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Abstract— This paper addresses the issues of stability and
L2-gain analysis for switched systems via multiple Lyapunov
function methods. The proposed necessary and sufficient con-
ditions enable derivation of improved stability tests, an L2-
gain characterization and a design method for state-dependent
stabilizing switching laws.

I. INTRODUCTION

In the last decade, considerable attention has been paid

to switched systems. The main concern is the issue of

stability [3], [10], [17], [20]. This issue is very difficult

to deal with due to the hybrid nature of switched systems

operation. A common Lyapunov function for all subsystems

ensures asymptotic stablity under arbitrary switching laws

[10]. Most switched systems in practice, however, do not

possess a common Lyapunov function, yet they still may be

asymptotically stable under some properly chosen switching

law. A typical choice is given by the convex combination

method [10]. The single Lyapunov function technique is

obviously very restrictive. The multiple Lypunov function

technique proposed by Peleties and DeCarlo [15] and later

generalized by Branicky [1] and Hou, Michel and Ye [20] has

proven to be a powerful and effective tool for finding such

a switching law. The key point of these conditions is the

nonincreasing requirement on any Lyapunov function over

the “switched on” time sequence of the corresponding sub-

system. This is usually difficult to satisfy and hard to check

in general. In fact, in order to apply the multiple Lyapunov

function methods, connecting adjacent Lyapunov functions

at switching points is a commonly accepted strategy. This

can be typically achieved by choosing the switching law

according to the “min–switching” strategy of all Lyapunov

functions [10].

On the other hand, L2-gain analysis has been rarely

addressed for switched systems. As an open problem, the

L2-gain that all linear subsystems share was put forward in

[7]. A weighted L2-gain was considered in [22] by using

the dwell time concept. In this result, multiple Lyapunov

functions are used without necessarily being connected to

each other at switching points. In other words, “jumps”

of adjacent Lyapunov functions at switching times may

occur, but this results in a weaker attenuation property– an
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exponentially decayed weighted level. In order to have a

standard form of attenuation level, which has been commonly

accepted in the control area, multiple Lyapunov functions

based on the “min–switching” strategy of all Lyapunov func-

tions have been applied [19], [23]. As a result, the “jumps”

are completely eliminated. Of course, this elimination of

“jumps” is only possible when some strong assumptions are

imposed. There seems a gap between maintaining a standard

attenuation level and the use of multiple Lyapunov functions

that are not necessarily connected at switching times.

This paper studies stability and L2-gain for switched

systems via multiple Lyapunov function methods. We give

a necessary and sufficient condition for stability in terms

of multiple Lyapunov functions. An algebraic condition and

design method of state-dependent stabilizing switching laws

are given. L2-gain analysis and design are then explored.

II. PRELIMINARIES

In this paper, we consider a switched system of the form:

ẋ = fσ(x, uσ),
y = hσ(x),

(1)

where σ : R+ = [0,∞) → M = {1, 2, · · · , m} is the

switching signal, x ∈ Rn is the state, ui and hi(x) are

the input vector and output vector of the i-th subsystem

respectively. Further, fi(0, 0) = 0, hi(0) = 0. The switching

signal σ can be characterized by the switching sequence:

Σ = {x0; (i0, t0), · · · , (in, tn), · · · , |in ∈ M, n ∈ N}, (2)

in which t0 is the initial time, x0 is the initial state and

N is the set of nonnegative integers. When t ∈ [tk, tk+1),
σ(t) = ik, that is, the ik-th subsystem is activated. Let xk

denote x(tk). The solution x(t) of the system (1) is assumed

to exist and to be unique.

The switching sequence Σ is assumed to be minimal in

the sense that ik �= ik+1 for any k. For any j ∈ M , let

Σ | j = {tj1 , tj1+1, · · · , tjn
, tjn+1, · · · , ijq

= j, q ∈ N}

be the sequence of switching times when the j-th subsystem

is switched on or switched off.

For a given strictly increasing sequence of times T =
{t0, t1, · · · , tn, · · · , }, the interval completion I(T ) is the

set I(T ) =
⋃

j∈N [t2j , t2j+1). Let E(T ) denote the even

sequence of T : E(T ) = {t0, t2, t4, · · · , }. Therefore, E(Σ |
j) = {tj1 , tj2 , · · · , tjn

, · · · , n ∈ N} is the “switched on”

times of the j-th subsystem.
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III. STABILITY

We first briefly review multiple Lyapunov function meth-

ods.

A function V ∈ C1[Rn, R+] with V (0) = 0 is called

a Lyapunov-like function (see [1], [15]) for vector field f

and the associated trajectory x(t) over a strictly increasing

sequence of times T if

(i) V̇ (x(t)) ≤ 0 for all t ∈ I(T ),
(ii) V is monotonically nonincreasing on E(T ).
If for each j, Vj is a Lyapunov-like function for the j-

th subsystem vector fj and the associated trajectory over

T = Σ | j, then the origin of the system (1) with ui ≡ 0 is

stable [1]. If in addition, for any tp, tq ∈ E(Σ | j), p < q,

Vσ(tq)(x(tq+1)) − Vσ(tp)(x(tp+1)) ≤ −ρ ‖ x(tp+1) ‖
2, (3)

holds for some constant ρ > 0, then global asymptotic

stability follows [15].

The stability result has been generalized to hold for weak

Lyapunov-like functions [20]:

A function V ∈ C1[Rn, R+] with V (0) = 0 is called

a weak Lyapunov-like function for vector field f and the

associated trajectory x(t) over a strictly increasing sequence

of times T if

(i) there exists a function φ ∈ C(R+, R+) satisfying

φ(0) = 0, such that V (x(t)) ≤ φ(V (x(t2j))) for all t ∈
(t2j , t2j+1) and all j ∈ N,

(ii) V is monotonically nonincreasing on E(T ).
In all the above-mentioned results using multiple Lya-

punov functions, a fundamental common assumption is the

nonincreasing condition of V on E(T ). This is obviously

quite conservative. We will remove this restriction by defin-

ing more general weak Lyapunov-like functions.

Definition 3.1. V is called a generalized Lyapunov-

like function if the condition (i) in the definition of weak

Lyapunov-like functions holds.

In order to measure the change of a generalized Lyapunov-

like function, we need the concept of class GK functions

given below.

Definition 3.2. A function α : R+ → R+ is called a class

GK function if it is increasing and right continuous at the

origin and α(0) = 0.

Class GK functions are generalization of class K functions.

With the help of class GK functions, stability of switched

systems via multiple Lyapunov functions can be character-

ized by the following trivial proposition.

Proposition 3.3. Consider the system (1) with uσ ≡ 0.

Suppose there exist continuous positive definite functions

Vi(x), i = 1, 2, · · · , m, all defined around the origin and

Vi(0) = 0, such that Vik
(x(tk)) ≥ Vik

(x(t)) for t ∈
[tk, tk+1). Then, the origin of the system (1) is stable if and

only if there exist a class GK function α satisfying

Vik
(x(tk)) ≤ α(‖ x0 ‖), k ≥ 0, (4)

Though this proposition gives a necessary and sufficient

condition for stability, it is almost useless because it can be

used neither to test stability nor to guide the switching law

design. The following theorem is the main result on stabil-

ity via generalized Lyapunov-like functions. For simplicity,

sometime we use Vj(t) to denote Vj(x(t)).
Theorem 3.4. Suppose for each i ∈ M , there exists a

generalized Lyapunov-like function Vi(x) with respect to

fi(x, 0) and the associated trajectory. Then,

(i) the origin of the system (1) with uσ ≡ 0 is stable if

and only if there exist class GK functions αj satisfying

Vj(tjk+1
)−Vj(tj1 ) ≤ αj(‖ x0 ‖), k ≥ 1, j = 1, · · · , m, (5)

(ii) if all Vi(x) are positive definite around the origin, then

the origin of the system (1) is asymptotically stable if and

only if (5) holds and there exists j, such that Vj(tjk
) → 0

as k → ∞.

Proof. We first prove (i). Let φi be given by the gener-

alized Lyapunov-like function Vi(x) with respect to fi(x, 0)
and the associated trajectory, that is,

Vik
(x(t)) ≤ φik

(Vik
(xk)), tk ≤ t < tk+1.

Sufficiency. For any constants c, c1, c2 > 0, c1 ≤ c2, let

B(c) = {x| ‖ x ‖≤ c},

ri(c1, c2) = min
x

{Vi(x)|c1 ≤‖ x ‖≤ c2}

and r(c1, c2) = min
i
{ri(c1, c2)}. Now, for any ε > 0, (5)

enables us to choose λ0 > 0, λ0 < ε, such that

αj(‖ x0 ‖) <
1

2
r(ε, ε), k ≥ 1, j = 1, 2, · · · , m

whenever x0 ∈ B(λ0). Since Vi and φi are continuous at

the origin and Vi(0) = 0, φi(0) = 0, it is always possible to

select δ1 > 0, δ1 < λ0, such that

Vi(x) + φi(Vi(x)) <
1

2
r(ε, ε) when x ∈ B(δ1).

Thus,

Vi(x) + φi(Vi(x)) + αi(‖ x0 ‖) < r(ε, ε), ∀x, x0 ∈ B(δ1).

For this δ1 > 0, we use the same procedure to choose δ2 > 0,

δ2 < δ1 such that

Vi(x) + φi(Vi(x)) + αi(‖ x0 ‖) < r(δ1, ε)

when x, x0 ∈ B(δ2). Continuing this procedure up to 2m

steps, we finally have

ε = δ0 > δ1 > δ2 > · · · > δ2m > 0

with the property that for p = 1, · · · , 2m− 1, and ∀i

Vi(x) + φi(Vi(x)) + αi(‖ x0 ‖)
< r(δp, δp−1), if x, x0 ∈ B(δp+1),

Vi(x) + φi(Vi(x)) + αi(‖ x0 ‖)
< r(δ0, δ0), if x, x0 ∈ B(δ1).

(6)

For any k ≥ 0, let Rk be the number of the different elements

of the set {i0, i1, · · · , ik}
⋂
{1, 2, · · · , m}, which is actually

the total number of different subsystems that have ever been

activated for some time on [t0, tk+1). {Rk, k = 0, 1, · · · , }
is obviously a nondecreasing sequence bounded by m.
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We can know by (6) that if xk = x(tk) ∈ B(δq) for

some k and q, then x(t) ∈ B(δq−1), t ∈ [tk, tk+1]. In fact,

generalized Lyapunov-like function Vik
gives that

Vik
(x(t)) ≤ φik

(Vik
(x(tk))) < r(δq−1, δq−2).

By induction with respect to k ≥ 1, we can show the

following claim:

(a). If Rk = Rk−1 + 1, then

Vik
(xk) + φik

(Vik
(xk)) + αik

(‖ x0 ‖)
< r(δ2m−2Rk+2, δ2m−2Rk+1),

(7)

and x(t) ∈ B(δ2m−2Rk+2), t ∈ [tk, tk+1].
(b). If Rk = Rk−1, then

Vik
(xk) + φik

(Vik
(xk)) + αik

(‖ x0 ‖)
< r(δ2m−2Rk+1, δ2m−2Rk

),
(8)

and x(t) ∈ B(δ2m−2Rk+1), t ∈ [tk, tk+1]. Therefore, x(t) ∈
B(ε) for any t ∈ [0,∞) if x0 ∈ B(δ2m) and thus stability

follows.

The necessity follows directly by choosing

αj(s) = sup
k≥1,‖x0‖≤s

{
0, Vj(tjk+1

) − Vj(tj1)
}

.

The proof of (ii) is straightforward.

Remark 3.5. If we knew Vj(tj1) could be set “small

enough” by letting the initial state x(t0) be close to the

origin, Theorem 3.4 would be trivial. However, we have no

apriori knowledge that Vj(tj1 ) can be set “small enough”

because the switching law can be arbitrary: time dependent,

state dependent, or both, or even determined by a hybrid

logic-based controller. Consequently, we have no idea about

when and how the j-the subsystem is activated for the first

time. The meaning of Theorem 3.4 is that stability is ensured

as long as the change of Vj between any “switched on” time

and the first activate time is bounded by a class GK function,

regardless of where Vj(tj1) is. This is not true for the general

case of non-generalized Lyapunov-like functions. In fact, one

can easily construct an example where for some j, Vj(tj1 )
can be arbitrarily large though x0 is set arbitrarily close to

the origin. Thus, stability is lost.

Remark 3.6. (5) can be equivalently rewritten as

k∑
q=1

(
Vj(tjq+1

) − Vj(tjq
)
)

< αj(‖ x0 ‖). (9)

Note that Vj(tjq+1
) − Vj(tjq

) stands for the change of

Vj(x) at the adjacent “switched on” times, (9) means that

Vj is allowed to grow on E(Σ | j) but the total growth

should be bounded from above by a class GK function.

As a special case, when the well-known Branicky’s “non-

increasing” condition Vj(tjq+1
) − Vj(tjq

) ≤ 0 holds, (9) is

automatically satisfied with αj = 0.

Example 3.7. Consider the switched linear system

ẋ = Aσx (10)

with three subsystems:

A1 =

(
0 −2
1
2 0

)
, A2 =

(
0 −3
1
3 0

)
, A3 =

(
0 −1
1 0

)
.

Let qj(t) be the total number of times that the j-th subsystem

is activated before time t. The switching law is given by:

σ(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if x(t) is in the first, or second
or third quadrants,

2, if q2(t) ≤ q3(t) + 1
and x(t) is in the fourth quadrant,

3, if q2(t) > q3(t) + 1
and x(t) is in the fourth quadrant.

Choose generalized Lyapunov-like functions as:

V1(x) =
1

2
x2

1 + 2x2
2, V2(x) =

1

3
x2

1 + 3x2
2, V3(x) = x2

1 + x2
2.

A straightforward calculation shows that all conditions of

Theorem 3.4 are satisfied and thus asymptotic stability

follows. The system trajectory is depicted in Fig.1.

Sometimes, instead of finding a class GK function, it might

be convenient to check uniform convergence of certain series

as shown in the following.

Theorem 3.8. Suppose for each i ∈ M , there exists

generalized Lyapunov-like function Vi(x) with respect to

fi(x, 0) and the associated trajectory. Then, the origin of

the system (1) with uσ ≡ 0 is stable if any of the following

conditions is satisfied:

(A) the series
∑∞

p=1 max
{
0, Vj(tjp+1

) − Vj(tjp
)
}

con-

vergent uniformly with respect to the initial state x0 in a

neighborhood of the origin;

(B) the series
∑∞

p=1

(
Vj(tjp+1

) − Vj(tjp
)
)

convergent uni-

formly with respect to the initial state x0 in a neighborhood

of the origin;

(C) there exists a GK class function α such that∑k

p=0

(
Vip+1(tp+1) − Vip

(tp+1)
)

≤ α(‖ x0 ‖), or a lit-

tle stronger, the series
∑∞

p=0

(
Vip+1(tp+1) − Vip

(tp+1)
)

is

convergent uniformly with respect to the initial state x0 in a

neighborhood of the origin;

(D) there exists a class GK function αj(·) such that for

any k > 1

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x2

subsystem 1 
subsystem 2 
subsystem 3 

(2,0)

Fig. 1. Trajectory of the switched system (10)
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Vj(tjk+1
)−Vj(tj1) =

k∑
p=1

(
Vj(tjp+1

) − Vj(tjp
)
)
≤ αj(‖ x0 ‖).

Proof. It is easy to prove the implications: (A)⇒
(B) ⇒(D) and (C)⇒(D).

Remark 3.9. If Vik
and Vik+1

are connected at tk+1, i.e.

Vik
(tk+1) = Vik+1

(tk+1), which is suggested by the well

known “min–switching” switching law (see, for example,

[10])

σ(t) = arg min{Vi(x(t)), i = 1, 2, · · · , m},

the condition (C) is automatically satisfied. The condition (C)

gives us considerable freedom in the switching law design,

i.e. rather than following the “min–switching” law.

Next, we discuss how to design a switching law to

achieve stability with the help of the necessary and sufficient

condition given in Theorem 3.4 and 3.8.

Theorem 3.10. Suppose that we have positive definite

smooth functions Vi(x) with Vi(0) = 0, functions βij(x) ≤
0, µij(x), i, j = 1, 2, · · · , m with µij(0) = 0 and µii(x) = 0,

such that

∂Vi

∂x
fi(x, 0) +

m∑
j=1

βij(x)(Vi(x) − Vj(x) + µij(x))

≤ 0, i = 1, 2, · · · , m

(11)

∂µij

∂x
fi(x, 0) ≤ 0, i, j = 1, 2, · · · , m (12)

and

µij(x) + µjk(x) ≤ min{0, µik(x)}, ∀i, j, k. (13)

Then, there exists a state-dependent switching law under

which the origin of the system (1) with uσ ≡ 0 is stable.

Moreover, if the inequalities in (11) hold strictly for x �= 0,

asymptotic stability is assured.

Proof. First of all, for any integers i1, i2, · · · , iq ∈
{1, 2, · · · , m}, it can be easily derived from (13) that

µi1i2(x)+µi2i3(x)+ · · ·+µiq−1iq
(x)+µiqi1(x) ≤ 0. (14)

Let

Ωi = {x | Vi(x) − Vj(x) + µij(x) ≤ 0, j = 1, 2, · · · , m}
(15)

and
∼

Ωij= {x | Vi(x) − Vj(x) + µij(x) = 0}, j �= i. (16)

Note that
∼

Ωi=
m⋃

j=1,j �=i

∼

Ωij contains the boundary of Ωi.

Also,

m⋃
i=1

Ωi = Rn must hold because otherwise for some

x ∈ Rn, we have a sequence i1, i2, · · · , iq, ik �= ik+1, k =
1, 2 · · · , q and iq+1 is considered as i1, such that

Vik
(x) − Vik+1

(x) + µikik+1
(x) > 0. (17)

Taking sum over k and noticing (14) yields

q∑
k=1

(
Vik

(x) − Vik+1
(x) + µikik+1

)
=

q∑
k=1

µikik+1
(x) ≤ 0,

which contradicts (17).

The sets Ωi have the property that if x ∈ Ωi

⋂ ∼

Ωij for

some i, j and x ∈ Rn, , then x ∈ Ωj . In fact, x ∈ Ωi

⋂ ∼

Ωij

means that Vi(x)−Vk(x)+µik(x) ≤ 0 for any k and Vi(x)−
Vj(x) + µij(x) = 0. Thus, Vj(x) = Vi(x) + µij(x). This in

turn gives

Vj(x) − Vk(x) + µjk(x)
= Vi(x) − Vk(x) + µij(x) + µjk(x)
≤ Vi(x) − Vk(x) + µik(x) ≤ 0,

in which (13) was used to derive the inequality.

Now, we design the switching law as follows.

σ(t) = i if σ(t−) = i and x(t) ∈ int Ωi,

σ(t) = j if σ(t−) = i and x(t) ∈
∼

Ωij .
(18)

Thus, once the trajectory enters Ωi it will remain in Ωi until it

hits the boundary in
∼

Ωij and then enters Ωj . In other words,

switching only takes place on
∼

Ωij for some j. Recall that

βij(x) ≤ 0, (11) implies that on Ωi, it holds that

∂Vi

∂x
fi(x, 0) ≤ 0, i = 1, 2, · · · , m,

which together with (12) tell us that Vik
(x(t)) and µikj(x(t))

are decreasing on [tk, tk+1).
For k ≥ 0, according to the switching law (18), at each

switching time we have

Vik+1
(tk+1) − Vik

(tk+1) = µikik+1
(x(tk+1)). (19)

Thus,

Vik+1
(tk+1) − Vik

(tk+1) + Vik+2
(tk+2) − Vik+1

(tk+2)
= µikik+1

(x(tk+1)) + µik+1ik+2
(x(tk+2))

≤ µikik+1
(x(tk+1)) + µik+1ik+2

(x(tk+1)) ≤ 0.
(20)

Therefore,

k∑
p=0

(
Vip+1

(tp+1) − Vip
(tp+1)

)

≤

{
0, if k is odd
µi0i1(x(t1)) ≤ µi0i1(x0), if k is even.

(21)

Choose α(s) = max
‖x‖≤s

{| µij(x) |, 1 ≤ i, j ≤ m}, the result

follows immediately from (C) in Theorem 3.8. Moreover, if

the inequalities in (11) hold strictly for x �= 0, asymptotic

stability follows from the standard argument of Lyapunov

theory.

Remark 3.11. As adopted in most existing literature

on state dependent switching strategies, the switching law

designed here neglects up to a set of measure zero where no

switching signal is specified. In particular, no specific index

j is chosen when more than one indexes j’s satisfy (18).

This can be easily fixed, for example, by the method in [10].
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Remark 3.12. For the switched linear system

ẋ = Aσx + Bσuσ, (22)

we may look for quadratic functions Vi(x) = xT Pix,

µij(x) = xT Qijx and constants βij . Thus, (11), (12) and

(13) become respectively the following matrix inequalities

PiAi+AT
i Pi+

m∑
j=1

βij(Pi−Pj+Qij) ≤ 0, i, j = 1, 2, · · · , m,

(23)

QijAi + AT
i Qij ≤ 0, i, j = 1, 2, · · · , m (24)

Qij + Qjk − Qik ≤ 0, ∀i, j, k, (25)

Qij + Qjk ≤ 0, ∀i, j, k. (26)

In particular, when Qij = 0, ∀i, j, all (24), (25) and

(26) disappear and (23) is the well known result in [10]

and the switching law given by (18) degenerates exactly

into the “min-switching” strategy: σ(t) = σ(x(t)) =
arg min{Vi(x(t)), i = 1, 2, · · · , m}.

IV. L2-GAIN

We first give the descriptions of L2-gain for switched

systems.

Definition 4.1. The system (1) has weak L2-gain γ under

the switching law Σ if there exist positive definite continuous

functions V1(x), V2(x), · · · , Vm(x) with Vi(0) = 0, and class

GK functions αj such that for j = 1, 2, · · · , m, k = 1, 2, · · · ,

and ∀ui satisfying

∫ ∞

t0

uT
σ(t)(t)uσ(t)(t)dt < ∞, we have

(i)

Vik
(x(t)) − Vik

(x(s))

≤

∫ t

s

(γ2 ‖ uik
(τ) ‖2 − ‖ hik

(τ) ‖2)dτ,

tk ≤ s ≤ t < tk+1.

(27)

(ii) When ui = 0,

Qj(x0) =

p∑
k=1

(
Vj(x(tjk+1

)) − Vj(x(tjk+1))
)

≤ αj(‖ x0 ‖), ∀p.

(28)

If, in addition,∫ T

0

(γ2 ‖ uσ(t)(t) ‖
2 − ‖ hσ(t)(t) ‖

2)dt ≥ 0 (29)

holds for any T > 0 when x(0) = 0, the system (1) is said

to have strong L2-gain γ.

In the case that the switched system (1) has only one

subsystem, Condition (ii) is automatically satisfied, and weak

L2-gain and strong L2-gain merges into the usual L2-gain.

Remark 4.2. In Definition 4.1, (27) is the usual dissipative

inequality with the supply rate function γ2 ‖ uik
‖2 − ‖

hik
‖2 for the ik-th subsystem when being activated, and Vik

is the associated storage function. It is worthwhile noticing

that though the j-th subsystem is inactivated on the time

interval [tjk+1, tjk+1
), the “energy” Vj(x) changes from

Vj(x(tjk+1)) to Vj(x(tjk+1
)) because all subsystems share

the same state variable. Condition (ii) indicates that the total

changed “energy” of the j-th subsystem, when inactivated,

is uniformly bounded.

Remark 4.3. As a special case, when the “sequence nonin-

creasing condition” [10], [15] Vj(x(tjk+1
))−Vj(x(tjk+1)) ≤

0, j = 1, 2, · · · , m, is satisfied, which is commonly used in

the switched systems literature, Condition (ii) is automati-

cally satisfied.

Remark 4.4. It is easy to see that the system (1) has strong

L2-gain γ if Condition (i) and (ii) in Definition 4.1 hold and

the function

V (t) =

⎧⎨
⎩

Vi0(x(t)), t ∈ [t0, t1)

Vik
(x(t)) −

∑k

j=1(Vij
(x(tj)) − Vij−1

(x(tj))),

t ∈ [tk, tk+1), k = 1, 2, · · ·
(30)

is nonnegative.

For an affine switched system

ẋ = fσ(x) + gσ(x)uσ,

y = hσ(x),
(31)

and smooth V -functions and state-dependent switching law:

σ(x) = i, when x ∈ Ωi,

m⋃
i=1

Ωi = Rn, int Ωi

⋂
int Ωj =

∅, i �= j, weak L2-gain can be characterized by “local”

Hamilton-Jacobi inequalities.

∂Vi

∂x
fi +

1

2γ2

∂Vi

∂x
gig

T
i

∂T Vi

∂x
+

1

2
hT

i hi ≤ 0, x ∈ Ωi, (32)

and (28) with ui = 0.

We now consider how to achieve L2-gain by design of

state-dependent switching laws. The key idea here is adopt

the strategy in dealing with stability developed in Theorem

3.10.

Theorem 4.5. Consider the switched system (31). Suppose

that we have positive definite functions Vi(x) with Vi(0) = 0,

functions βij(x) ≤ 0, µij(x) with µij(0) = 0 and µii(x) =
0, such that

∂Vi

∂x
fi + 1

2γ2
∂Vi

∂x
gig

T
i

∂T Vi

∂x
+ 1

2hT
i hi+

m∑
j=1

βij(x)(Vi(x) − Vj(x) + µij(x)) ≤ 0,

i, j = 1, 2, · · · , m

(33)

∂µij

∂x
fi(x) ≤ 0, i, j = 1, 2, · · · , m (34)

and

µij(x) + µjk(x) ≤ min{0, µik(x)}, ∀i, j, k. (35)

Then, under the state-dependent switching law given by

(18) the system (31) has weak L2-gain. If in addition,

∂µij

∂x
gi = 0, ∀i, j (36)

then, system (31) has strong L2-gain.

Proof. Similar to the proof of Theorem 3.10.
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Remark 4.6. For switched linear system

ẋ = Aσ(t)x + Bσ(t)uσ(t)

y = Cσ(t)x
(37)

and quadratic Lyapunov functions Vi(x) = 1
2xT Pix with

positive definite matrices Pi, we need to solve the following

matrix inequalities

PiAi + AT
i Pi + 1

γ2 PiBiB
T
i Pi + CT

i Ci

+

m∑
j=1

βij(Pi − Pj + Qij) ≤ 0, i, j = 1, 2, · · · , m,

(38)

QijAi + AT
i Qij ≤ 0, i, j = 1, 2, · · · , m (39)

Qij + Qjk − Qik ≤ 0, ∀i, j, k, (40)

Qij + Qjk ≤ 0, ∀i, j, k. (41)

If we want strong L2-gain, Qij needs to satisfy QijBi =
0, ∀i, j.

As L2-gain of non-switched systems gives stability, L2-

gain of switched systems is also expected to imply stability.

This will be shown in the following.

Theorem 4.7. If the system (1) has weak L2-gain γ under

the switching law Σ, then, the origin of the system (1) with

ui = 0 is stable.

Proof. Applying Theorem 3.4 concludes the proof.

In terms of asymptotic stability, many types of conditions

can be imposed. Here, we consider some conditions of

LaSalle’s type. To this end, we need some kind of observ-

ability property.

Definition 4.8. A system

ẋ = f(x),
y = h(x)

(42)

is called asymptotically detectable if for any ε > 0, there

exists δ > 0, such that when ‖ y(t+ s) ‖< δ holds for some

t ≥ 0, ∆ > 0 and 0 ≤ s ≤ ∆, we have ‖ x(t) ‖< ε.

Remark 4.9. This asymptotic detectability is a weaker

version of small-time norm observability [6].

Theorem 4.10. If the system (1) has weak L2-gain γ under

the switching law Σ and moreover, if Vi(x), i = 1, 2 · · · , m
are globally defined positive definite radially unbounded

functions, and there exists j with limk→∞(tjk+1 − tjk
) �=

0 and the corresponding subsystem is asymptotically de-

tectable, then, the origin of the system (1) with ui = 0 is

globally asymptotically stable.

Proof. Similar to [23].

V. CONCLUDING REMARKS

We have given a necessary and sufficient condition for

stability of switched systems in terms of multiple generalized

Lyapunov-like functions. This condition tells us how much

the corresponding Lyapunov function is allowed to grow on

the “switched on” time sequence without violating stability.

Using this condition we do not need worry when and how

each subsystem is activated for the first time.

The L2-gain description and analysis proposed are based

on the consideration of change of value of associated V -

functions when being inactivated. This change represents a

kind of energy exchange from an activated subsystem to an

inactivated one. The boundedness requirement of such energy

exchange is natural and reasonable in order to maintain

stability.
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