , r, proving that conditions b) and c) are
equivalent.

Theorem 1 states that the non-negativity test derived using
the S-Procedure necessarily returns true when the tested
polynomial is SOS. However, the variables γj , which are
associated with inequalities in the S-Procedure, are, appar-
ently, extra degrees of freedom. These variables are present
in Lemma 4 but not in Lemma 2. The impact of these
extra inequalities are discussed in the next sections, after
the following illustrative example.

B. Illustrative Example

For the same example in Section II-C we have

Q0 =

⎡
⎣5 1 0

1 −3 0
0 0 1

⎤
⎦ �� 0

as one possible choice. Matrix C is given by

C =
[
0 −2 0 0 1 0

]
,

where r = 1, and the symmetric matrix associated with the
first and only row of C is given by

Qi=1 =

⎡
⎣0 0 1

0 −2 0
1 0 0

⎤
⎦ .

One can verify that for τ = 9/5, mini λi(Q0 + τQ1) ≈
0.013 > 0. Note that the matrix Q that has been given in
the Section II-C is exactly Q = Q0 − (9/5)Q1, as allowed
by Theorem 1.

C. Positivity with Diagonal Inequalities

To evaluate the effect of the extra variables γj in Lemma 4,
we look at the structure of these inequality constraints. Note
that all diagonal entries of the matrix sm(x)sm(x)T satisfy
inequalities in the form (19). In this case, the associated
matrices Qj will have the particular form

Qj = eje
T
j ≥ 0, j = 1, . . . , pm, (26)

where ej is a vector with all entries equal to zero except for
the jth entry, which is equal to one. It is not hard to see
that we can therefore set all coefficients γj ≥ 0 associated
with these inequalities to be equal to zero in Problem 2. In
fact, for any Q̄ � 0, if there exists no τi, i = 1, . . . , r, such
that inequality (25) is feasible, then there should exist no τi,
i = 1, . . . , r, and γ > 0 such that

Q0 −
r∑

i=1

τiQi � γQ̄ � 0 (27)
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either. The conclusion is that the inequalities associated with
diagonal entries of the matrix sm(x)sm(x)T can not help to
improve the positivity test of Lemma 4.

Nevertheless, matrix sm(x)sm(x)T might have positive
entries which are not on the diagonal. This is easier to see
(and enumerate) in the case of monomial basis, as illustrated
by the next example.

D. Illustrative Example

For the same example in Section II-C we have all possible
inequalities in the form (19) represented by matrix

D =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎤
⎥⎥⎦ .

Only the last row of this matrix is not associated with a
diagonal entry, which we use to define matrix

Qj=1 =

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦

Note that identifying such off-diagonal inequalities may be
much more complicated when the bases are not monomial
basis. For this same example, the choice of basis

sm(x) =
(
(1 − x) x x2

)T
,

provides

vec(sm(x)sm(x)T ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 − 2x + x2

x2

x4

2(x − x2)
2x(x − x2)

2x3

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The only positive constraint associated with an off-diagonal
term is given by the choice of

D =
[
1 1 0 1 0 0

]
.

E. Positivity with Off-Diagonal Inequalities

Assume, without loss of generality, that sm(x) is a mono-
mial basis. All monomial xα for which the exponents αi, i =
1, . . . , n, are even must necessarily appear on the diagonal
of the symmetric matrix Sm(x) := sm(x)sm(x)T . Suppose
that for some exponent ᾱ with even entries, the monomial
xᾱ appears on some diagonal entry of matrix Sm(x), say
Sm(x)(t,t), and on the off-diagonal entries Sm(x)(u,v) and
Sm(x)(v,u). We have already seen that the matrix

Qt := ete
T
t � 0 (28)

is positive semi-definite and, therefore, cannot help improv-
ing the result of Theorem 1. However, the matrix

Qu,v := eueT
v + eveT

u

=
1
2
(eu + ev)(eu + ev)T − 1

2
(eu − ev)(eu − ev)T (29)

is not positive semi-definite, and there is a chance that it
might help. Unfortunately, that is not the case, as we show
below.

Denote by ct and cu,v vectors in R
pm(pm+1)/2 such that

vec(Qt) = ct, vec(Qu,v) = cu,v. (30)

Clearly

(2ct − cu,v)T vec(sm(x)sm(x)T ) = 0, (31)

In other words, 2ct−cu,v is necessarily a linear combination
of the rows of matrix C, given in Corollary 1. That is, there
exists a vector β ∈ R

pm(pm+1)/2−p2m such that

2ct − cu,v = CT β. (32)

This equation can be rewritten as

Qu,v = 2Qt −
r∑

i=1

βiQi. (33)

We use the above expression to analyze the inequality

Q0 −
r∑

i=1

τiQi � γQu,v = 2γQt −
r∑

i=1

γβiQi. (34)

That is,

Q0 −
r∑

i=1

(τi − γβi)Qi � 2γQt. (35)

Using the arguments of the previous section, it becomes clear
that the above inequality has a feasible solution if and only
if there exist τ̃i := τi − γβi, i = 1, . . . , r, such that

Q0 −
r∑

i=1

τ̃iQi � 0. (36)

This inequality, however, is the same as condition c) of
Theorem 1.

Since this analysis can be repeated for all inequalities
in the form (22), the conclusion is that Theorem 1 is the
best result for testing polynomial non-negativity that can be
achieved by Lemma 4.

F. Illustrative Example

For the same example in Section II-C we have that

Qu,v = Qj=1, Qt =

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ ,

and
Qj=1 = 2Qt + Qi=1.

Indeed

τiQi=1 + γQj=1

= τ

⎡
⎣0 0 1

0 −2 0
1 0 0

⎤
⎦ + γ

⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦

= (τ + γ)

⎡
⎣0 0 1

0 −2 0
1 0 0

⎤
⎦ + 2γ

⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦

= −(τ + γ)Qi=1 + 2γQt.
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VI. DISCUSSION

Theorem 1 establishes a close link between the S-
Procedure and SOS polynomials. Item c) of Theorem 1
corresponds exactly to what was called “implicit represen-
tation” in [2]. As discussed in this reference, solving the
semi-definite program associated with this implicit repre-
sentation is more efficient when n and m are large. Our
results provides an interesting interpretation to the implicit
representation along with a constructive way to build the
kernel matrices Qi, i = 0, . . . , r. Indeed, it is easier to
build such matrices than to build the much larger matrix A,
associated with the “explicit representation”. For monomial
basis, matrices A and Qi, i = 0, . . . , r, can be built “by
inspection”. It is also interesting that the kernel matrices Qi,
i = 0, . . . , r, obtained in such way are sparse matrices, such
as A. This is in contrast with kernel matrices obtained after
factoring matrix A, which can lead to dense kernel matrices.

After having proved Theorem 1, one can interpret the fact
that all γj ≥ 0, j = 1, . . . , l, are of no use in Lemma 4 as a
consequence of the fact that the polynomials qj(sm(x)) are
sums-of-squares. As so, then each qj(sm(x)), must admit a
representation in the form qj(sm(x)) = sm(x)T Qjsm(x),
where Qj � 0. The arguments in Sections V-E and V-
E simply provide constructions for such representations.
One could then think of a better use of Lemma 4, where
the quadratic forms qj(y), j = 1, . . . , l, are non-negative
polynomials which are not SOS. For instance, to test non-
negativity of forms of degree 2m on n = m variables one
could think of setting qj(sm(x)), j = 1, . . . , l, to be all
possible variations of the Motzkin polynomial [14].

Another use for the results of this paper is in trying to ex-
trapolate the many years of experience with the S-Procedure
to the SOS decomposition problem. It is common sense that
the S-Procedure is a useful tool, yet it typically produces
conservative results in many applications. Therefore, one
could say that we should expect that testing non-negativity
of polynomials with the S-Procedure or, equivalently, using
SOS decompositions, should also inherit some of this “con-
servativeness”, despite the many successful applications re-
ported for instance in [1], [2], [3]. This qualitative statement
is in agreement with the recently reported results of [15],
which shows, quantitatively, that if one considers families
of polynomials with some fixed degree m greater than two,
there are significantly more non-negative polynomials than
sums of squares as the number of variables n grows.
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