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Abstract— We study an optimal admission of arriving cus-
tomers to a Markovian finite-capacity queue, e.g. M/M/c/N
queue, with several customer types. The system managers
are paid for serving customers and penalized for rejecting
them. The rewards and penalties depend on customer types.
The goal is to maximize the average rewards per unit time
subject to the constraint on the average penalties per unit
time. We provide a solution to this problem through a Linear
Programming transformation and characterize the structure
of optimal policies based on Lagrangian optimization. For a
feasible problem, we show the existence of a 1-randomized
trunk reservation optimal policy with the acceptance thresholds
for different customer types ordered according to a linear
combination of the service rewards and rejection costs. In
addition, we prove that any 1-randomized optimal policy has
this structure. In particular, we establish the structure of an
optimal policy that maximizes the average rewards per unit
time subject to the constraint on the blocking probability for
one of the customer types or for a group of customer types
pooled together, i.e., the QoS (Quality of Service) constraint. In
the end, we also formulat the problem with multiple constraints
and similar results hold.

I. INTRODUCTION

The admission control problem for a queue in which the

QoS (quality of service) is provided has broad applications

in telecommunication, computer, service and engineering.

One aspect of admission control is the ability to monitor,

control, and enforce the use of resources and services with

policy-based management. In this paper, we describe the

structure of optimal admission policies to finite capacity

queues, including M/M/c/N queues, with a fixed number

of customer types. At the arrival epoch a customer can be

either rejected or accepted. The latter is possible only if

the system is not full. Each customer type i = 1, 2, . . . ,m,
where m is the number of customer types, is characterized

by three parameters: a Poisson arrival rate λi, a reward

ri that a customer pays for the service, and the penalty

ci paid to a rejected customer. The service times do not

depend on the customer types. The goal is to maximize the

average rewards per unit time subject to the constraint that

the average penalty per unit time does not exceed a certain

number. Such problems arise, for example, when the goal is

to maximize the average rewards per unit time subject to the

quality of service (QoS) constraint.
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A 1-randomized trunk reservation policy φ is defined by

m numbers Mφ
i , 0 ≤ Mφ

i ≤ N − 1, i = 1, . . . ,m. Among

these numbers Mφ
1 , . . . ,Mφ

m, at most one number is non-

integer and at least one number equals N − 1. For a number

M we denote by �M� the integer part of M . If the system is

controlled by the policy φ, a type i arrival will be admitted

with probability 1 if it sees no more than �Mφ
i � customers

in the system, it will be rejected if the number of customers

in the system exceeds �Mφ
i �+1, and it will be accepted with

the probability (Mφ
i −�Mφ

i �) if there are exactly �Mφ
i �+1

customers in the system at the time of its arrival. In particular,

if the number Mφ
i is an integer, a type i arrival will be

admitted if and only if it sees no more that Mφ
i customers

in the system. Thus, Mφ
i = N − 1 means that a type i

arrival is admitted whenever the system is not full. A 1-

randomized trunk reservation policy φ is called consistent

with a function r′ defined on the set {1, . . . ,m} if r′i > r′j
implies Mφ

i ≥ Mφ
j , i, j = 1, . . . ,m. If all the thresholds are

integers, the 1-randomized trunk reservation policy is called

a trunk reservation policy. We sometimes write Mi instead

of Mφ
i for the thresholds when there is only one policy in

the context and no confusion will occur.

In this paper, we prove that, if the problem is feasible, then

there exists a 1-randomized trunk reservation policy which

is consistent with the reward function

r′i = ri + ū1ci, (1)

where ū1 ≥ 0 is the first entry of the dual solution to

the linear programming problem we formulated later in this

paper. In addition, Theorem 3 shows that any 1-randomized

stationary optimal policy is a 1-randomized trunk reservation

policy which is consistent with r′.
Miller [19] studied a one-criterion problem for an

M/M/c/loss queue when r1 > r2 > · · · > rm. In this case,

there exists an optimal non-randomized trunk reservation

policy which is consistent with r. In other words, all the

thresholds Mi are integers and N − 1 = M1 ≥ M2 ≥ · · · ≥
Mm. Feinberg and Reiman [8] studied a constrained problem

with r1 > r2 > · · · > rm when the goal is to maximize

average rewards per unit time subject to the constraint that

the blocking probability for type 1 customers does not exceed

a given level. Feinberg and Reiman [8] proved the existence

of an optimal 1-randomized trunk reservation policy with

N − 1 = M1 ≥ M2 ≥ · · · ≥ Mm.

Instead of considering M/M/c/loss or M/M/c/N
queues, Feinberg and Reiman [8] made a more general as-

sumption that the service rate µn, when there are n customers
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in the system, does not decrease in n. This assumption

holds for M/M/c/N queues. In this paper, we also consider

systems that satisfy this assumption.

This research was initially motivated by the following

natural question: what is the solution for the problem with

r1 > r2 > · · · > rm when the goal is to maximize the

average rewards per unit time subject to the constraint that

the blocking probability for type j customers does not exceed

a given number? This is a particular case of the problem

considered in this paper when cj = λj
−1 and ci = 0, i �= j.

Therefore,

r′i =
{

rj + ū1/λj , if i = j;
ri, otherwise. (2)

Since ū1 ≥ 0, in view of (2), we have r′j ≥ rj . Thus

Corollary 2 below implies that, when r1 > r2 > · · · > rm,
for a feasible problem, there exists an optimal 1-randomized

trunk reservation policy with M1 ≥ · · · ≥ Mj−1 ≥ Mj+1 ≥
· · · ≥ Mm and Mj ≥ Mj+1. In other words, the threshold

for type j customers can increase. In the particular case

when j = 1, studied by Feinberg and Reiman [8], the orders

r′1 > r′2 > · · · > r′m and r1 > r2 > · · · > rm coincide

and therefore we have that M1 = N − 1 is the highest

threshold. If the constraint limits the blocking probability

for several customer types pooled together, then the optimal

policy also has a simple structure described in Corollary 5.

This corollary implies that, if we have the constraint on the

blocking probability of the several most profitable customer

types pooled together, then the optimal policy is again a 1-

randomized trunk reservation policy consistent with r.

We remark that our main result, Theorem 3, is a stronger

statement than just the existence of an optimal 1-randomized

trunk reservation policy, which is Corollary 2. We prove

that any randomized optimal stationary policy, that uses

a randomization procedure in at most one state, has a 1-

randomized trunk reservation form. We recall that for 1-

constrained semi-Markov or continuous-time Markov deci-

sion processes describing the problem considered in this pa-

per, when the problem is feasible, there exists a randomized

stationary optimal policy that uses a randomization procedure

in at most one state; see Feinberg [6] or [7].

In addition to the classical Miller’s [19] problem for-

mulation and its constrained version studied by Feinberg

and Reiman [8], various versions and generalizations of

the admission problem have been studied in the literature.

Lippman [17] studied a problem with an infinite number

of customer classes. Other early references can be found

in the surveys by Crabill, Gross, and Magazine [4] and

by Stidham [25]. Nguyen [20] considered a queueing sys-

tem with two types of arrivals: one type is generated by

a Poisson process and the other is an overflow process

of an M/M/m/m queue. Carrizosa, Conde and Munoz-

Marquez [3] studied an M/G/c/loss queue with different

service distributions for different customer types. There the

control parameter is the probability to accept an arrival, if

the system has available space. This probability depends

on the arrived customer type and does not depend on the

state of the system. Lewis, Ayhan and Foley [13], [14]

investigated bias optimality. Lewis [12] studied a dual admis-

sion control scheme to an M/M/1 queue with the service

times depending on customer types. Lin and Ross [15],

[16] considered optimal admission control policies with a

gatekeeper for M/M/1/loss queues where the gatekeeper

can not know the busy-idle status of the server. Admission

control problems with customers requiring multiple servers

were considered by Kelly [10], Key [11], Ross and Yao [24],

Papastavrou,Rajagopalan and Kleywegt [21], and Altman,

Jimenez and Koole [1]. If service times depend on cus-

tomer types or different types of customers require different

numbers of servers, trunk reservation may not be optimal.

Examples can be found in Ross [23, p. 137] and Altman,

Jimenez and Koole [1]. However, a trunk reservation policy

is asymptotically optimal under certain conditions; Hunt and

Laws [9], Puhalskii and Reiman [22]. The survey on appli-

cations of MDP in communication networks by Altman [2]

provides additional references on admission control.

This paper is organized as follows. We formulate the prob-

lem in Section II. Following Feinberg and Reiman [8], we

formulate the problem as a unichain semi-Markov decision

problem with one constraint and with finite state and action

sets. We remark that the problem can also be formulated as

a continuous-time Markov Decision Process; Miller [19]. In

section II we also formulate the linear program (LP) that

identifies an optimal policy and explain the meaning of the

constant ū1 as an element of the dual solution to this LP.

Section III is devoted to main results. Previously Feinberg

and Reiman [8, Corollary 3.7] proved that if r1 > r2 >
· · · > rm then any optimal stationary policy has a trunk

reservation form for an unconstrained problem. We study

the unconstrained problem when r1 ≥ r2 ≥ · · · ≥ rm.

This case is important because even if we assume that

r1 > r2 > · · · > rm, it is possible that r′i = r′j
in (1) for some i, j = 1, . . . ,m. Theorem 1 establishes

the link between optimal policies and appropriate LPs. We

describe the geometrical structure of the optimal solutions

of related LPs in Theorem 2. Namely, we show that the

optimal LP solution, which corresponds to a 1-randomized

optimal policy, is a convex combination of two vectors

corresponding to (non-randomized) stationary policies, and

all these three policies differ at most at one point. In addition,

the two non-randomized stationary policies are optimal for

Lagrangian relaxation of the original problem. In Theorem 3

we present the structure of the optimal policies and in

the following corollaries, various applications in Quality of

Service constraint are considered and structures of optimal

policies for these cases are formulated.

II. PROBLEM FORMULATION

We consider a controlled queue which is a generalization

of an M/M/c/N queue. The queue has space for at most

N customers, where N is a given integer. When there

are n customers in the queue, the departure rate is µn,

n = 1, . . . , N. The numbers µn, n = 1, . . . , N, satisfy

the condition µn−1 ≤ µn, where µ0 = 0 and µ1 > 0. In
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particular, for an M/M/c/N queue, for some µ > 0

µi =
{

iµ, if i = 1, . . . , c,
cµ, if i = c + 1, . . . , N.

There are m = 1, 2, . . . types of customers arriving accord-

ing to m independent Poisson processes with the intensities

λi, i = 1, . . . ,m, respectively. When a customer arrives,

its type becomes known. When there are N customers in

the system, the system is full and new arrivals are lost. If

the system is not full, upon an arrival of a new customer, a

decision of accepting or rejecting this customer is made. A

positive reward ri is collected upon completion of serving

an accepted type i customer. A nonnegative cost ci incurs

due to the rejection or lost of an arriving type i customer.

The service time of a customer does not depend on the

customer type. Unless otherwise specified, we do not assume

that r1 ≥ r2 ≥ · · · ≥ rm.

Our goal is to maximize the average rewards the system

collects per unit time, subject to the constraint on the average

costs per unit time. In particular, we are interested in the

problem when we want to maximize the average rewards per

unit time subject to the blocking probability constraint for a

certain type of customers. In the more particular case, when

r1 > · · · > rm and the constraint is the blocking probability

for type 1 customers, this problem was studied in Feinberg

and Reiman [8].

Following Feinberg and Reiman [8], we model the prob-

lem via a semi-Markov decision process (SMDP) with the

state space I = {0, 1, . . . , N − 1}⋃
({0, 1, . . . , N} ×

{1, . . . ,m}). If the state of the system is n = 0, . . . , N − 1,

this means that a departing customer leaves n customers in

the system. The state (n, i) means that an arrival of type

i sees n customers in the system. Thus, the state space I
represents the departure and arrival epochs.

The action set A = {0, 1}. For n = 0, . . . , N − 1, and

i = 1, . . . ,m, we set A(n, i) = A = {0, 1}, where the

action 0 means that the type i arrival should be rejected and

the action 1 means that it should be accepted. We also set

A(N, i) = {0}. In any state n = 0 . . . , N − 1 there is no

decision chosen. So, we set A(n) = {0}.
Let τ(s, a) denote the average time that the system spends

in a state s ∈ I if an action a ∈ A(s) is chosen in this

state. Let p(s, s′, a) be the transition probability from the

state s to s′ if action a ∈ A(s) is chosen. For the notation

simplicity, we write τ(n) and p(n, s) instead of τ(n, 0) and

p(n, s, 0) respectively for n = 0, . . . , N − 1, s ∈ I. Denote

Λ =
∑m

i=1 λi.

We have τ(n) = (µn + Λ)−1, where n = 0, . . . , N − 1.

Also, for i = 1, . . . ,m,

τ((n, i), a) =

⎧⎪⎪⎨
⎪⎪⎩

τ(n), if a = 0,
n = 0, . . . , N,

τ(n + 1), if a = 1,
n = 0, . . . , N − 1.

For n = 0, . . . , N − 1, i = 1, . . . ,m,

p(n, s) =

⎧⎨
⎩

µnτ(n), if s = n − 1,
λiτ(n), if s = (n, i),
0, otherwise,

and

p((n, i), s, a) =
{

p(n, s), if a = 0,
p(n + 1, s), if a = 1.

For simplicity, let the reward be collected when an arrival

is accepted. Therefore,

r(s, a) =

⎧⎨
⎩

ri, if s = (n, i),
n = 0, . . . , N − 1, a = 1,

0, otherwise,

and

c(s, a) =

⎧⎨
⎩

ci, if s = (n, i),
n = 0, . . . , N, a = 0,

0, otherwise.

In summary, we have defined an SMDP with the state

space I; action space A, set A(s) of available actions at states

s ∈ I; transition probability p(s, s′, a); average sojourn time

τ(s, a) in a state s ∈ I after an action a is chosen; reward

function r(s, a) and cost function c(s, a).
Let t0 = 0. If tn is defined for some n = 0, 1, . . . , we

define tn+1 as the time epoch of either the next departure

or arrival, whichever occurs first. Therefore 0 = t0 < t1 <
· · · is the sequence of jump epochs when the state of the

system changes. A strategy π, which may be randomized and

past-dependent, assigns actions an at epoch tn to control the

system. We define the long-run average rewards earned by

the system as

W (z, π) = lim inf
t→∞ t−1

E
π
z

N(t)−1∑
n=0

r(xn, an)

and the long-run average cost of the system as

C(z, π) = lim sup
t→∞

t−1
E

π
z

N(t)−1∑
n=0

c(xn, an),

where z is an initial state, π is a strategy, xn is the state at

epoch tn, E
π
z is the expectation operator for the initial state

z and the strategy π, and N(t) = max{n : tn ≤ t} is the

number of jumps by the epoch t.
A strategy is called a randomized stationary policy if

assigned actions an depend only on the current state xn.

In addition, if an is a deterministic function of xn, the

corresponding strategy is called a stationary policy.

According to [8, p.471], the Unichain Condition holds

for this model. The Unichain Condition means that any

randomized stationary policy defines a Markov chain on the

system’s state space with one ergodic class and a (possibly

empty) set of transient states. Under this condition, the

objective functions W (z, φ) and C(z, φ) do not depend on

the initial state z ∈ I when φ is a randomized stationary

policy. So, we shall write W (φ) and C(φ) instead of W (z, φ)
and C(z, φ) respectively when φ is a randomized stationary
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policy. According to [6, Theorem 8.1(iv)], if the Unichain

Condition holds and the problem (3),(4) is feasible for some

z, then there exists a randomized stationary policy which is

optimal for any initial state z and the value does not depend

on z. Thus, our problem can be modelled as the following

optimization problem with a randomized stationary policy φ
as the variable:

maximize W (φ) (3)

subject to C(φ) ≤ G. (4)

Since an action can be chosen only at the arrival epochs,

a randomized stationary policy φ for our problem can be

defined by φ(n, i), n = 0, . . . , N − 1, i = 1, . . . ,m : the

probability of accepting an arrival of type i when there are

n customers in the system.

A randomized stationary policy φ is called k-randomized

stationary, k = 0, 1, 2, . . . , if the number of states (n, i)
where 0 < φ(n, i) < 1 is less than or equal to k. The notions

of stationary and 0-randomized stationary policies coincide.

III. MAIN RESULTS

A. Unconstrained Problem

The major difference of our discussion here to the results

in Feinberg and Reiman [8] is that, instead of considering

strict inequalities among rewards, we allow different classes

to have equal rewards. This is due to the reason that even

if we assume that r1 > r2 > · · · > rm, it is possible that

r′i = r′j in (1) for some i, j = 1, . . . ,m. The following

lemmas cover the case r1 ≥ · · · ≥ rm > 0. However, being

motivated by constrained problems, for which it is possible

that r′i < r′i+1, we do not specify these inequalities in the

following lemmas.

Lemma 1. Any stationary optimal policy ϕ for the uncon-
strained problem (3) is a trunk reservation policy consistent
with the rewards ri.

Lemma 2. Consider any randomized stationary optimal
policy φ for the unconstrained problem (3). (i) For any i, j
such that ri > rj , we have

φ(n, i) ≥ φ(n, j), n = 0, . . . , N − 1, i, j = 1, . . . ,m. (5)

For each n = 0, . . . , N − 1, if there exist j = j1, j2, . . . , js

such that 0 < φ(n, j) < 1 then rj1 = rj2 = · · · = rjs .
(ii) There exists at least one customer type, say type j such

that

φ(n, j) = 1, n = 0, . . . , N − 1; (6)

(iii)

φ(n, j) ≥ φ(n+1, j), n = 0, . . . , N − 2, j = 1, . . . ,m, (7)

and for each j = 1, . . . ,m, all probabilities φ(n, j), n =
0, . . . , N − 1, except at most one, are equal to either 0 or 1.

B. Justification of the LP formulation

Consider the following Linear Program (LP) with variables

(x, P ), where x = {x(n, i) : n = 0, . . . , N − 1, i =
1, . . . ,m}, P = (P0, . . . , PN ).

maximizex,P

m∑
i=1

λiri

N−1∑
n=0

x(n, i) (8)

subject to
m∑

i=1

λici(1 −
N−1∑
n=0

x(n, i)) ≤ G, (9)

m∑
i=1

λix(n, i) = µn+1Pn+1, (10)

n = 0, . . . , N − 1,
N∑

n=0

Pn = 1, (11)

0 ≤ x(n, i) ≤ Pn, n = 0, . . . , N − 1, (12)

i = 1, · · · ,m.

For a vector (x, P ) satisfying (9)-(12), consider a random-

ized stationary policy φ such that:

φ(n, i) =

⎧⎪⎪⎨
⎪⎪⎩

x(n, i)/Pn, if Pn > 0,
n = 0, . . . , N − 1,
i = 1, . . . ,m;

arbitray, otherwise.

(13)

Theorem 1. (i) A randomized stationary policy φ is feasible
for the problem (3), (4) if and only if (13) holds for a feasible
vector (x, P ) of the LP (8)-(12).

(ii) If (x, P ) is an optimal solution of the LP (8)-(12) then
Pn > 0 for all n = 0, 1, . . . , N.

(iii) A randomized stationary policy φ is optimal for the
problem (3), (4) if and only if

φ(n, i) = x(n, i)/Pn, n = 0, . . . , N − 1, i = 1, . . . , m, (14)

for an optimal solution (x, P ) of the LP (8)-(12). In addition,
if (x, P ) is a basic optimal solution of the LP (8)-(12),
then the policy φ defined in (14) is 1-randomized stationary
optimal.

If G ≥ ∑m
i=1 λici, Theorem 1 implies the following result.

Corollary 1. (i) If (x, P ) is an optimal solution of the LP (8),
(10)-(12) then Pn > 0 for all n = 0, 1, . . . , N.

(ii) A randomized stationary policy φ is optimal for the
problem (3) if and only if (14) holds for an optimal solution
(x, P ) of the LP (8), (10)-(12). In addition, if (x, P ) is
a basic optimal solution of the LP (8), (10)-(12), then
the policy φ defined in (14) is non-randomized stationary
optimal.

C. Lagrangian Relaxation and Geometric Properties of Op-
timal Policies

In view of (11) and (12), the feasible region of the LP (8)-

(12) is bounded. Therefore, this LP has an optimal solution,

if it is feasible. If the LP (8)-(12) is feasible, we consider an

arbitrary optimal dual solution (ū, v̄), ū = (ū1, . . . , ū2mN+1)
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and v̄ = (v̄1, . . . , v̄N+1), where ū corresponds to all inequal-

ity constraints and v̄ corresponds to equality constraints, and

introduce the following LP:

maximizex,P

m∑
i=1

λi(ri + ū1ci)
N−1∑
n=0

x(n, i) −

ū1(
m∑

i=1

λici − G)

subject to (10) − (12).

(15)

Here ū1 is also called the Lagrangian multiplier with

respect to constraint (9). Notice that most of the contem-

porary LP solvers use interior point methods and calculate

the primal and dual solutions simultaneously, therefore we

do not formulate the dual LP in this paper.

Lemma 3. If the LP (8)-(12) is feasible then: (i) any optimal
solution of the LP (8)-(12) is an optimal solution of the
LP (15), and (ii) the optimal values of objective functions
for these two LPs are equal.

Lagrangian relaxation in general refers to using weak

duality theorem in obtaining lower bounds for non-linear

programming problem. We use this term ”relaxation” here

in the sense that the optimal set is enlarged after the

transformation, although the optimal value remain the same.

We notice that for any randomized stationary policy φ
there is a unique solution Pφ of the following birth-and-

death equations:

(
m∑

i=1

λiφ(n, i))Pn = µn+1Pn+1, (16)

n = 0, . . . , N − 1,
N∑

n=0

Pn = 1. (17)

In other words, Pφ
n is the limiting probability that there are

n customers in the system when the randomized stationary

policy φ is used.

In addition, we define

xφ(n, i) = φ(n, i)Pφ
n , (18)

n = 0, . . . , N − 1, i = 1, . . . ,m.

Then (xφ, Pφ) satisfies (10)-(12) and therefore it is a feasible

solution of the LP (8), (10)-(12). In view of Theorem 1(i),

a randomized stationary policy φ is feasible for the problem

(3), (4) if and only if (xφ, Pφ) is a feasible solution of

the LP (8)-(12). In addition, according to Theorem 1(iii),

a randomized stationary policy is optimal for the problem

(3), (4) if and only if (xφ, Pφ) is optimal for the LP (8)-

(12). In particular, according to Corollary 1, a randomized

stationary policy φ is optimal for the unconstrained problem

(3) if and only if the vector (xφ, Pφ) is optimal for the LP

(8), (10)-(12).

The following theorem links geometrically the optimal

solutions of the LP (8)-(12) to feasible vectors of the LP (8),

(10)-(12).

Theorem 2. Let φ be a 1-randomized stationary optimal
policy for the problem (3), (4). If there exists a state (n0, i0)
with 0 < φ(n0, i0) < 1, consider two stationary policies φ′

and φ′′ that coincide with φ at all states except the state
(n0, i0) and φ′(n0, i0) = 0, φ′′(n0, i0) = 1. Then for some
0 < α < 1,

(xφ, Pφ) = α(xφ′
, Pφ′

) + (1 − α)(xφ′′
, Pφ′′

). (19)

D. Main Theorem and Its Applications

Theorem 3. Any 1-randomized stationary optimal policy for
the problem (3), (4) is a 1-randomized trunk reservation
policy, which is consistent with the reward function r′i =
ri + ū1ci, i = 1, . . . ,m, where ū1 ≥ 0 is the Lagrangian
multiplier with respect to constraint (9).

Since our problem is an average reward SMDP with one

constraint and the Unichain Condition holds, due to [6],

if a feasible policy exists, then there exists a 1-randomized

stationary optimal policy. Therefore, the previous theorem

implies the the following corollary.

Corollary 2. If the problem (3), (4) is feasible, then there
exists an optimal 1-randomized trunk reservation policy
which is consistent with r′.

Let

ci =
{

1/λj , i = j,
0, otherwise. (20)

According to [8, p. 471], for the costs ci defined by (20),

the average cost C(z, π) has the meaning of the blocking

probability for type j customers. Therefore, the problem of

maximizing the average rewards per unit time subject to the

constraint that the blocking probability for type j customers

does not exceed q is equivalent to the problem (3), (4) with

the cost function c defined in (20).

The following corollary describes the structure of optimal

policies when the objective is to maximize the average

rewards per unit time subject to the constraint on the blocking

probability for type j customers.

Corollary 3. Consider a special case of the problem (3),
(4) with the constraint on the blocking probability of type
j customers, j = 1, . . . ,m. If this problem is feasible then
any 1-randomized stationary optimal policy is 1-randomized
trunk reservation consistent with the reward function r′

defined in (2) and satisfying the properties that r′i = ri if
i �= j and r′j ≥ rj .

In particular, when j = 1, Corollary 3 implies the

following statement.

Corollary 4. Consider a special case of the problem (3),
(4) with the constraint on the blocking probability of the
most profitable customers (type 1). If this problem is feasi-
ble then any 1-randomized stationary optimal policy is a
1-randomized trunk reservation policy consistent with the
rewards ri.

In particular, for the case r1 > r2 > . . . > rm, Corollary 4

coincides with the main result in Feinberg and Reiman [8].
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If the cost constraint limits the blocking probability for

several customer types pooled together, say, for customer

types belonging to a set J , J ⊂ {1, . . . ,m}, then we define

ΛJ =
∑

j∈J λj and

ci =
{

1/ΛJ , if j ∈ J,
0, otherwise. (21)

Then the combined blocking probability for customers in the

set J under policy π and initial state z is C(z, π) with the

function ci defined by (21).

The following corollary describes the structure of optimal

policies when the objective is to maximize the average re-

wards per unit time subject to the constraint on the combined

blocking probability for several customer types.

Corollary 5. Consider a special case of the problem (3),
(4) with the constraint on the combined blocking probability
for customer types belonging to a set J , J ⊂ {1, . . . ,m}.
If this problem is feasible then any 1-randomized stationary
optimal policy is a 1-randomized trunk reservation policy
consistent with a function r′, where

r′i =
{

ri + ū1/ΛJ , if i ∈ J,
ri, otherwise, (22)

and it satisfies the properties: (i) r′i = ri if i /∈ J , (ii) r′i ≥ ri

if i ∈ J , and (iii) r′i ≥ r′j if i, j ∈ J and ri ≥ rj .

IV. FURTHER RESULTS ON MULTIPLE CONSTRAINT

PROBLEMS

Further more, we considered the admission control prob-

lem with multiple constraints and similar results hold. We

briefly give the formulation and main results here. For each

customer type i = 1, 2, . . . ,m, where m is the number

of customer types, besides the Poisson arrival rate λi, a

reward ri, there is a K dimension penalty vector Ci =
(c1

i , c
2
i , . . . , c

K
i ) paid to a rejected type i customer. The goal

is to maximize the average rewards per unit time subject to K
constraints that the average penalty vector per unit time does

not exceed a certain constant vector. That is, we consider the

following optimization problem:

maximize W0(φ) (23)

subject to Wk(φ) ≤ Gk, k = 1, . . . ,K. (24)

Theorem 4. Any Km-randomized stationary optimal policy
for the problem (23), (24) is a Km-randomized trunk reserva-
tion policy, which is consistent with the reward function r′i =
ri + ūKCi, i = 1, . . . ,m, where ūK = (ū1, ū2, . . . , ūK) ≥ 0
is the vector of Lagrangian multipliers.

Such problems arise, for example, when the goal is to

maximize the average rewards per unit time where each type

of customers has its own quality of service (QoS) constraint.
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