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Abstract— We consider a cellular network consisting of a
base station and N receivers. The channel to each receiver
is assumed to be in one of two states (ON or OFF) and the
channel states of the receivers are assumed to be independent
of each other. The goal is to compare the throughput of two
different scheduling policies given an upper bound on the queue
overflow probability or the delay violation probability. The two
scheduling policies that we consider are: (i) a greedy scheduling
policy which chooses to serve any of the channels in the ON
state, and (ii) a queue-length-based policy which serves the
longest queue connected to an ON channel. We show that the
total network throughput of the queue-length-based policy is no
less than that of the greedy policy for all N and is strictly larger
than the throughput of the greedy policy for large N. Further,
given an upper bound on the delay violation probability, we
show that the throughput of the queue-length-based policy is
an increasing function of N while the throughput of the greedy
policy eventually decreases with increasing N and goes to zero.
Given an upper bound on the queue overflow probability, we
show that the throughput of the queue-length-based policy is
a strictly increasing function of N while the throughput of the
greedy policy eventually goes to a constant.

I. INTRODUCTION

Multiuser wireless scheduling has received much attention
in recent years. Consider a cellular network consisting of a
base station and N users (receivers), where the base station
maintains N separate queues, one corresponding to each
user. Assume time is slotted and the channel states of the
receivers at each time slot are known at the base station.
Then, the base station can determine which queues to serve
according to their channels states. In this paper, we assume
that the base station operates in a TDMA fashion, i.e., the
base station can serve only one queue in each time slot.
Two scheduling policies have been widely studied in the
literature: (i) the base station serves the user with the best
(weighted) channel state (opportunistic scheduling) [7], [4],
or (ii) serve the one with the best queue-length-weighted
channel state (queue-length based (QLB) scheduling) [6].
While QLB scheduling is throughput optimal (i.e., can
stabilize any set of user throughputs that can be stabilized
by any other algorithm), opportunistic scheduling maximizes
the total network throughput if all queues are continuously
backlogged. If the arrival rates to the users are identical and
the channel state distribution to the receivers are identical,
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then these two scheduling policies have the same stability
region.

Stability is the first concern of scheduling policies. How-
ever, quality-of-service (QoS) is important too. For exam-
ple, we may require the queue overflow probability to be
small or require small delays. The performance of different
scheduling policies under QoS constraints has received much
attention recently. For reasons of analytical tractability, much
of the prior work assumes that the channels to all the
receivers are independent and statistically identical. Under
this assumption, and assuming identical user utilities, the
opportunistic scheduling policies become greedy policies in
which the base station transmits to the receiver with the best
channel state. In [5], the author studies a simple network
consisting of two users where the channels are assumed to
be independent, identically distributed ON-OFF channels.
Using large-deviations techniques, it is shown that the total
network throughput of the QLB policy is larger than the
greedy policy under the queue overflow constraint. In [3],
a wireless network with N users and ON-OFF channels is
considered. It is assumed that the arrivals are identical and
Poisson, and the capacity when the channel is ON is one
packet per time slot. It is then shown that, when the number
of users increases from N to 2N, the expected sum of queue
lengths is non-increasing under the QLB policy, while it
increases linearly under the greedy policy. Further, in [2], the
behavior of the greedy policy for Rayleigh fading channels
is studied and it shows that under a delay constraint, the total
network throughput of the greedy policy increases initially
with the number of users, but eventually decreases and goes
to zero when the number of the users is sufficiently large.

Motivated by these prior results, in this paper, we study
the performance of the two scheduling policies (greedy and
QLB) for a wireless network with symmetric users and
simple ON-OFF channels. The main contributions of this
paper are as follows:

1) Assuming a constant arrival rate in each slot, we
compute the large-deviations exponent of the proba-
bility that one queue in the network exceeds a large
threshold. A key contribution here is the character-
ization of the queue-length trajectories that lead to
queue overflow. It was conjectured that in [5] that the
complexity of the calculation of the large-deviations
exponent increases exponentially with increasing N,
but we show here that a simple closed-form expression
can be obtained.

2) In [3], under the assumption that the channel capacity
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is one packet per time slot, it is shown the expected
sum of the queue lengths is nondecreasing when the
number of users increases from N to 2N. In this paper,
we show that the large-deviations exponent is non-
decreasing (strictly increasing) in N under the delay-
violation constraint (overflow constraint). Our result
does not only compare performance with N users and
2N users, but at all intermediate values as well. Further,
our result holds even when the capacity of the network
is greater than 1 packet-per-slot.

3) For the greedy policy, we analytically show that the
throughput goes to a constant under the queue over-
flow constraint, and decreases to zero under the delay
violation constraint. This result is consistent with the
numerical results for Rayleigh fading channels in [2].

4) Under the QoS constraints, we show that the through-
put of the QLB scheduling policy is strictly larger than
the throughput of the greedy policy. This conclusion
has been proved true in [5] for a two users system and
under queue overflow constraint. Here, we prove that
it is true for an N-user system.

While in this paper we only study ON-OFF channels, in
a longer version of the paper, we show that the comparative
performance of the greedy and QLB policies show a similar
behavior even for more general channel models.

II. BASIC MODEL

Consider a wireless network shared by N users in the
downlink of a cellular network. We assume that the time
is slotted and at each time slot, only one user can be chosen
to transmit. Each user is associated with a channel and all
channel-state processes ηi[t] are statistically identical. In this
paper, we will consider a simple channel model — ON-
OFF channel, which has two states. We use “0” to indicate
the channel is OFF and “1” to indicate the channel is ON.
When the channel is OFF, no data can be transmitted. When
the channel is ON, this channel can be selected to transmit.
Furthermore, we let p be the probability that the channel is
in the ON state. Also assume that the arrival rate is constant
and is equal to λ/N bits/slot for each user. When a channel
is ON, we can transmit at most F bits to the user of that
channel.

For this simple model, we consider the throughput of two
different scheduling policies under two different quantity of
service (QoS) constraints. The two scheduling policies we
will investigate are:

1) Queue-length based (QLB) policy: Choose user i to
transmit if

i ∈ argmax
j

η j[t]Q j[t],

where Qi[t] is the queue length of user i at time t. In
our simple model, this policy chooses the user with the
largest queue length from ON channels.

2) Greedy policy: Choose user i if

i ∈ argmax
j

η j[t].

In our model, we assume that the base station is equally
likely to choose one of the ON channels.

The two QoS constraints we will consider are:

1) Queue overflow constraint:

Pr(max
i

Qi(0) > B) ≤ ε,

where Qi(0) is the stationary queue length. So this
QoS constraint requires the steady-state probability
that the queue length is larger than B to be small.
Instead of studying this constraint as above, we study
the following approximation to the constraint:

θB(N) := lim
B→∞

− 1
B

logP(max
i

Qi(0) > B) ≥ δ . (1)

The exponent δ can be related to ε for large B using
the following approximation: e−δB = ε.

2) Delay violation constraint: Define D(t) to be the
maximum delay experienced so far by any bit in
any of the queues in slot t. Assuming that the sys-
tem started at time −∞, the steady-state delay vio-
lation constraint that we consider can be expressed
as follows: Pr(D(0) > D) ≤ ε. Since the arrival rate
is constant, it is easily seen that Pr(D(0) > D) =
P

(
maxi Qi(0) > λ

N D
)

. Thus, the delay violation con-
straint can be expressed as:

Pr

(
max

i
Qi(0) >

λ
N

D

)
≤ ε.

As before, we study the following approximation to
the constraint:

θD(N) := lim
D→∞

− 1
D

logP(max
i

Qi(0) >
λ
N

D) ≥ δ . (2)

In the rest of the paper, we will study the behavior of
θB(N) and θD(N). From the above description of the two
quantities, it is clear that if we obtain an expression for
θB(N), then

θD(N) =
λθB(N)

N
.

Thus, we will primarily consider the queue overflow problem
when we analyze the wireless system using large deviations.

III. QUEUE-LENGTH BASED POLICY

In this section, we use large deviations techniques to
study the QLB policy. In Subsection III-A, we present a
large deviations argument given in [5] to show that the
probabilities of QoS violation can be related to an optimal
control problem. In Subsection III-B, we prove two important
properties of the optimal trajectory, which are then used in
Subsection III-C to prove that the optimal trajectory is linear.
Also, in Subsection III-C, we provide a formula to calculate
the large-deviations exponent under the QLB policy.

A. Large Deviations and Optimal Control

Consider a N-user system, and let γi(t) be the state of
channel i at time t, so that γi(t) = 1 or 0. The state of the
system depends on the state of each channel, so there are 2N
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system states. Each state can be represented as a N-tuple in
{0,1}N . For example, consider a 2-user system, the channel
states are: (0,0), (0,1), (1,0) and (1,1), where 0 means the
corresponding channel is OFF and 1 means the channel is
ON. To simplify our notation, we will use the decimal value
of the binary representation to represent the system state. So
for a 2-user system, the system states are: 0, 1, 2 and 3.
Thus, define the system state variable S(t) as follows:

S(t) :=
N−1

∑
i=0

γi(t)2i, (3)

and further define the probability vector p, where p j is the
probability the system is at state j.

For sufficiently large T, we define s(B)(t) on [−T,0] using
S(t) on [0,BT ] as follows:

s(B)
j (t) :=

1
B

B(T+t)

∑
l=0

1S(l)= j, for t =
k
B
−T and k = {0, . . . ,BT}

where for values of t which are not of the form k/n, define
s(B)

j (t) by linear interpolation. Notice that we have scaled
and shifted time so that the discrete time units 0,1, . . . ,BT
have now become the continuous time interval [−T,0]. For
each t, the variable s(B)

j (t) is the amount of (scaled) time in
the interval [−T, t] that the system is in state j. Next, define
the system channel rate processes using a 2N-tuple — u(t),
where u(t) is nonnegative, integrable, ∑2N−1

j=0 u j(t) = 1, and
given ε > 0, for all sufficiently large B, we have for any
t1 < t2 ∣∣∣∣s(B)

j (t2)− s(B)
j (t1)−

∫ t2

t1
u j(s)ds

∣∣∣∣ ≤ ε.

Now we will consider the normalized queue length

qi(t) =
1
B

Qi(t).

Then we have

Pr

(
max

i
Qi(0) > B

)
= Pr

(
max

i
qi(0) > 1

)
,

and the dynamics of the normalized queue length can be
described using following differential equation:

q̇i(t) =
λ
N
−F ∑

j∈Ai

u j(t),

where Ai is the set such that if j ∈ Ai, then user i will
be chosen to transmit when the system is at state j. The
optimization problem that is used to find the large devia-
tions exponents is defined in terms of the Kullback-Liebler
distance from p to u(t) :

D(u(t)‖p) =
2N−1

∑
j=0

u j(t) log
u j(t)

p j
.

Recall u(t) is nonnegative, integrable and ∑ j u j(t) = 1, we
define following optimization problem:

θ QLB

B (N) = inf
T,u

∫ 0

−T
D(u(s)||p) ds, (4)

where T ≥ 0, qi(−T ) = 0 for all i, maxi qi(0) = 1, and the
QLB policy is used.

Theorem 1:

θ QLB

B (N) = lim
B→∞

−1
B

logPr(max
i

qi(0) ≥ 1),

where θ QLB

B (N) is defined as (4), and queues are scheduled
according to the QLB policy.

Proof: The proof is a straightforward extension of
Theorem 6.1 in [5] for the case N = 2.

Note that the optimization problem is intuitively obvious:
among all possible channel state trajectories that could lead
of overflow, we pick the one that is “closest” to the mean
value p. Given u(t), we call

∫ 0
−T D(u(s)||p) ds the cost of

the trajectory generated by u(t). Thus, Theorem 1 tells us
that the probability of the QoS violation is related to the
minimum cost of optimal control problem (4). Due to the
obvious similarity with optimal control problems, we will
often refer to u(t) as the control law and the objective in (4)
as the cost function.

B. Properties of the Optimal Trajectory

In general, the optimal control problem (4) can be hard to
solve. In this paper, since we only consider the simple ON-
OFF channels and assume that all channels are symmetric,
the problem turns out to be tractable. In this subsection, we
will show two important properties of the optimal trajectory:
piecewise linearity and another property which we call the
order property. Then, in the next subsection, we will solve
the optimal control problem. To show piecewise linearity, we
segment the state space into regions such that the differential
equations describing the system dynamics are unchanged in
each region. For example, consider a 2-user system, there
are three regions [5]:

1) If q1(t) > q2(t), then

q̇1(t) =
λ
2
−F(u1(t)+u3(t))

q̇2(t) =
(

λ
2
−Fu2(t)

)+

0
.

2) If q2(t) > q1(t), then

q̇2(t) =
λ
2
−F(u2(t)+u3(t))

q̇1(t) =
(

λ
2
−Fu1(t)

)+

0
.

3) If q1(t) = q2(t), then

q̇1(t)+ q̇2(t) = (λ −F(u1(t)+u2(t)+u3(t)))
+
0 .

Here q̇i(t) = (a)+0 is defined as follows:

q̇i =
{

a, if qi(t) > 0;
max{0,a}, if qi(t) = 0.

This approach of diving the state space into regions where
dynamics are invariant was first considered in [1]. We now
prove following two lemmas. The first lemma is a straight-
forward extension of the corresponding result in [5] for the
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two-user case, but the second lemma is crucial to solving the
problem for N > 2.

Lemma 2 (Piecewise Linearity): In a region of fixed sys-
tem dynamics, the optimal control of (4) is constant. Thus,
the optimal trajectory is piecewise linear.

Proof: Given arbitrarily control u(t), and consider a
fixed system dynamics region in time interval [t1, t2]. Define

Kj =
1

t2 − t1

∫ t2

t1
u j(s)ds.

Since D(u||p) is convex in u, from Jensen’s inequality, it
follows that∫ t2

t1
D(u(s)||p)ds ≥ (t2 − t1)D

(
1

t2 − t1

∫ t2

t1
u(s)ds||p

)
= (t2 − t1)D(K||p).

Furthermore, the queue lengths at t = t2 are the same under
both controls. Thus, the optimal control law in this region is
a constant control law, and the optimal (scaled) queue length
trajectory is piecewise linear.

Lemma 3 (Order Property): Given any trajectory, we can
find another trajectory which has the same cost and the
property such that if i ≥ j, then

qi(t) ≥ q j(t).
Proof: This lemma exploits the fact that all channels are

symmetric. First we prove following statement: given control
ū(t) and suppose q̄i(t̄) = q̄k(t̄) at time t̄. Then, there exists
a new trajectory q̂(t) such that q̂i(t) = q̄k(t) and q̂k(t) =
q̄i(t) for t ≥ t̄. Furthermore, this new trajectory is identical
to the original one except the indexes of the queues, and two
trajectories have the same cost.

Now suppose that q̄i(t̄) = q̄k(t̄) and define a new control
û(t) such that

û j(t) =
{

ū j(t), if t < t̄;
ūl j(t), if t ≥ t̄,

where l j is obtained from j by exchanging the ith and kth

digits of the binary expression of j. For example, for the
two-user system, we will have ū(0,1)(t) = û(1,0)(t), ū(1,0)(t) =
û(0,1)(t), ū(0,0)(t) = û(0,0)(t), and ū(1,1)(t) = û(1,1)(t). Then,
since q̄i(t̄) = q̄k(t̄), the dynamics of queue i and queue j are
exchanged after t̄ under the new control, and we will have
q̂i(t) = q̄k(t) and q̂k(t) = q̄i(t) for t ≥ t̄ in the new trajectory.

Furthermore, the channels are symmetric, it is easy to see
p j = pl j because the binary expressions of j and l j have the
same number of “0”s and “1”s. So we can conclude that the
new trajectory have the same cost as the original one because∫ 0

t̄
D(û(s)‖p)ds =

∫ 0

t̄
∑

j
û j(s) log

û j(s)
p j

ds

=
∫ 0

t̄
∑

j
ūl j(s) log

ūl j(s)
p j

ds =
∫ 0

t̄
D(ū(s)‖p)ds.

Now, we have proved that if two queues have the same
queue length at time t̄, there exists a new trajectory with
the same cost such that the lengths of the two queues are

swapped after t̄. It is also easy to see that if we have more
than two queues with the same length at time t̄, then we can
swap any two of them after t̄ to get a new trajectory with
the same cost. Thus, give any trajectory, we can get a new
trajectory with the same cost such that qi(t)≥ q j(t) if i ≥ j.

We have proved two important properties of the optimal
trajectory: piecewise linearity and order property. In the next
subsection, we use these two properties to prove that the
linearity of the optimal trajectory. Also, we provide the
closed-form expressions of θ QLB

B (N) and θ QLB

D (N).

C. The Optimal Solution

Before we solve the optimal control problem (4), we
first consider a simpler optimization problem OP(M,N) as
follows:

OP(M,N) : CN
M(h) = infu,T T D(u||p) (5)

Subject to : T
(

M
N λ −F ∑2N−1

j=2N−M u j

)
= Mh (6)

∑2N−1
j=0 u j = 1 (7)

u j ≥ 0 ∀ j. (8)

This problem is related to the (4) as follows: (5) uses the
same cost function as (4), but it is assumed that a constant
control is used, the lengths of the queues N−M through N−
1 are all equal and larger than the remaining queue lengths
and that

qN−M(0) = . . . = qN−1(0) = h.

We do not impose any restrictions on q1 through qN−M−1,
other than the fact that these are smaller than qN−M(t) for all
t ∈ [−T,0]. However, in problem (5), we do not verify that
the resulting policy is a QLB policy, i.e., we give priority
to the users indexed N −M through N −1 without verifying
that their queue lengths are larger than the queue lengths of
the remaining users (we simply assume this in stating the
optimization problem, but do not verify it).

Notice that

T =
Mh

M
N λ −F ∑2N−1

j=2N−M u j

,

so

CN
M(h) = inf

u

Mh
M
N λ −F ∑2N−1

j=2N−M u j

D(u||p) = hCN
M(1).

Now we focus on CN
M(1) and obtain a closed-form expression

for it in Lemma 4. Then in Theorem 5, we prove that
the linearity of the optimal trajectory, and that θ QLB

B (N) =
minM CN

M(1).
Lemma 4: Consider the optimization problem (5), we

have

CN
M(1) = inf

0≤x< λM
FN

N

λ − xF N
M

D(ux(M)||p) , (9)

where

D(ux(M)||p) = x log
x

1− (1− p)M +(1− x) log
1− x

(1− p)M .
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Proof: Let M
F

(
λ
N − 1

T

)
= x, we first solve (5) for fix

T. Since D(u||p) is a strictly convex function, the optimal
solution of (5) for fixed T is unique and equation (9) can
be obtained by Lagrange multipliers. For more detail, please
refer to Lemma 4 of [8].

In the following theorem, we prove that θ QLB

B (N) =
minM CN

M(1). Then, using the formula for CN
M(1), it is easy

to obtain θ QLB

B (N).
Theorem 5: For a N-user network, the optimal control that

solves (4) is a constant, and hence the optimal queue length
trajectories are linear, and further

θ QLB

B (N) = min
M

CN
M(1).

Proof: From Lemma 2 and Lemma 3, we only need
to consider the trajectories which are piece-wise linear and
qi(t)≥ qk(t) for i≥ k. Pick any piece of this trajectory which
is in a fixed dynamic region. Suppose this piece of trajectory
is in the time interval [t1, t2], qN−1(t2)− qN−1(t1) = h, and
qN−1(t) = . . . = qN−M(t) > qN−M−1(t) for any t ∈ (t1, t2).
Thus, in this region, the dynamics of queue N−1, . . . ,N−M
are as follows:

N−1

∑
i=N−M

q̇i(t) =
M
N

λ −F

(
2N−1

∑
j=2N−M

u j

)
.

Then, it is easy to see that

(t2 − t1)

(
M
N

λ −F
2N−1

∑
j=2N−M

u j

)
= Mh. (10)

Define T = t2 − t1, then (10) is similar to (6). Let D(u||p)
be the cost of this piece of the trajectory, we have

(t2 − t1)D(u||p) ≥CN
M(h).

Define M∗ to be any one element of argminM CN
M(1), then

we have

(t2 − t1)D(u||p) ≥ hCN
M(1) ≥ hCN

M∗(1).

Now consider a piecewise linear and ordered trajectory,
and divide [−T,0] into subintervals [ti, ti+1] such that the
trajectory in each subinterval is in a fixed system dynamic
region. So the control in [ti, ti+1] is constant — we call it ui.
Also define hi = qN−1(ti+1)−qN−1(ti). Then, we have∫ 0

−T
D(u(s)||p)ds = ∑

i
(ti+1 − ti)D(ui||p) ≥ ∑

i
hiC

N
M∗(1)

= CN
M∗(1)

This is true for each piece-wise linear and ordered trajectory,
and thus,

θ QLB

B (N) ≥CN
M∗(1).

We have shown that minM CN
M(1) is a lower bound on

θ QLB

B (N). Furthermore, it can be shown (Theorem 5 of [8])
that there exists a trajectory that has the cost minM CN

M(1),
then we can conclude that θ QLB

B (N) = minM CN
M(1).

In the next theorem, we characterize the behavior of
θ QLB

B (N) and θ QLB

D (N) as a function of N.
Theorem 6: Under the QLB policy, the large-deviations

exponents behave as follows:

θ QLB

B (N) < θ QLB

B (N +1) and θ QLB

D (N) < θ QLB

D (N +1).
Proof: The proof is omitted due to lack of space, please

refer to Theorem 7 of [8] for detail.

IV. GREEDY POLICY

In this section, we will consider the greedy policy. We
first obtain expressions for θ Greedy

B (N) and θ Greedy

D (N). For the
system under the greedy policy, we use the notation ( j, i)
to indicate the state of the system; here, j = 0, . . . ,2N − 1
represents the composite state of all the channels as in the
QLB policy and i indicates the channel which is chosen to
transmit. If there are M channels in the ON state, we are
equally likely pick any one of them to transmit. Let S j be
the binary expansion of j and S j

k be the kth entry of S j. Then,
for j > 0, the probability of being in system state p j,i is

p j,i = p j
S j

i

∑N
k=0 S j

k

.

For example, if M channels are ON, then ∑N−1
k=0 S j

k = M. If
channel i is OFF in the composite channel state j, then p j,i =
0 because S j

i = 0. Otherwise, p j,i = 1
M p j, which means that

every ON channel is equally likely to be chosen. When j =
0, no channel can be scheduled. Also, define p̃ to be the
probability vector (p0,{p j,i} j>0,i=0,1,...,N−1).

From the symmetry of the system and the scheduling
policy, the differential equation describing the dynamics of
the system are as follows:

q̇i(t) =
λ
N
−

2N−1

∑
j=0

Fu j,i(t),

where qi(t) = Qi(t)/B. Similar to the QLB policy, we define

θ Greedy

B (N) = inf
T,u

∫ 0

−T
D(u(s)||p̃) ds, (11)

where qi(−T ) = 0 for all i, maxi qi(0) = 1, and the greedy
policy is used. Then, we have following theorem.

Theorem 7:

θ Greedy

B (N) = lim
B→∞

−1
B

logPr(max
i

qi(0) ≥ 1),

where queues are scheduled according to the greedy policy.
Proof: Same as the proof of Theorem 1.

Next, we calculate the large-deviations exponents
θ Greedy

B (N) and θ Greedy

D (N).
Theorem 8: For a N-user system,

θ Greedy

B (N) = inf
0≤x< λ

NF

N
λ − xNF

(
x log

x
p̂

+(1− x) log
1− x
1− p̂

)
,

and

θ Greedy

D (N) = inf
0≤x< λ

NF

λ
λ − xNF

(
x log

x
p̂

+(1− x) log
1− x
1− p̂

)
,

where
p̂ =

1
N

(1− (1− p)N).
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Furthermore, the following limits hold:

lim
N→∞

θ Greedy

B (N) = inf
a

1
λ −aF

(a loga+1−a)

and
lim

N→∞
θ Greedy

D (N) = 0.

Proof: The proof is omitted due to lack of space.

V. QLB POLICY vs GREEDY POLICY

Under the delay constraint, we have shown that the large-
deviations exponent of QLB policy is non-decreasing in N;
while the large-deviations exponent of the greedy policy
decreases to 0. Also because θB(N) = NθD(N), we can
conclude that the total throughput of the QLB policy is larger
than the greedy policy under the queue overflow constraint
or delay constraint for large N. In the following theorem,
we will show that this relationship between the throughput
of the two policies holds for all N.

Theorem 9: For any N-user system the throughput under
QLB policy is no less than the throughput under the greedy
policy:

θ QLB

B (N) ≥ θ Greedy

B (N) and θ QLB

D (N) ≥ θ Greedy

D (N).
Proof: Since θB(N) = N

λ θD(N), we only need to show
one of the inequalities holds. We consider θB(N) and show
θ QLB

B (N) ≥ θ Greedy

B (N).
Consider M∗ ∈U = {M : M = argminM CN

M(1)} and u(M∗)
is the corresponding control, so

T (M∗)

⎛
⎝M∗

N
λ −F

2N−1

∑
j=2N−M∗

u j(M∗)

⎞
⎠ = M∗.

Now define a control ũ for the system under greedy policy
such that, for j ≥ 1,

ũ j,i =
S j

i

∑N−1
k=0 S j

k

u j(M∗).

Then, under this control ũ and the greedy policy, we have

N−1

∑
i=N−M∗

q̇i(t) =
M∗λ

N
−F

N−1

∑
i=N−M∗

2N−1

∑
j=0

ũ j,i

=
M∗λ

N
−F

2N−1

∑
j=0

(
∑N−1

i=N−M∗ S j
i

∑N−1
k=0 S j

k

u j(M∗)

)

=
M∗λ

N
−F

2N−1

∑
j=2N−M∗

(
∑N−1

i=N−M∗ S j
i

∑N−1
k=0 S j

k

u j(M∗)

)
,

where the last equation holds because ∑N−1
i=N−M∗ S j

i = 0 for
j = 0, . . . ,2N−M∗ −1. Let p̃ be the probability vector corre-

sponding to p j,i. Because p j,i =
S j

i

∑N−1
k=0 S j

k

p j, it is easy to verify

that
D(ũ||p̃) = D(u(M∗)||p).

Furthermore,
∑N−1

i=N−M∗ S j
i

∑N−1
k=0 S j

k

≤ 1, so we can conclude that

F
2N−1

∑
j=2N−M∗

u j(M∗) ≥ F
2N−1

∑
j=2N−M∗

(
∑N−1

i=N−M∗ S j
i

∑N−1
k=0 S j

k

u j(M∗)

)
. (12)

Let T̃ be the time to overflow under ũ, i.e., T̃ is the last time
before t = 0 that qi(T̃ ) = 0 ∀i. Then,

T̃ ≤T (M∗) and T̃ D(ũ‖p̃)≤T (M∗)D(u(M∗)‖p).

From the definition (11), we can conclude

θ Greedy

B (N) ≤ T̃ D(ũ||p̃) ≤CN
M∗(1) = θ QLB

B (N).

From this theorem, we can conclude that the performance of
QLB policy is better than the Greedy policy under the QoS
constraints.

VI. CONCLUSIONS

In this paper, we use a large deviations analysis to inves-
tigate the performance of different scheduling policies for
the downlink of a cellular network under QoS constraints.
For a simple ”ON-OFF” channel model, we prove that the
throughput of queue-length based policy is larger than that
of the greedy policy. Furthermore, when the number of users
increases, the throughput of the greedy policy decreases
while the QLB policy increases. In a longer version, we
extend these results to more general channel models.
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