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Abstract— In this paper, we propose new LMI-based condi-
tions for robust stability/performance analysis of linear time-
invariant (LTI) uncertain systems. To get around the conser-
vatism of existing conditions resulting from Lyapunov’s stability
theory, we first consider to employ Lyapunov functions that can
be associated with higher-order derivatives of the state vectors.
This motivates us to introduce a redundant system description
so that we can take the behavior of the higher-order derivatives
of the state into consideration. Indeed, by considering suitable
redundant system descriptions, the existence conditions of those
Lyapunov functions can be reduced into constrained inequality
conditions, to which we can apply Finsler’s Lemma. Thus
we can readily obtain new LMI-based conditions for (robust)
stability/performance analysis of LTI systems in a constructive
way. It turns out that the proposed LMI conditions can be
regarded as a natural extension of those known as extended or
dilated LMIs in the literature.

I. INTRODUCTION

Robustness analysis of linear time-invariant (LTI) systems

against parametric uncertainties has been studied intensively

in the community of control theory [1]. When studying those

analysis problems, one of the effective strategies should be to

recast those analysis problems into feasibility tests of linear

matrix inequalities (LMIs) via Lyapunov’s stability theory. In

particular, LMI-based approaches have become very promis-

ing since they enable us to employ parameter-dependent

Lyapunov functions to assess the robust performance so that

accurate analysis results can be achieved. Since the basic

ideas to employ parameter-dependent Lyapunov functions

were proposed [7], [8], notable contributions have been made

in this direction [3], [4], [9], [11], [13].

In the literature dealing with robustness analysis problems

of LTI systems using Lyapunov’s stability theory, the Lya-

punov functions employed are almost always restricted to

those given by quadratic forms of the state vectors. This

is because, when assessing the stability/performance of a

system without uncertainties, it is certainly enough to seek

for Lyapunov functions of this form. However, from the

viewpoints of Lyapunov’s stability theory, it is not necessary

to restrict our attention to those specific forms. In particular,

by employing Lyapunov functions of a suitable form, it is

expected that we can derive less conservative conditions for

robust stability/performance analysis problems.

This work is supported in part by the Ministry of Education, Culture,
Sports, Science and Technology of Japan under Grant-in-Aid for Young
Scientists (B), 15760314.

From these observations, in this paper, we introduce

Lyapunov functions that can be associated with higher-

order derivatives of the state and explore the existence

conditions of those Lyapunov functions by following similar

discussions to [10]. When seeking for Lyapunov functions

of these particular forms, we should be very careful on the

existence of higher-order derivatives of the state as well as

their behavior. This motivates us to employ a redundant

description of the considered system so that we can grasp

the behavior of the higher-order derivatives of the state

exactly. Indeed, by employing suitable redundant system

descriptions, we can reduce the existence conditions of those

Lyapunov functions into constrained inequality conditions, to

which Finsler’s Lemma [2], [12] can be applied. It follows

that we can readily obtain new LMI-based conditions for

(robust) stability analysis. Furthermore, by following similar

lines, we can also derive new LMI conditions for (robust)

H∞ performance analysis.

As expected from the fact that we derive new LMI-based

conditions by employing Lyapunov functions of particular

form and following the methodology shown in [10], the

resulting conditions can be regarded as a natural extension

of those known as extended or dilated LMI conditions [9],

[10], [11], [5]. In particular, we can prove rigorously that

the proposed robust stability/performance analysis conditions

encompass those [10], [11] as particular cases. Through nu-

merical experiments, it turns out that the proposed conditions

are indeed effective to achieve less conservative analysis

results than those in [10], [11].

We use the following notations in this paper. For a matrix

A ∈ Rn×n, we define He{A} := A + AT . For a matrix

A ∈ Rm×n with rank(A) = r < n, A⊥ ∈ Rn×(n−r) is a

matrix such that AA⊥ = 0 and A⊥T A⊥ > 0. The symbol

Pn denotes the set of n × n positive-definite real matrices.

Given a positive integer N , let ZN denote the set of positive

integers up to N , i.e., ZN := {1, · · · , N}. In this paper, we

make an extensive use of the following lemma.

Lemma 1: (Finsler’s Lemma) [10], [12] Let matrices Q ∈
Rn×n and B ∈ Rm×n be given such that rank(B) < n.

Then, the following conditions are equivalent.

(i) The condition xT Qx < 0 holds for all x ∈ NB where

NB := {x ∈ Rn : x �= 0, Bx = 0}.

(ii) The condition B⊥T QB⊥ < 0 holds.

(iii) There exists F ∈ Rn×m such that Q + He{FB} < 0.
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II. STABILITY ANALYSIS

In this section, we propose new LMI-based conditions for

(robust) stability analysis of continuous-time LTI systems by

introducing Lyapunov functions that can be associated with

higher-order derivatives of the state vectors.

A. New LMI-based Conditions for Stability Analysis
Let us consider the continuous-time LTI system given by

ẋ(t) = Ax(t), A ∈ Rn×n. (1)

According to Lyapunov’s stability theory, this system is

asymptotically stable if there exists a Lyapunov function

V (x(t)) that satisfies the following conditions:

V (x(t)) > 0, V̇ (x(t)) < 0, ∀
[

x(t)
ẋ(t)

]
∈ N ,

N :=
{
y ∈ R2n : y �= 0, [ A − I ]y = 0

}
.

(2)

In addition, when assessing the asymptotic stability of the

LTI system (1), it is well-known that we can restrict the

class of the Lyapunov functions into

V (x(t)) = xT (t)Px(t), P ∈ Pn. (3)

Namely, the system (1) is asymptotically stable iff there

exists P ∈ Pn that satisfies the requirements in (2) with

V (x(t)) given by (3). In [10], the existence condition of

those P ∈ Pn has been reduced into feasibility tests of

LMIs in the following constructive way. Indeed, we see that

the first condition in (2) can be ensured by P ∈ Pn whereas

the second condition can be rewritten equivalently as[
x(t)
ẋ(t)

]T [
0 P
P 0

] [
x(t)
ẋ(t)

]
< 0 ∀

[
x(t)
ẋ(t)

]
∈ N . (4)

By applying Lemma 1 to this constrained inequality condi-

tion, we can obtain the following results.

Proposition 1: [10], [11] The system (1) is asymptotically

stable iff there exist P ∈ Pn and Fj ∈ Rn×n (j = 1, 2)
such that[

0 P
P 0

]
+ He

{[
F1

F2

] [
A −I

]}
< 0. (5)

It is well-known that the LMI condition (5) is effective for

robust stability analysis of the LTI system (1) where the ma-

trix A is affected by uncertain parameters. Roughly speaking,

since the Lyapunov matrix P has no multiplication relation

with A, the LMI condition (5) enables us to assess the

robust stability via parameter-dependent Lyapunov functions

(PDLFs) [7], [8], which are quite promising to achieve less

conservative analysis results as shown in [9], [10], [11].
In the above discussions, we see that the dilated LMI con-

dition (5) readily follows from (2) by representing V̇ (x(t)) in

a quadratic form associated with the derivative of the state

as in (4). This implies that, if we are to derive new LMI

conditions by achieving further dilation on (5), it is promising

to employ Lyapunov functions whose time-derivatives can be

associated with yet higher-order derivatives of the state.

Motivated by these observations, let us consider to take a

(candidate of) Lyapunov function

V (x(t)) := xT (t)P2x(t), P2 =
[

I
A

]T

Π
[

I
A

]
, Π ∈ P2n (6)

which can be rewritten, equivalently as

V =
[

x(t)
ẋ(t)

]T

Π
[

x(t)
ẋ(t)

]
. (7)

Note that P2 ∈ Pn since Π ∈ P2n. Namely, even though

the function V (x(t)) given by (6) is an ordinary quadratic

form as in (3), it can be associated with the derivative of the

state so that its derivative can be associated with the second-

order derivative of the state. This is the key property that

motivates us to introduce a Lyapunov function of the form

(6). Indeed, by working with the Lyapunov function (6), we

can derive novel LMI conditions for the asymptotic stability

of the system (1).

To see this, let us examine the asymptotic stability of the

system (1) by means of (6). It is apparent that if there exists

Π ∈ P2n such that (2) holds with V (x(t)) given by (6), then

the system (1) is asymptotically stable. Conversely, suppose

that the system (1) is asymptotically stable. Then, there exists

a matrix P ∈ Pn that satisfies the condition (2) with V (x(t))
given by (3). Here, from the Schur complement arguments,

we see that there exists a positive scalar ε̄(P,A) such that

the positivity condition

Π =
[

P −εAT

−εA 2εI

]
∈ P2n (8)

holds for any 0<ε<ε̄(P,A). It is obvious that the matrix Π
given by (8) satisfies (2) with V (x(t)) given by (6) for any

0 < ε < ε̄(P,A), since we have[
I
A

]T [
P −εAT

−εA 2εI

] [
I
A

]
= P. (9)

It follows that the system (1) is asymptotically stable iff there

exists Π ∈ P2n that satisfies (2) with V (x(t)) given by (6).

Recalling (7), we see that the time-derivative of V (x(t))
can be written in a form associated with the second-order

derivative of the state as follows:

V̇ =

[
x(t)
ẋ(t)
ẍ(t)

]T

WT
2 (Ψc ⊗ Π)W2

[
x(t)
ẋ(t)
ẍ(t)

]
. (10)

Here, the matrices W2 and Ψc are given by

W2 :=
[
W21W22

]T
, W21 =

[
I2n

0n,2n

]
, W22 =

[
0n,2n

I2n

]
,

Ψc :=
[

0 1
1 0

]
.

(11)

With this in mind, we now consider to recast the condition

(2) with V (x(t)) given by (6) into a dilated LMI condition

as in (5). To this end, let us introduce

N2 :=
{

y ∈ R3n : y �= 0,
[

A −I 0
0 A −I

]
y = 0

}
. (12)

Then, it is easy to see that for each t, the condi-

tion [ xT (t) ẋT (t) ]T ∈ N holds iff ẍ(t) exists and

[ xT (t) ẋT (t) ẍT (t) ]T ∈ N2 since we can associate the

system (1) with the following redundant description:[
A −I 0
0 A −I

] [
x(t)
ẋ(t)
ẍ(t)

]
= 0. (13)
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Hence, from (10), we can conclude that the system (1) is
asymptotically stable iff there exists Π ∈ P2n such that"

x(t)
ẋ(t)
ẍ(t)

#T

W T
2 (Ψc ⊗ Π)W2

"
x(t)
ẋ(t)
ẍ(t)

#
< 0 ∀

"
x(t)
ẋ(t)
ẍ(t)

#
∈ N2. (14)

Noting that the form of (14) is exactly the same as (i) in

Lemma 1, we can readily obtain the following results.
Theorem 1: The system (1) is asymptotically stable iff there
exist Π ∈ P2n and Fjk ∈ Rn×n (j = 1, 2, 3, k = 1, 2) such
that

W T
2 (Ψc ⊗ Π)W2 + He

8<
:

2
4F11F12

F21F22

F31F32

3
5 »

A −I 0
0 A −I

–9=
; < 0. (15)

Here, the matrices W2 and Ψc are given by (11).

Now we have derived a new LMI condition (15) via

the Lyapunov function (6) that can be associated with the

derivatives of the state as in (7) and the corresponding

redundant system description (13). Similarly to (5), we see

in the new LMI condition (15) that the matrix variable Π
has no multiplication relation with A. This property enables

us to employ parameter-dependent Lyapunov functions when

dealing with robust stability analysis problems.

On the other hand, from the discussions around (8), it

is expected that the matrix variable Π ∈ P2n in (15) can

be constructed from P ∈ Pn in (5). Indeed, regarding the

matrix variables that satisfy (5) and (15), we can verify that

the following connections hold.
Proposition 2: If (5) holds with P = P ∈ Pn and Fj =
Fj (j = 1, 2), then there exists ε̄ > 0 such that (15) holds
with

Π =

»
P −εAT

−εA 2εI

–
∈ P2n,

"
F11 F12

F21 F22

F31 F32

#
=

"F1 0
F2 0
0 εI

#
(16)

for any 0 < ε < ε̄.

This result shows that the LMI condition (15) is still nec-

essary and sufficient even when we restrict the variables as

F12 = 0, F22 = 0 and F31 = 0. In addition, it turns out in the

next subsection that the connection (16) plays an important

role to ensure an explicit advantage of (15) over (5) when

dealing with robust stability analysis problems.

Before proceeding to robust stability analysis problems,

we briefly discuss further extensions in the direction of

stability analysis using redundant system descriptions. It

should be noted that, by taking Lyapunov functions that

can be associated with yet higher-order derivatives of the

state and considering the corresponding redundant system

descriptions, we can derive new LMI conditions successively.

For example, let us take a Lyapunov function of the form

V (x(t)) := xT (t)

⎛⎝[
I
A
A2

]T

Ξ

[
I
A
A2

]⎞⎠ x(t), Ξ ∈ P3n

and consider the corresponding redundant system description⎡⎣ A −I 0 0
0 A −I 0
0 0 A −I

⎤⎦
⎡⎢⎣ x(t)

ẋ(t)
ẍ(t)...
x(t)

⎤⎥⎦ = 0.

Then, by following similar lines to (14), we can show that

the system (1) is asymptotically stable iff the following LMI

condition holds.

W T
3 (Ψc ⊗ Ξ)W3 + He

8><>:
264F11 F12 F13

F21 F22 F23
F31 F32 F33
F41 F42 F43

375
24 A −I 0 0

0 A −I 0
0 0 A −I

35
9>=>; < 0. (17)

Here, Ξ ∈ P3n and Fjk ∈ Rn×n (j = 1, · · · , 4, k =
1, · · · , 3) are matrix variables to be determined whereas

W3 :=
[
W31W32

]T
, W31 =

[
I3n

0n,3n

]
, W32 =

[
0n,3n

I3n

]
.

In particular, it can be easily verified that if (15) holds with

Π = Π̂ ∈ P2n and Fjk = Fjk (j = 1, 2, 3, k = 1, 2), then
there exists ε̄ > 0 such that (17) holds with

Ξ =

24 bΠ11
bΠ12−εA2TbΠT

12
bΠ22 0

−εA2 0 2εI

35∈P3n,

264F11F12F13
F21F22F23
F31F32F33
F41F42F43

375=

264F11F12 0
F21F22 0
F31F32 0
0 0 εI

375 (18)

for any 0 < ε < ε̄. In this way, we can obtain new LMI-

based conditions successively while retaining the structural

properties as in (16) and (18).

B. Robust Stability Analysis of Uncertain Systems

Let us consider the polytopic-type uncertain LTI system

described by

ẋ(t) = A(α)x(t), α ∈ α (19)

where

α :=

(
α ∈ RN : αi ≥ 0,

NX
i=1

αi = 1

)
, A(α) :=

NX
i=1

αiAi. (20)

Here, Ai ∈ Rn×n (i ∈ ZN ) are given matrices.

To assess the robust stability of the system (19) in a less

conservative fashion, Oliveira and Skelton [10] and Peaucelle

et al. [11] proposed the following condition based on (5).

Proposition 3: [10], [11] The system (19) is robustly

asymptotically stable if there exists Pi ∈ Pn and Fj ∈
Rn×n (j = 1, 2) such that[

0 Pi

Pi 0

]
+ He

{[
F1

F2

] [
Ai −I

]}
< 0 ∀i ∈ ZN . (21)

It should be noted that the above LMI-based condition

has been obtained by employing fixed (i.e., parameter-

independent) matrix variables F1 and F2 over the whole

uncertainty domain α. By applying similar ideas to (15) and

considering fixed matrix variables Fjk (j = 1, 2, 3, k =
1, 2), we can readily obtain the next theorem.
Theorem 2: The system (19) is robustly asymptotically
stable if there exist Πi ∈ P2n and Fjk ∈ Rn×n (j =
1, 2, 3 k = 1, 2) such that

W T
2 (Ψc ⊗ Πi)W2 + He

("
F11F12
F21F22
F31F32

# »
Ai−I 0
0 Ai −I

–)
<0 ∀i ∈ ZN . (22)

It is meaningful to examine the new robust stability

analysis condition (22) in comparison with (21). As is well-

known, the condition (21) can be interpreted as a sufficient

condition for the existence of PDLFs of the form

V (x(t), α) = xT (t)P (α)x(t), P (α) :=
N∑

i=1

αiPi ∈ Pn

that ensures the asymptotic stability of the system (19). On

the other hand, the new condition (22) corresponds to a
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sufficient condition for the existence of PDLFs of the form

V (x(t), α) = xT (t)

([
I

A(α)

]T

Π(α)
[

I
A(α)

])
x(t),

Π(α) :=
N∑

i=1

αiΠi ∈ P2n.

(23)

It follows that the new condition (22) enables us to assess

the robust stability with Lyapunov functions that depend

cubically on the uncertain parameter α as in (23).

From these observations, it is expected that the new

condition (22) is promising to achieve less conservative

analysis results than (21). In particular, we can ensure the

advantage of (22) over (21) more rigorously as follows.

Theorem 3: If the robust stability analysis condition (21)

holds with Pi = Pi ∈ Pn (i ∈ ZN ) and Fj = Fj (j = 1, 2),
then there exists ε > 0 such that the condition (22) holds with

Πi =
[ Pi −εAT

i

−εAi 2εI

]
∈P2n (i∈ZN ),

[
F11F12

F21F22

F31F32

]
=

[F1 0
F2 0
0 εI

]
.

Namely, the robust stability analysis condition (22) provides

no more conservative results than (21).

Proof: Since there are only finitely many vertices in

(19), the assertion readily follows from (16).

As is easily seen from (17), we can derive new LMI-based

robust stability analysis conditions successively by taking

Lyapunov functions that can be associated with yet higher-

order derivatives of the state vectors. In addition, since the

structural properties as in (18) holds, we can also ensure the

non-conservativeness of the resulting LMI conditions as in

Theorem 3. However, it is not necessarily apparent whether

those LMI conditions indeed work effectively to reduce the

conservatism and achieve more accurate analysis results.

In the next subsection, we examine these points through

numerical experiments.

C. Numerical Experiments

For given matrices Ā0 ∈ Rn×n and Āi ∈ Rn×n (i ∈
ZN ), let us consider the polytopic-type uncertain system (19)

where the vertex matrices Ai are given by

Ai(η) = Ā0 + ηĀi i ∈ ZN . (24)

We assume that the matrix Ā0 is Hurwitz stable. In this

subsection, we follow the discussions in [4] and consider

the problem to compute the stability margin ρ defined by

ρ := sup {η̄ ∈ R : The system (19) is asymptotically

stable for all (α, η) ∈ α × [0 η̄]} .

1) Example 1: We first consider the case where N = 2.
The matrices in (24) are given by

Ā0 =

"−2.0 1.0 −1.0
2.5 −3.0 0.5

−1.0 1.0 −3.5

#
, Ā1 =

"−0.7 −0.5 −2.0
−0.8 0.0 0.0

1.5 2.0 2.4

#

and Ā2 = −Ā1, respectively. Based on the proposed robust

stability analysis conditions, we carry out bisection search

and obtain the estimates of the stability margin ρ̂ as shown

in Table I. In this example, we can compute the exact

value ρ by using the notion of guardian map [1], which

turns out to be ρ = 3.551. From Table I, we see that the

proposed LMI conditions yield better analysis results than the

existing condition (21). In particular, the proposed conditions

successfully achieve the exact stability margin. Note however

that the proposed conditions are computationally demanding

as indicated by the number of scalar variables Ns in Table I.

TABLE I

STABILITY MARGIN FOR A POLYTOPIC-TYPE UNCERTAIN SYSTEM WITH

TWO VERTICES.

Robust stability condition (21) [10], [11]. ρ̂1 = 3.207 (Ns = 30)
Robust stability condition (22) (Theorem 2). ρ̂2 = 3.551 (Ns = 96)
Robust stability condition based on (17). ρ̂3 = 3.551 (Ns = 198)

(Ns: The number of scalar variables in each LMI condition.)

2) Example 2: We next consider the case where N = 3.
The matrices in (24) are

Ā0 =

264−2.4 −0.6 −1.7 3.1
0.7 −2.1 −2.6 −3.6
0.5 2.4 −5.0 −1.6

−0.6 2.9 −2.0 −0.6

375 , Ā1 =

264 1.1 −0.6 −0.3 −0.1
−0.8 0.2 −1.1 2.8
−1.9 0.8 −1.1 2.0
−2.4 −3.1 −3.7 −0.1

375 ,

Ā2 =

264 0.9 3.4 1.7 1.5
−3.4 −1.4 1.3 1.4

1.1 2.0 −1.5 −3.4
−0.4 0.5 2.3 1.5

375 , Ā3 =

264−1.0 −1.4 −0.7 −0.7
2.1 0.6 −0.1 −2.1
0.4 −1.4 1.3 0.7
1.5 0.9 0.4 −0.5

375 .

For this problem, we apply the proposed robust stability

analysis conditions and obtain the estimates of the stability

margin ρ̂ as shown in Table II. The proposed two conditions

yield the same result ρ̂ = 1.930, even though the condition

(17) takes a higher-order derivative of the state vectors.

TABLE II

STABILITY MARGIN FOR A POLYTOPIC-TYPE UNCERTAIN SYSTEM WITH

THREE VERTICES.

Robust stability condition (21) [10], [11]. ρ̂1 = 1.497 (Ns = 62)
Robust stability condition (22) (Theorem 2). ρ̂2 = 1.930 (Ns = 204)
Robust stability condition based on (17). ρ̂3 = 1.930 (Ns = 426)

(Ns: The number of scalar variables in each LMI condition.)

This problem was dealt with by Chesi et al. [4] and they

obtained an estimate of the stability margin ρ̂ = 2.224 by

using polynomial-type PDLFs. Thus, in this example, the

proposed conditions fail to achieve an exact stability margin.

Remark 1: In [6], the authors dealt with the stability anal-

ysis problems of the system (1) by reformulating them into

nonsingularity analysis problems of the matrix polynomial

sI−A over s ∈ C̄+, where C̄+ ⊂ C denotes the closed right

half plane. In particular, by employing suitable polynomial-

type multipliers F(s), exactly the same conditions as in (15)

and (17) have also been derived. In this sense, the present

paper has contributed to giving a new interpretation on

those conditions from the viewpoints of Lyapunov’s stability

theory in the time-domain. More importantly, the idea to

employ Lyapunov functions that can be associated with

higher-order derivatives of the state and introduce redundant

system descriptions can readily be applied to performance
analysis problems. Indeed, in the next section, we derive a

new robust H∞ performance analysis condition based on a

particular redundant system description, which should be far

from attainable if we pursue the direction of [6].
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III. H∞ PERFORMANCE ANALYSIS

In this section, we derive a new LMI-based condition

for the H∞ performance analysis of continuous-time LTI

systems based on a particular redundant system description.

A. New LMI-based Condition for H∞ Performance Analysis
Let us consider the LTI system described by

ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) + Dw(t), x(0) = 0 (25)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m.

The L2 gain of the system (25) is defined by [12]. Our goal

here is to derive new LMI-based conditions for the analysis

of the H∞ norm ||G(s)||∞ = ‖C(sI − A)−1B + D‖∞, by

investigating the L2 gain of the system (25) defined in the

time-domain.

For a prescribed value 0 < γ < ∞, it is well-known

[10] that the system (25) is asymptotically stable and the L2

gain γ∞ is bounded by γ (i.e., γ∞ < γ) iff there exists a

Lyapunov function

V (x(t)) = xT (t)Px(t), P ∈ Pn (26)

that satisfies

V̇ (x(t))+zT (t)z(t) − γ2wT (t)w(t) < 0 ∀

2
64

x(t)
ẋ(t)
z(t)
w(t)

3
75 ∈ M,

M :=

j
y ∈ R2n+l+m : y �= 0,

»
A −I 0 B
C 0 −I D

–
y = 0

ff
.

(27)

By applying Lemma 1 to the constrained inequality condition

(27), LMI results have been obtained [10].

We now consider to derive new LMI-based conditions for

the analysis of the H∞ norm of the system (25). Since we

have successfully obtained new LMIs for (robust) stability

analysis by employing redundant system descriptions, we

pursue this direction for the system (25) and explore to take

higher-order derivatives of the state vector x(t). Unfortu-

nately, however, this cannot be done straightforwardly since

in the analysis of the L2 gain, the input signal w(t) is not

necessarily differentiable.
In order to get around this difficulty, in the sequel, we

assume that the input matrix B ∈ Rn×m satisfies rank(B) =
r < n and define B̄ := BT⊥T ∈ R(n−r)×n. Under
this assumption, we can successfully obtain the following
redundant description of the system (25):

B̄ẍ(t) = B̄Aẋ(t),
ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) + Dw(t).

(28)

It should be noted that B̄ẍ(t) is well-defined even though

ẍ(t) may not be.
Once we obtain the redundant system description (28),

it is straightforward to derive a new condition for the L2
gain analysis. This can be done by employing a Lyapunov
function of the form

V (x(t)) = xT (t)Pax(t), Pa =

»
I

B̄A

–T

Π

»
I

B̄A

–
, Π ∈ P2n−r. (29)

and following exactly the same lines as the stability analysis.

Due to space restriction, only the results are provided here.
Theorem 4: Let us consider the system described by (25).
Then, the matrix A is Hurwitz stable and ||G(s)||∞ < γ

holds iff there exist Π ∈ P2n−r, Fjk (j = 1, · · · , 5, k =
1, 2, 3) such that2
6664

0 Π11 0 0 Π12

Π11 Π12B̄ + B̄T ΠT
12 0 0 B̄T Π22

0 0 I 0 0
0 0 0 −γ2I 0

ΠT
12 Π22B̄ 0 0 0

3
7775

+He

8>>><
>>>:

2
6664

F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43

F51 F52 F53

3
7775

2
4 A −I 0 B 0

C 0 −I D 0
0 B̄A 0 0 −I

3
5

9>>>=
>>>;

< 0.

(30)

Now we have derived a new LMI condition (30) for the

H∞ performance analysis based on the redundant system

description (28) and the Lyapunov function of a particular

form (29). It should be noted here that, when introducing

the redundant system description (28), we rely only on the

relation B̄B = 0. Hence, we see that the results in Theorem 4

are still valid even if we replace the matrix B̄ with arbitrary

B̂ satisfying B̂B = 0.

B. Robust H∞ Performance Analysis of Uncertain Systems
Let us consider the polytopic-type uncertain LTI system

described by

ẋ = A(α)x + B(α)w, z = C(α)x + D(α)w, x(0) = 0, α ∈ α (31)

where α is given by (20) and»
A(α) B(α)
C(α) D(α)

–
:=

NX
i=1

αi

»
Ai Bi

Ci Di

–
. (32)

Here, Ai, Bi, Ci and Di (i ∈ ZN ) are given matrices. The

transfer function from w to z is given by

G(s, α) = C(α)(sI − A(α))−1B(α) + D(α). (33)

Our goal here is to compute the worst case H∞ norm of the

above system over α ∈ α.

To deal with this robust H∞ performance analysis prob-

lem, we can obtain the following results based on the system

description (25).
Proposition 4: [10] Let us consider the system described
by (33). Then, the matrix A(α) is Hurwitz stable and
||G(s, α)||∞ < γ holds for all α ∈ α if there exist Pi ∈ Pn
and Fjk (j = 1, · · · , 4, k = 1, 2) such that264 0 Pi0 0

Pi 0 0 0
0 0 I 0
0 0 0−γ2I

375+He

8><>:
264F11F12

F21F22

F31F32

F41F42

375»
Ai −I 0 Bi

Ci 0 −I Di

–9>=>; < 0 ∀i∈ZN . (34)

On the other hand, since we have already established those

results as in Theorem 4, it is straightforward to see that the

following theorem holds.
Theorem 5: Let us consider the system described by (33).
Then, the matrix A(α) is Hurwitz stable and ||G(s, α)||∞ <
γ holds for all α ∈ α if there exist Πi ∈ P2n−r and Fjk (j =
1, · · · , 5, k = 1, 2, 3) such that266664

0 Π11,i 0 0 Π12,i

Π11,i Π12,iB̄ + B̄T ΠT
12,i 0 0 B̄T Π22,i

0 0 I 0 0
0 0 0 −γ2I 0

ΠT
12,i Π22,iB̄ 0 0 0

377775

+He

8>>><>>>:
26664

F11 F12 F13

F21 F22 F23

F31 F32 F33

F41 F42 F43

F51 F52 F53

37775
24 Ai −I 0 Bi 0

Ci 0 −I Di 0
0 B̄Ai 0 0 −I

35
9>>>=>>>; < 0.

(35)
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Here, B̄ ∈ R(n−r)×n is an arbitrary matrix that satisfies

B̄Bi = 0 (∀i ∈ ZN ).
It should be noted that all properties of the new result (35)

compared with the former one (34) are exactly the same as

those for the robust stability analysis cases.

C. Numerical Experiments
1) The case where the matrix B has no uncertainties: Let

us consider the polytopic-type uncertain system described by
(31) and (32) with N = 3. The vertex matrices are given by

A1 =

24 −0.5008 −0.4073 0.0336
0.2194 0.3801 0.5698

−0.4972 −0.6033 −0.2826

35 ,

A2 =

24 −0.1603 −0.1433 −0.3133
−0.1536 −1.2454 0.3023

0.5079 0.2159 −0.1128

35 ,

A3 =

24 −0.2436 0.1515 −0.1856
−0.5742 0.0975 0.6841
−0.3823 −0.4388 −0.9544

35 ,

Bi = B, Ci = C, Di = −0.4786 (i = 1, 2, 3),

where

B =

24 0.2190
−0.6587

0.7503

35 , C =

24 −0.0890
0.3838

−0.0374

35T

.

By applying the analysis conditions (34) and (35), we obtain

the upper bounds of the worst case H∞ norm as shown in

Table III. Here we apply those analysis conditions also to the

dual system of (31). When applying the proposed analysis

condition (35) to the primal system, we take B̄ = BT⊥T

whereas in the case of the dual system, we take B̄ = C⊥T .

In both cases, we see that the proposed condition (35) yields

better analysis results than (34).

TABLE III

COMPUTATION RESULTS FOR ROBUST H∞ PERFORMANCE ANALYSIS

Primal system Dual system

LMI condition (34) [10] 3.0896 (Ns = 51) 2.3681 (Ns = 51)
LMI condition (35) 1.9345 (Ns = 106) 1.8716 (Ns = 106)

(Ns: The number of scalar variables in each LMI condition.)

2) The case where the matrix B is subject to uncertainties:
We next consider the case where N = 2 in (31). The vertex
matrices are given by

A1 =

24 −0.4820 0.2475 0.5523
0.6564 −0.0541 0.6678
0.4631 −0.8679 −0.7465

35 ,

A2 =

24 −0.3280 −0.4585 −0.0199
0.2639 0.1258 −0.0179

−0.0156 0.1079 −0.5112

35 ,

B1 =

24 −0.7089
0.0738
0.5886

35 , B2 =

24 0.0118
−0.5969

0.0295

35 ,

Ci = C, Di = 0.2713 (i = 1, 2)

where

C =
ˆ

0.3126 0.3343 −0.3119
˜
.

Similarly to the preceding experiments, we apply the analysis

conditions (34) and (35) to (31) as well as its dual system

and obtain the results in Table IV. When applying (35) to

the primal system, we take B̄ = [B1 B2]T⊥T whereas in the

case of the dual system, we take B̄ = C⊥T . In both cases,

we can again confirm that the proposed condition is effective

to achieve less conservative analysis results.

TABLE IV

COMPUTATION RESULTS FOR ROBUST H∞ PERFORMANCE ANALYSIS

Primal system Dual system

LMI condition (34) [10] 1.4704 (Ns = 45) 1.4056 (Ns = 45)
LMI condition (35) 1.0413 (Ns = 66) 1.0258 (Ns = 91)

(Ns: The number of scalar variables in each LMI condition.)

IV. CONCLUSION

In this paper, we proposed new LMI conditions for robust

stability/performance analysis of uncertain LTI systems. By

introducing Lyapunov functions that can be associated with

higher-order derivatives of the state and considering corre-

sponding redundant system descriptions, we have shown a

constructive way to derive those analysis conditions. It turned

out that the proposed LMI conditions can be regarded as a

natural extension of those in [9], [10], [11]. Through numer-

ical experiments, we illustrated that the proposed conditions

are indeed effective to reduce the conservatism of the existing

results and achieve more accurate analysis results.

We restricted our attention to the analysis of continuous-

time systems in this paper but it is straightforward to extend

the present results to discrete-time system analysis. An

outstanding issue is the extension of the proposed analysis

conditions to controller synthesis. Indeed, it is our current

topic to find out a reasonable way to design (robust) state-

feedback controllers by means of the proposed analysis

conditions.
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