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Abstract— The paper introduces a new global optimization
method that is targeted to solve molecular docking problems,
an important class of problems in computational biology. The
search method is based on finding general convex quadratic
underestimators to the binding energy function that is funnel-
like. Finding the optimum underestimator requires solving a
semi-definite programming problem, hence the name Semi-
Definite programming based Underestimation (SDU). The op-
timal underestimator is used to bias sampling in the search
region. A detailed comparison of SDU with a related method
of Convex Global Underestimator (CGU), a discussion of the
convergence properties of SDU, and computational results of
the application of SDU to a number of rigid protein-protein
docking problems are provided.

Index Terms— Computational biology, Global optimization,
Semi-definite programming, Molecular docking.

I. INTRODUCTION

THE solution of a number of important problems in
computational biology rests on finding global minima

of energy functions that are funnel-like. These are functions
with multiple non-convex funnels and a huge number of local
minima of less depth that are spread over the domain of
the function. For example, protein folding is the problem
of predicting the 3-dimensional native structure (or “confor-
mation”) of proteins from their 1-dimensional amino acid
sequences. It is known that proteins when they fold can
follow multiple paths on the energy landscape [1] which is
funnel-like shaped. Similar energy funnels are also found in
other problems such as protein-protein docking [2].

Global optimization methods such as simulated annealing
and genetic algorithms have been applied in some of these
areas but they are very slow and easily trapped in kinetic
moves. A number of recent approaches have attempted, with
some success, to use the funnel-like shape to guide the
global search to the vicinity of the global minimum. For
example, the Semi-Global Simplex (SGS) algorithm uses
simplex moves on surfaces spanned by the local minima
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rather than on the free energy itself [3]. Or, the SmoothDock
approach [4] uses the strategy of descending on the “smooth”
components of the energy function to which one slowly
adds higher frequency components. Of most relevance to
this paper is the Convex Global Underestimator (CGU)
method where convex quadratic underestimators are used
to approximate the envelope spanned by the local minima
of the energy function [5]. The vicinity of the minimizer
of the underestimator is viewed as the potential location of
the global minimum of the energy function. The problem of
finding the optimal underestimator is formulated and solved
as a Linear Programming (LP) problem.

It has been shown that CGU does not perform well in some
cases and that its performance deteriorates as the dimension
of the search space increases [3]. We contend that a critical
reason for this poor performance is the restricted class of
underestimators used in CGU. This restriction amounts to a
lack of flexibility in capturing the overall shape of the energy
funnels and hence an inability to locate promising regions to
search for the global minimum.

We use the same strategy of using quadratic convex
functions to underestimate the envelope spanned by the local
minima of the energy function. However, we consider the
class of general convex quadratic functions for underesti-
mation. In this case, given a finite set of local minima,
finding the optimal underestimator amounts to solving a
Semi-Definite Programming (SDP) problem, hence the term
Semi-Definite programming-based Underestimation (SDU).
We show, theoretically as well as experimentally, that SDU
outperforms CGU, often significantly. Using some prelimi-
nary experimental results, we show that SDU is a promising
method for solving molecular docking problems.

The rest of the paper is organized as follows. Sec. II
presents some background material on molecular docking.
Sec. III presents our SDU method. Comparisons with CGU
are in Sec. IV. SDU’s convergence properties are discussed
in Sec. V. Some results on docking proteins are discussed
in Sec. VI. We end with conclusions in Sec. VII.

II. PRELIMINARIES

Next we review key properties of the free energy functions
that are to be minimized in molecular docking problems.
We start with their biophysical properties and then abstract
characteristic mathematical properties that are important in
the development of appropriate optimization strategies.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

TuC07.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 3675



A. Biophysical Origin

Free energy evaluation models: At fixed temperature
and pressure, a complex of two molecules adopts the con-
formation that corresponds to the lowest Gibbs free energy
of the system that includes the component molecules and
the solvent – usually water – surrounding them. Thus, in
docking calculations the natural target function to minimize
is an approximation of the Gibbs free energy, GRL, of the
receptor-ligand complex, or that of the binding free energy,
∆G [6]. In particular, ∆G = GRL−GR−GL, where GR and
GL are the free energies of the (free) receptor and ligand,
respectively, and both GR and GL are independent of the
conformation of the complex; hence, minimizing GRL is
equivalent to minimizing ∆G.

We use free energy evaluation models that combine molec-
ular mechanics with continuum electrostatics and empirical
solvation terms. In the most general case the binding free
energy is decomposed according to

∆G = ∆Eelec+∆Evdw +∆Eint+∆G∗
des−T∆Ssc+∆Go,

(1)
where ∆Eelec is the change in electrostatic energy upon
binding, ∆G∗

des is the desolvation free energy, ∆Evdw is the
change in van der Waals energy, and ∆Eint is the change in
internal energy due to any flexing/straining of the backbone
and side chains. The entropy term, −T∆Ssc, accounts for
the decrease in entropy experienced by the interface side
chains upon binding. The term, ∆Go, accounts for all other
changes in the binding free energy that occur upon binding,
which is considered to depend weakly on the conformation
and will be treated as a constant (15 kcal/mol in this work).
The internal (bonded) energy, ∆Eint, is the sum of bond
stretching, angle bending, torsional, and improper terms.

B. Mathematical Properties

Multi-frequency behavior: The free energy function can
be regarded as the sum of three components with different
frequencies. First, the sum of electrostatic, desolvation, and
entropic terms changes relatively slowly along any reaction
path, and hence we define the “smooth” free energy, or the
smooth component of the free energy by

∆Gs = ∆Eelec + ∆Gdes − T∆Ssc + ∆Go (2)

where the desolvation free energy ∆Gdes does not include
the solvent-solute van der Waals term. ∆Gs is much less
sensitive to structural perturbations than the terms ∆Evdw

and ∆Eint. The internal energy ∆Eint changes with an
intermediate frequency, and the frequency of change is very
high for ∆Gvdw.

In local minima in which the internal and van der Waals
terms are close to zero, the free energy surface is essentially
determined by the “smooth” free energy component ∆Gs.
However, an arbitrary pathway in the conformational space
goes through non-native states at which the ∆Evdw and
∆Eint are high, resulting in the funnel-like shape shown
in Fig. 1.

III. SDU: THE SEMI-DEFINITE UNDERESTIMATOR

METHOD

In this section we introduce the SDU method. We first
introduce some notational conventions we will be using.
Notational Conventions: All vectors are assumed to be
column vectors. We use lower case boldface letters to denote
vectors and for economy of space we write x = (x1, . . . , xn)
for the column vector x. x′ denotes the transpose of x,
0 the vector of all zeroes, e the vector of all ones, and
ei the ith unit vector. For any vector x we write ‖x‖1

for the L1 norm, i.e., ‖x‖1 =
∑n

i=1 |xi|, and ‖x‖ for the
Euclidean norm. We use upper case boldface letters to denote
matrices. Specifically, we write A = (Ai,j)n

i,j=1 for the
matrix with (i, j)th element equal to Ai,j . We denote by
diag(x) the diagonal matrix with elements x1, . . . , xn in
the main diagonal and zeroes elsewhere. We also denote by
diag(A,B) the block diagonal matrix with matrices A and
B in the main diagonal and zeroes elsewhere. We define

F • Y
�
=

n∑

i=1

n∑

j=1

Fi,jYi,j . (3)

Finally, for any event S we use 1{S } to denote the
indicator function of this event, that is, 1{S } equals one
when the event occurs and zero otherwise.

We are now prepared to describe the two key components
of the SDU algorithm.

A. Constructing an Underestimator

Let us denote by f : R
n → R the function we seek

to minimize and assume we have obtained a set of K
local minima φ1, . . . ,φK of f(·). Let the underestimator
be defined by,

U(φ)
�
= φ′Qφ + b′φ + c, (4)

where Q ∈ R
n×n is a positive semi-definite matrix, b ∈

R
n, and c is a scalar. The positive semi-definiteness of Q

guarantees the convexity of U(·).
Using an L1 norm as a distance metric the problem of

finding the tightest possible such underestimator U(·) can
be formulated as follows:

min
∑K

j=1 (f(φj) − c − φj ′Qφj − b′φj)
s.t. f(φj) ≥ c + φj ′Qφj + b′φj , j = 1, . . . ,K,

Q � 0,
(5)

where the decision variables are Q, b, and c, and “� 0”
denotes positive semi-definiteness.

Let vectors b+,b− ≥ 0 and scalars c+, c− ≥ 0 satisfying
b = b+ − b− and c = c+ − c−. Let s = (s1, . . . , sK) and
Y be the block diagonal matrix given by

Y
�
= diag(Q, diag(b+), diag(b−), c+, c−, diag(s)). (6)

Note that Y ∈ R
(3n+K+2)×(3n+K+2). Let F0

�
=

diag(diag(0),−diag(e)), where 0 is the (3n+2)-dimensional
zero vector, and e is the K-dimensional vector of ones. Also,
for j = 1, . . . ,K we define

Fj
�
= diag(φjφj′

, diag(φj),−diag(φj), 1,−1, diag(ej)).
In addition, let Ei,j denote the (3n+K +2)× (3n+K +2)
matrix with all elements equal to zero except the (i, j)th
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element which equals 1. Then, (5) can be written as follows:
(SDP-P) max F0 • Y

s.t. Fj • Y = f(φj), j = 1, . . . ,K,
Ei,j • Y = 0, j = 1, . . . , i − 1,

i = n + 1, . . . , 3n + K + 2,
Y � 0,

(7)

where the decision variable is the matrix Y. Problem
(SDP-P) in (7) is a Semi-Definite Programming (SDP)
problem [7]. SDP problems can be solved efficiently using
interior-point methods [7] (in polynomial time).

The dual to (SDP-P) in (7) is the problem

(LMI-D) min
K∑

j=1

xjf(φj)

s.t. Z =
K∑

j=1

xjFj

+
3n+K+2∑

i=n+1

i−1∑

j=1

wi,jEi,j − F0,

Z � 0,

(8)

where the decision variables are xj’s and wi,j’s. Problem
(LMI-D) can be seen as the problem of minimizing a linear
function subject to the Linear Matrix Inequality (LMI)

K∑

j=1

xjFj +
3n+K+2∑

i=n+1

i−1∑

j=1

wi,jEi,j − F0 � 0.

Our main result on underestimating a set of local minima is
summarized in the following theorem.

Theorem III.1 Consider a function f : R
n → R and a set of

local minima φ1, . . . ,φK of f(·). Let (Q,b+,b−, c+, c−, s)
form an optimal solution Y of Problem (SDP-P) in (7),

where Y is defined as in (6). Let U(φ)
�
= φ′Qφ + (b+ −

b−)′φ + (c+ − c−). Then U(·) satisfies f(φj) ≥ U(φj) for
all j = 1, . . . ,K while minimizing ‖(f(φ1), . . . , f(φK)) −
(U(φ1), . . . , U(φK))‖1. Moreover, the dual to Problem
(SDP-P) is the LMI problem (LMI-D) in (8).

Hereafter, we will say that a function U(·) satisfying the
statement of Theorem III.1 underestimates f(·) at points
φ1, . . . ,φK . Figure 1 illustrates such an underestimator.

Fig. 1. A funnel-like shaped function and a quadratic function underesti-
mating the surface spanned by the local minima.

B. Sampling

Suppose we are seeking the native conformation in some
region B. Using a set of local minima φ1, . . . ,φK ∈ B

of f(·) we construct an underestimator U(·) as described in
Section III-A. Let φP the minimizer of U(·). Notice that
the underestimator contains information on the location of
the near-native energy valley. We are interested in sampling
conformations such that conformations close to φP are more
likely to be selected. In addition, conformations with high
enough energy can be ignored. This can be achieved by using
the following probability density function (pdf) in B:

g(φ) =
U(φ) − Umax∫

B(U(φ) − Umax) dφ

�
=

U(φ) − Umax

A
. (9)

In the expression above Umax = maxB U(φ) and we
introduced the normalizing constant A to denote the integral
in the denominator.

To generate random samples in B using the above pdf
we will use the so called rejection method. In particular let
h(φ) = 1/V be the uniform pdf in B where V =

∫
B dφ is

the volume of B. Notice that

g(φ) ≤ V (U(φP ) − Umax)
A

h(φ), ∀φ ∈ B

and set R(φ) equal to the ratio of the left hand side over the
right hand side of the above, that is,

R(φ)
�
=

U(φ) − Umax

U(φP ) − Umax

. (10)

In order to discard high energy conformations we are inter-
ested in sampling points in B with associated probability
density in some interval [ζ, 1], where ζ ∈ [0, 1). The
algorithm in Fig. 2 outputs such a sample point. To see
that notice that in Step 1 we generate uniformly distributed
samples in the set {(x, y) | x ∈ B, y ∈ [ζ, 1]}. The rejection
rule of Step 2 accepts samples that are uniformly distributed
in {(x, y) | x ∈ B, ζ ≤ y ≤ g(x)}. Thus, the output φ of
the algorithm is distributed in B according to g(·).

1) Generate a uniformly distributed random variables
x1 ∈ B and x2 ∈ [ζ, 1].

2) If x2 ≤ R(x1), stop and output φ = x1; otherwise,
return to Step 1.

Fig. 2. An algorithm generating a sample in B drawn from g(·) with
associated density in [ζ, 1].

We finally note that the algorithm in Fig. 2 requires know-
ing Umax. In many cases this is straightforward to obtain.
Consider for instance the case where B is a polyhedron.
Then, since U(·) is convex it achieves its maximum at an ex-
treme point of the polyhedron B. Hence, it suffices to search
over all extreme points which in low-dimensional problems
(e.g., rigid docking) are not that many. Alternatively, one can
use an estimate of Umax, e.g., maxi U(φi).

C. The SDU Algorithm

We now have all the ingredients to present our SDU
algorithm. The algorithm seeks a global minimum of the free
energy function f(·) in some region B of the conformational
space; it is presented in Figure 3. Throughout the algorithm
we maintain a set L of interesting local minima obtained
so far as well as the best such local minimum denoted by
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1) Initialization: Starting from K (K ≥ 2n+1) random
points in B perform local minimization to obtain
K local minima φ1, . . . ,φK of f(·). Set L =
{φ1, . . . ,φK} and φG = arg mini=1,...,n f(φi).

2) Underestimation: Solve Problem (SDP-P) in (7) to
obtain the underestimator U(φ). Set the predictive
conformation equal to a minimizer of U(·), that is,
when Q is invertible φP = − 1

2Q
−1b.

3) Elimination: Discard unfavorable local minima from
L ; more specifically, set L := L \{φ ∈ L | R(φ) <
ζ and φ �= φG}.

4) Focalization: Define a neighborhood N (φP ) ⊆ B of
φP . Set B := N (φP ).

5) Exploration:

a) Start from φP and use local minimization
to obtain a local minimum φ̂

P
of f(·). If

φ̂
P ∈ B set L := L ∪ {φ̂P } and φG :=

arg min{f(φG), f(φ̂
P

)}.
b) Obtain m samples from the sampling algorithm

of Fig. 2. Using these samples as starting points
perform local minimization to obtain m local
minima x1, . . . ,xm of f(·). Set L := L ∪ {x |
x = x1, . . . ,xm,x ∈ B} and

φG := arg min
φ=φG,x1,...,xm

φ∈B

f(φ).

6) Termination: If ‖φG −φP ‖ < ε then stop; otherwise
go to Step 2.

Fig. 3. The SDU algorithm.

φG. The evolution of the algorithm in Fig. 3 depends on the
parameters K, ζ ∈ [0, 1],m and ε, as well as the way we
define the neighborhood N (φP ) in Step 5. These will be
appropriately tuned in every problem instance.

A couple of remarks on the proposed SDU algorithm are in
order. The algorithm combines exploration with focalization
in energy favorable regions of the conformational space
(energy funnels). The exploration is in fact biased towards
these energy favorable funnels. This is motivated by the
desire to avoid computationally expensive exploration in
areas of the conformational space that are not likely to
contain the native structure.

We should point out that we make no claims that the SDU
algorithm will converge to the global minimum of f(·). In
fact, it is straightforward to see that it will not find the global
minimum if we do not use enough local minima to determine
the underestimator or when f(·) is arbitrary and does not
have a funnel-like shape. However, later in the paper we will
provide arguments that guarantee convergence for funnel-like
shaped functions under a suitable set of conditions.

IV. CGU AND AND ITS LIMITATIONS

The CGU algorithm [5] can be viewed as a special case of
the SDU algorithm under the following key modifications:

1) Underestimation. In deriving the underestimator U(·)
impose the constraint that the matrix Q is a diagonal
positive semi-definite matrix. Then the semi-definite
constraint can be replaced by a non-negativity con-
straint for all diagonal entries. It follows that Problem
(SDP-P) can be reformulated as a linear programming
problem (LP) which can be easily solved.

2) Sampling. Replace our biased sampling method with
random (uniform) sampling in the neighborhood
N (φP ) ⊆ B of φP .

We will argue that these two differences between CGU
and SDU drastically affect the performance of the CGU
algorithm. In particular, limiting the underestimator search to
the class of canonical parabolas (diagonal Q) substantially
reduces the efficiency and accuracy of CGU for general
problems where the surface spanned by the local minima is
not typically aligned with the canonical coordinates defining
the underestimating parabola. [3] reports many such cases
where CGU performs poorly. Some attempts in addressing
this limitation have been made in [8] but they are only able
to handle very special cases.

We start our study of CGU limitations by providing a
simple example where CGU fails. Consider the function
f(φ) = 100φ2

1 − 10φ1φ2 + φ2
2 whose global minimum is

at the origin. We use CGU to underestimate this function.
In Fig. 4 we plot contours of the function f(·) and its
resulting CGU underestimator UCGU (·). More specifically,
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Fig. 4. CGU yields different results depending on the sample region.

in Fig. 4(a) we randomly (and uniformly) sampled the region
[−1, 10] × [−1, 10] to obtain a large set of points which
we used to construct the CGU underestimator. The under-
estimator UCGU (·) has a global minimum (to be referred
to as prediction) at (0, 10). Notice that CGU constrains
its prediction within the sampling region. In Fig. 4(b) we
performed the same experiment but used [−1, 20]× [−1, 20]
as the sampling region and CGU’s prediction was (0, 20). In
both cases, CGU’s prediction is at the boundary because the
minimization of UCGU (·) is constrained within the sampling
region; unconstrained minimization produces an even worse
result. It is evident that the prediction heavily depends on the
initial sampling region which in most cases is set arbitrarily.
In the next subsection we analyze the CGU underestimating
approach and compare to the one we employ in SDU.
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A. Comparing the CGU and SDU underestimators

As we discussed in Section III a quadratic underestimator
will not be informative if either (i) f(·) is not funnel-like and
the envelope of local minima can not be well approximated
by a convex quadratic, and (ii) if we do not use a rich enough
set of local minima in constructing U(·). In the following
we wish to remove these two potential sources of poor
performance in order to better assess the underestimating
power of CGU and SDU. More specifically, we consider the
“ideal” case of underestimating a convex quadratic given by
f(t) = t′Q̄t+b̄′t+c̄, where Q̄ � 0. Further, we assume that
an infinite number of sample points of f(·) in some compact
sampling region B is at our disposal when we construct the
underestimator. The construction of the underestimator based
on utilizing all sample points in B can be formulated as the
following (infinite dimensional) optimization problem:

minimize
∫
t∈B(f(t) − U(t)) dt

subject to f(t) ≥ U(t), t ∈ B,
(11)

where the decision variables are the (yet unspecified) param-
eters defining U(t).

Suppose first that we use the SDU underestimating ap-
proach and seek to construct a function U(t) = t′Qt +
b′t + c, where Q � 0. Consider the problem in (11) for
such a U(t). The next proposition is immediate.

Proposition IV.1 SDU can underestimate f(·) exactly, in
particular, (Q,b, c) = (Q̄, b̄, c̄) is an optimal solution of
(11).

We next consider the CGU underestimation approach.
Specifically, we seek to construct a function
U(t) = t′Dt + b′t + c, where D is diagonal positive
semi-definite matrix. Namely, D = diag(d1, . . . , dn)
where di ≥ 0 for i = 1, . . . , n. For simplicity
of the exposition B = B1 × · · · × Bn where
Bi = [li, ui] and ui − li = T for all i = 1, . . . , n.
We denote a(t) = (t21, . . . , t

2
n, t1, . . . , tn, 1), h =

(
∫

t1∈B1
t21dt1/T, . . . ,

∫
tn∈Bn

t2ndtn/T,
∫

t1∈B1
t1dt1/T, . . . ,∫

tn∈Bn
tndtn/T, 1), and z = (d1, . . . , dn, b1, . . . , bn, c).

In this case, the optimization problem in (11) is equivalent
to the following problem:

(LSIP-P) max h′z
s.t. a′(t)z ≤ f(t), t ∈ B,

(12)

where z is the decision vector. Note that it involves an infinite
number of constraints. A problem with such a structure
is known as the Linear Semi-Infinite Programming (LSIP)
problem [9]. Its dual can be formulated in measure space as
follows:

(LSIP-D) min
∫

B f(t)dµ(t)
s.t.

∫
B a(t)dµ(t) = h, µ ∈ M+(B),

(13)
where M+(B) denotes the set of non-negative regular Borel
measures on B.

It can be shown (we omit the details due to space limita-
tions) that the underestimator obtained by solving (LSIP-P)
in (12) is the limit (as K → ∞) of the CGU underestimators
derived based on function values f(t1), . . . , f(tK) at a set

of samples t1, . . . , tK from B. This is insightful because
it suggests that when we use enough samples the quality of
the CGU underestimator does not depend on sample selection
but rather on the fundamental structure of the underestimator
function. Our main result in this section is the following
theorem; the proof is omitted in the interest of space.

Theorem IV.2 Let f(t) = t′Q̄t, where Q̄ � 0. Further,
let U∗(t) = t′D∗t + b∗′

t + c∗, be the optimal solution
to (LSIP-P), i.e., the optimal CGU underestimator to f(t).
Then, in general, b∗ �= 0. In other words the minimizer of
the underestimator is different from the minimizer of f(t).

V. ON SDU’S CONVERGENCE

In this section we give the result that under appropriate
conditions the SDU algorithm converges to the global mini-
mum of the function f(·). Such (free energy) functions aris-
ing in molecular docking applications, as we have explained,
possess key structural properties. Therefore, we will impose
a set of structural assumptions on f(·) and the search region
B that reflect the properties of the free energies functions we
seek to minimize. We denote by epi(f) the epigraph of f(·)
which is defined as epi(f) = {(φ, w) | φ ∈ B, f(φ) ≤ w}.
We also denote by conv(S ) the convex hull of any set S .

Assumption A
Assume that f(φ) satisfies the following set of conditions:
(i) it is continuously differentiable; (ii) f(·) has a unique
global minimum in B; (iii) B is compact; (iv) for all local
minima φ of f(·) there exists an open set such that φ is
the unique minimizer of f(·) within this set; (iv) the extreme
points of conv(epi(f)) lie on a quadratic function Ũ(φ) =
φ′Q̃φ + b̃′φ + c̃; (v) Ũ(φ) has a unique global minimum
which is identical with the global minimum of f(·) in B.

For functions that satisfy Assumption A we will say that
they have a funnel-like shape (see Fig. 1 for an illustration).
As we argued in Section II, Assumption A is not overly
restrictive for the free energy functions we are interested in
minimizing.

The following theorem establishes that given sufficient
sampling of the search region B the SDU underestimation
procedure can locate the global minimum of f(·) which
we denote by φ∗. The proof is omitted again due to space
limitation.

Theorem V.1 Let Assumption A prevail. Consider the SDU
algorithm provided in Fig. 3 and assume that B contains
at least (n+1)(n+2)

2 local minima of f(·) which are extreme
points of conv(epi(f)). Suppose that in Step 1 of the al-
gorithm we obtain K uniformly distributed samples in B
and for each one of those we perform local minimization
to obtain K local minima φ1, . . . , φK of f(·). Then, the
global minimum φP of the underestimator U(·) obtained in
Step 2 of the algorithm converges in probability to the global
minimum φ∗ of f(·) as K → ∞, namely, limK→∞ P[φP =
φ∗] = 1.
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We can think of Theorem V.1 as a simple sanity check of
the SDU underestimation approach. It implies that given
an appropriate funnel-like structure, SDU can locate the
global minimum of the free energy function with probability
approaching one as the number of random samples in B
increases.

VI. APPLICATIONS IN RIGID-BODY PROTEIN DOCKING

In this section we report results from applying SDU to a
number of protein-to-protein docking instances. We assume
that both proteins are rigid. This is certainly true for their
backbones and, as we will see, we will allow some flexibility
in determining the position of the side chains in the interface
between the two proteins. More specifically, we consider 3-
dimensional problems where one protein is held fixed, both
proteins are optimally oriented (based on information we
obtain from the known bound structure), and we seek to
determine the position of the second protein in the bound
structure with respect to the first one. We will constrain
these three translational variables to be in a relatively short
range. This means that we have already identified the active
site of the first protein and we are interested in determining
the exact position of the second protein in this site. The
identification of the active site is usually done by other means
using clustering techniques and simple FFT-based affinity
procedures based on rough energy models.

The energy functional we minimize includes van der Waals
interactions (∆EvdW ), the desolvation energy (∆Edes) and
the electrostatic energy (∆Eelec). We allow side-chains to be
flexible during the local minimization phase; this is critical
as side-chains in the interface between the two proteins can
not be considered rigid and they are packed in a way that
minimizes the overall free energy of the bound complex. We
report results for three complexes 1BRS (barnase/barstar),
1MLC (an monoclonal antibody and lyzozyme complex), and
2PTC (a trypsin-inhibitor complex). The bound structure for
each case has the ligand centered at the origin, that is, the
optimal solution is (0, 0, 0). The initial search region B is
a 10Å cube. In each iteration (indexed by i), we report the
best structure found so far, φG, the corresponding energy
f(φG) (in kcal/mol), and the RMSD distance D(φG) from
the native structure (in Å). The primary measure of success
is the proximity of D(φG) to zero. In the results that follow
we terminated the algorithm when no progress was made in
the last three iterations.

Table I reports our results for the 1MLC complex. The
evolution of SDU in all three complexes considered is
depicted in Fig. 5.

VII. CONCLUSIONS

We introduced a new method for minimizing free-energy
functions appearing in molecular docking and other im-
portant problems in computational biology. These energy
function are notoriously hard to minimize as they consist
of terms acting in disparate space-scales and have a huge
number of local minima. Yet, they exhibit a funnel-like shape
which we use to our advantage.

i φG
1 φG

2 φG
3 f(φG) D(φG)

1 -0.831 -0.935 1.428 -24.30 1.90
2 -0.831 -0.935 1.428 -24.30 1.90
3 0.056 -0.444 -0.550 -64.57 0.70
4 0.056 -0.444 -0.550 -64.57 0.70
5 -0.144 0.764 0.059 -69.29 0.78
6 -0.144 0.764 0.059 -69.29 0.78
7 -0.033 0.549 0.287 -71.19 0.62

TABLE I

SDU APPLIED TO THE 1MLC COMPLEX.
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Fig. 5. The evolution of SDU for the 1BRS, 1MLC, and 2PTC complexes.

Our method works on the surface spanned by local
minima. We developed a technique based on semi-definite
programming to form a general convex underestimator of
the energy function. The underestimator guides random, yet
biased, exploration of the energy landscape. We established,
theoretically as well as numerically, that our method is
superior to an alternative (CGU) method. We applied our
algorithm to a number of protein-protein docking problems
and showed that the resulting conformation is extremely
close to the native one (within 1Å RMSD). This improves
upon the 3–5Å RMSD that current methods produce.
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