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Abstract— A novel class of fixed-order, energy-based hybrid
controllers is proposed as a means for achieving enhanced
energy dissipation in Euler-Lagrange, port-controlled Hamil-
tonian, and lossless dynamical systems. These dynamic con-
trollers combine a logical switching architecture with contin-
uous dynamics to guarantee that the system plant energy is
strictly decreasing across switchings. The general framework
leads to closed-loop systems described by impulsive differential
equations. In addition, we construct hybrid dynamic controllers
that guarantee that the closed-loop system is consistent with
basic thermodynamic principles. In particular, the existence of
an entropy function for the closed-loop system is established
that satisfies a hybrid Clausius-type inequality. Special cases
of energy-based hybrid controllers involving state-dependent
switching are described.

I. INTRODUCTION

Energy is a concept that underlies our understanding of
all physical phenomena and is a measure of the ability of
a dynamical system to produce changes (motion) in its own
system state as well as changes in the system states of its
surroundings. In control engineering, dissipativity theory [1],
which encompasses passivity theory, provides a fundamental
framework for the analysis and control design of dynamical
systems using an input-output system description based on
system energy related considerations [2]. The notion of
energy here refers to abstract energy notions for which a
physical system energy interpretation is not necessary. The
dissipation hypothesis on dynamical systems results in a
fundamental constraint on their dynamic behavior, wherein
a dissipative dynamical system can only deliver a fraction of
its energy to its surroundings and can only store a fraction
of the work done to it. Thus, dissipativity theory provides a
powerful framework for the analysis and control design of
dynamical systems based on generalized energy considera-
tions by exploiting the notion that numerous physical systems
have certain input-output properties related to conservation,
dissipation, and transport of energy. Such conservation laws
are prevalent in dynamical systems such as mechanical
systems, fluid systems, electromechanical systems, electrical
systems, combustion systems, structural vibration systems,
biological systems, physiological systems, power systems,
telecommunications systems, and economic systems, to cite
but a few examples.

Energy-based control for Euler-Lagrange dynamical sys-
tems and Hamiltonian dynamical systems based on passivity
notions has received considerable attention in the literature
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[2]. This controller design technique achieves system sta-
bilization by shaping the energy of the closed-loop sys-
tem which involves the physical system energy and the
controller emulated energy. Specifically, energy shaping is
achieved by modifying the system potential energy in such
a way so that the shaped potential energy function for
the closed-loop system possesses a unique global minimum
at a desired equilibrium point. Next, damping is injected
via feedback control modifying the system dissipation to
guarantee asymptotic stability of the closed-loop system. A
central feature of this energy-based stabilization approach is
that the Lagrangian system form is preserved at the closed-
loop system level. Furthermore, the control action has a
clear physical energy interpretation, wherein the total energy
of the closed-loop Euler-Lagrange system corresponds to
the difference between the physical system energy and the
emulated energy supplied by the controller.

In this paper, we develop a novel energy dissipating
hybrid control framework for Lagrangian, port-controlled
Hamiltonian, and lossless dynamical systems. These dynam-
ical systems cover a very broad spectrum of applications
including mechanical, electrical, electromechanical, struc-
tural, biological, and power systems. The fixed-order, energy-
based hybrid controller is a hybrid controller that emulates
a hybrid Hamiltonian dynamical system and exploits the
feature that the states of the dynamic controller may be
reset to enhance the overall energy dissipation in the closed-
loop system. An important feature of the hybrid controller
is that its Hamiltonian structure can be associated with a
kinetic and potential energy function. In a mechanical Euler-
Lagrange system, positions typically correspond to elastic
deformations, which contribute to the potential energy of the
system, whereas velocities typically correspond to momenta,
which contribute to the kinetic energy of the system. On
the other hand, while our energy-based hybrid controller
has dynamical states that emulate the motion of a physical
Hamiltonian system, these states only “exist” as numerical
representations inside the processor. Consequently, while one
can associate an emulated energy with these states, this
energy is merely a mathematical construct and does not
correspond to any physical form of energy.

The concept of an energy-based hybrid controller can
be viewed as a feedback control technique that exploits
the coupling between a physical dynamical system and an
energy-based controller to efficiently remove energy from the
physical system. Specifically, if a dissipative or lossless plant
is at high energy level, and a lossless feedback controller at a
low energy level is attached to it, then energy will generally
tend to flow from the plant into the controller, decreasing the
plant energy and increasing the controller energy. Of course,
emulated energy, and not physical energy, is accumulated
by the controller. Conversely, if the attached controller is at
a high energy level and a plant is at a low energy level,
then energy can flow from the controller to the plant, since
a controller can generate real, physical energy to effect the
required energy flow. Hence, if and when the controller states
coincide with a high emulated energy level, then we can
reset these states to remove the emulated energy so that the
emulated energy is not returned to the plant. In this case, the
overall closed-loop system consisting of the plant and the
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controller possesses discontinuous flows since it combines
logical switchings with continuous dynamics, leading to
impulsive differential equations [3], [4], [5]. Within the
context of vibration control using resetting virtual absorbers,
these ideas were first explored in [6].

II. HYBRID CONTROL AND IMPULSIVE SYSTEMS

In this section, we establish definitions, notation, and
review some basic results on impulsive dynamical systems
[4]. Let R denote the set of real numbers, let R+ denote the
set of nonnegative real numbers, let R

n denote the set of n×1
real column vectors, let Z+ denote the set of nonnegative
integers, let (·)T denote transpose, and let In denote the n×n

identity matrix. Furthermore, let ∂S,
◦

S, and S denote the
boundary, the interior, and the closure of the subset S ⊂ R

n,
respectively. We write ‖ · ‖ for the Euclidean vector norm,
Bε(α), α ∈ R

n, ε > 0, for the open ball centered at α with
radius ε, and V ′(x) for the Fréchet derivative of V at x.

In this paper, we consider continuous-time nonlinear dy-
namical systems of the form

ẋp(t) = fp(xp(t), u(t)), xp(0) = xp0, t ≥ 0, (1)
y(t) = hp(xp(t)), (2)

where t ≥ 0, xp(t) ∈ Dp ⊆ R
np , Dp is an open set with 0 ∈

Dp, u(t) ∈ R
m, fp : Dp × R

m → R
np is locally Lipschitz

continuous on Dp and satisfies fp(0, 0) = 0, and hp : Dp →
R

l is continuous and satisfies hp(0) = 0. Furthermore, we
consider hybrid (resetting) dynamic controllers of the form

ẋc(t) = fcc(xc(t), y(t)), xc(0) = xc0,

(xc(t), y(t)) �∈ Zc, (3)
∆xc(t) = fdc(xc(t), y(t)), (xc(t), y(t)) ∈ Zc, (4)

u(t) = hcc(xc(t), y(t)), (5)

where t ≥ 0, xc(t) ∈ Dc ⊆ R
nc , Dc is an open set with 0 ∈

Dc, ∆xc(t) � xc(t
+)−xc(t), fcc : Dc×R

l → R
nc is locally

Lipschitz continuous on Dc and satisfies fcc(0, 0) = 0, hcc :
Dc × R

l → R
m is continuous and satisfies hcc(0, 0) = 0,

fdc : Dc × R
l → R

nc is continuous, and Zc ⊂ Dc × R
l

is the resetting set. Note that, for generality, we allow the
hybrid dynamic controller to be of fixed dimension nc which
may be less than the plant order np.

The equations of motion for the closed-loop dynamical
system (1)–(5) have the form

ẋ(t) = fc(x(t)), x(0) = x0, x(t) �∈ Z, (6)
∆x(t) = fd(x(t)), x(t) ∈ Z, (7)

where

x �

[
xp

xc

]
∈ R

n, fd(x) �

[
0

fdc(xc, hp(xp))

]

fc(x) �

[
fp(xp, hcc(xc, hp(xp)))

fcc(xc, hp(xp))

]
, (8)

and Z � {x ∈ D : (xc, hp(xp)) ∈ Zc}, with n � np + nc

and D � Dp×Dc. We refer to the differential equation (6) as
the continuous-time dynamics, and we refer to the difference
equation (7) as the resetting law. Note that although the
closed-loop state vector consists of plant states and controller
states, it is clear from (8) that only those states associated
with the controller are reset. For convenience, we use the
notation s(t, x0) to denote the solution x(t) of (6) and (7)
at time t ≥ 0 with initial condition x(0) = x0.

For a particular closed-loop trajectory x(t), we let tk �
τk(x0) denote the kth instant of time at which x(t) intersects
Z , and we call the times tk the resetting times. Thus,
the trajectory of the closed-loop system (6) and (7) from
the initial condition x(0) = x0 is given by ψ(t, x0) for
0 < t ≤ t1, where ψ(t, x0) denotes the solution to the
continuous-time dynamics (6). If and when the trajectory
reaches a state x1 � x(t1) satisfying x1 ∈ Z , then the state
is instantaneously transferred to x+

1 � x1+fd(x1) according
to the resetting law (7). The trajectory x(t), t1 < t ≤ t2, is
then given by ψ(t−t1, x

+
1 ), and so on. Note that the solution

x(t) of (6) and (7) is left continuous, that is, it is continuous
everywhere except at the resetting times tk, k = 1, 2, . . ..

To ensure well posedness of the resetting times, we make
the following additional assumptions:

Assumption 1. If x(t) ∈ Z \ Z , then there exists ε > 0
such that, for all 0 < δ < ε, s(δ, x(t)) �∈ Z .

Assumption 2. If x ∈ Z , then x + fd(x) �∈ Z .
Assumption 1 ensures that if a trajectory reaches the

closure of Z at a point that does not belong to Z , then
the trajectory must be directed away from Z , that is, a
trajectory cannot enter Z through a point that belongs to
the closure of Z but not to Z . Furthermore, Assumption 2
ensures that when a trajectory intersects the resetting set Z ,
it instantaneously exits Z . Finally, we note that if x0 ∈ Z ,
then the system initially resets to x+

0 = x0 + fd(x0) �∈ Z ,
which serves as the initial condition for the continuous-time
dynamics (6).

It follows from Assumptions 1 and 2 that for a particular
initial condition, the resetting times tk = τk(x0) are distinct
and well defined [4]. Since the resetting times are well
defined and distinct, and since the solution to (6) exists
and is unique, it follows that the solution of the impulsive
dynamical system (6) and (7) also exists and is unique over
a forward time interval. However, it is important to note that
the analysis of impulsive dynamical systems can be quite
involved. In particular, such systems can exhibit Zenoness,
beating, as well as confluence, wherein solutions exhibit
infinitely many resettings in a finite-time, encounter the same
resetting surface a finite or infinite number of times in zero
time, and coincide after a certain point in time [4], [5]. In this
paper we allow for the possibility of confluence and Zeno
solutions, however, Assumption 2 precludes the possibility of
beating. Furthermore, since not every bounded solution of an
impulsive dynamical system over a forward time interval can
be extended to infinity due to Zeno solutions, we assume that
existence and uniqueness of solutions are satisfied in forward
time. For details see [3].

For the statement of the next result the following key
assumption is needed.

Assumption 3. Consider the impulsive dynamical system
(6) and (7), and let s(t, x0), t ≥ 0, denote the solution to (6)
and (7) with initial condition x0. Then for every x0 �∈ Z and
every ε > 0 and t �= tk, there exists δ(ε, x0, t) > 0 such that
if ‖x0−y‖ < δ(ε, x0, t), y ∈ D, then ‖s(t, x0)−s(t, y)‖ < ε.

Assumption 3 is a generalization of the standard con-
tinuous dependence property for dynamical systems with
continuous flows to dynamical systems with left-continuous
flows. Since solutions of impulsive dynamical systems are
not continuous in time and solutions are not continuous
functions of the system initial conditions, Assumption 3 is
needed to apply the hybrid invariance principle developed
in [4], [5] to hybrid closed-loop systems. The following
result provides sufficient conditions for guaranteeing that the
impulsive dynamical system (6) and (7) satisfies Assumption
3.
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Proposition 2.1: Consider the impulsive dynamical sys-
tem G given by (6) and (7). Assume that Assumptions 1
and 2 hold, assume that for all x0 �∈ Z , 0 < τ1(x0) < ∞,
and τ1(·) is continuous, and assume that if x0 ∈ Z , then
x0 + fd(x0) ∈ Z\Z . Furthermore, for every x0 ∈ Z\Z
such that 0 < τ1(x0) < ∞, let {xi}

∞
i=1 ∈ D be such

that limi→∞ xi = x0 and limi→∞ τ1(xi) exists, and assume
that if {xi}

∞
i=1 ∈ Z\Z , then limi→∞ τ1(xi) = τ1(x0);

or otherwise, assume that i) limi→∞ τ1(xi) = τ1(x0) or
ii) fd(x0) = 0 and limi→∞ τ1(xi) = 0. Then G satisfies
Assumption 3.

The following result provides sufficient conditions for
establishing continuity of τ1(·) at x0 �∈ Z and sequential
continuity of τ1(·) at x0 �∈ Z\Z . For this result, the following
definition is needed.

Definition 2.1: Let M � {x ∈ D : X (x) = 0}, where
X : D → R is an infinitely-differentiable function. A point
x0 ∈ M is transversal to (6) if there exists k ∈ {1, 2, . . .}
such that, for r = 0, . . . , 2k − 2,

dr

dtr
X (x(t))

∣∣∣
t=0

= 0,
d2k−1

dt2k−1
X (x(t))

∣∣∣
t=0

�= 0, (9)

where x(t) denotes the solution to (6) with x(0) = x0.
Proposition 2.2: Consider the impulsive dynamical sys-

tem (6) and (7). Let x0 �∈ Z , assume there exists an infinitely-
differentiable function X : D → R such that Z = {x ∈ D :
X (x) = 0}, and assume every x0 ∈ Z is transversal to (6).
Then τ1(·) is continuous at x0 �∈ Z , where 0 < τ1(x0) < ∞.
Alternatively, let x0 ∈ Z\Z , let {xi}

∞
i=1 �∈ Z be such that

limi→∞ xi = x0 and limi→∞ τ1(xi) exists, and assume that
either of the following statements hold: i) {xi}

∞
i=1 ∈ Z\Z

or ii) limi→∞ τ1(xi) > 0. Then limi→∞ τ1(xi) = τ1(x0),
where 0 < τ1(x0) < ∞.

III. HYBRID CONTROL DESIGN FOR LOSSLESS

DYNAMICAL SYSTEMS

In this section, we present a hybrid controller design
framework for lossless dynamical systems [1]. Specifically,
we consider nonlinear dynamical systems Gp of the form
given by (1) and (2) where u(·) satisfies sufficient regularity
conditions such that (1) has a unique solution forward in
time. Furthermore, we consider hybrid resetting dynamic
controllers Gc of the form

ẋc(t) = fcc(xc(t), uc(t)), xc(0) = xc0,

(xc(t), y(t)) �∈ Zc, (10)
∆xc(t) = η(y(t)) − xc(t), (xc(t), y(t)) ∈ Zc, (11)

yc(t) = hcc(xc(t), uc(t)), (12)

where xc(t) ∈ Dc ⊆ R
nc , Dc is an open set with 0 ∈ Dc,

uc(t) ∈ R
l, yc(t) ∈ R

m, fcc : Dc × R
l → R

nc is locally
Lipschitz continuous on Dc and satisfies fcc(0, 0) = 0, η :
R

l → Dc is continuous and satisfies η(0) = 0, and hcc :
Dc × R

l → R
m is continuous and satisfies hcc(0, 0) = 0.

Recall that for the dynamical system Gp given by (1) and
(2), a function s(u, y), where s : R

m × R
l → R is such

that s(0, 0) = 0, is called a supply rate [1] if it is locally
integrable for all input-output pairs satisfying (1) and (2), that
is, for all input-output pairs u ∈ U and y ∈ Y satisfying (1)
and (2), s(·, ·) satisfies

∫ t̂

t
|s(u(σ), y(σ))|dσ < ∞, t, t̂ ≥ 0.

Here, U and Y are input and output spaces, respectively,
that are assumed to be closed under the shift operator.
Furthermore, we assume that Gp is lossless with respect to

the supply rate s(u, y), and hence, there exists a continuous,
nonnegative-definite storage function Vs : Dp → R+ such
that Vs(0) = 0 and

Vs(xp(t)) = Vs(xp(t0)) +

∫ t

t0

s(u(σ), y(σ))dσ, (13)

for all t0, t ≥ 0, where xp(t), t ≥ t0, is the solution to
(1) with u ∈ U . In addition, we assume that the nonlinear
dynamical system Gp is completely reachable [1] and zero-
state observable [1], and there exists a function κ : R

l → R
m

such that κ(0) = 0 and s(κ(y), y) < 0, y �= 0, so that all stor-
age functions Vs(xp), xp ∈ Dp, of Gp are positive definite.
Finally, we assume that Vs(·) is continuously differentiable.

Consider the negative feedback interconnection of Gp and
Gc given by y = uc and u = −yc. In this case, the closed-
loop system G is given by

ẋ(t) = fc(x(t)), x(0) = x0, x(t) �∈ Z, t ≥ 0, (14)
∆x(t) = fd(x(t)), x(t) ∈ Z, (15)

where t ≥ 0, x(t) � [xT
p (t), xT

c (t)]T, Z � {x ∈ D :
(xc, hp(xp)) ∈ Zc},

fc(x) =

[
fp(xp,−hcc(xc, hp(xp)))

fcc(xc, hp(xp))

]
,

fd(x) =

[
0

η(hp(xp)) − xc

]
. (16)

Assume that there exists an infinitely-differentiable function
Vc : Dc × R

l → R+ such that Vc(xc, y) ≥ 0, xc ∈ Dc,
y ∈ R

l, and Vc(xc, y) = 0 if and only if xc = η(y) and

V̇c(xc(t), y(t)) = sc(uc(t), yc(t)), (xc(t), y(t)) �∈ Z, (17)

where sc : R
l × R

m → R is such that sc(0, 0) = 0 and is
locally integrable for all input-output pairs satisfying (10)–
(12).

We associate with the plant a positive-definite, continu-
ously differentiable function Vp(xp) � Vs(xp), which we
will refer to as the plant energy. Furthermore, we asso-
ciate with the controller a nonnegative-definite, infinitely-
differentiable function Vc(xc, y) called the controller em-
ulated energy. Finally, we associate with the closed-loop
system the function

V (x) � Vp(xp) + Vc(xc, hp(xp)), (18)

called the total energy.
Next, we construct the resetting set for the closed-loop

system G in the following form

Z =

{
(xp, xc) ∈ Dp ×Dc :

d

dt
Vc(xc, hp(xp)) = 0

and Vc(xc, hp(xp)) > 0} . (19)

The resetting set Z is thus defined to be the set of all points
in the closed-loop state space that correspond to decreasing
controller emulated energy. By resetting the controller states,
the plant energy can never increase after the first resetting
event. Furthermore, if the closed-loop system total energy
is conserved between resetting events, then a decrease in
plant energy is accompanied by a corresponding increase
in emulated energy. Hence, this approach allows the plant
energy to flow to the controller, where it increases the
emulated energy but does not allow the emulated energy to
flow back to the plant after the first resetting event. This
energy dissipating hybrid controller effectively enforces a
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one-way energy transfer between the plant and the controller
after the first resetting event. For practical implementation,
knowledge of xc and y is sufficient to determine whether or
not the closed-loop state vector is in the set Z .

The next theorem gives sufficient conditions for asymp-
totic stability of the closed-loop system G using state-
dependent hybrid controllers.

Theorem 3.1: Consider the closed-loop impulsive dynam-
ical system G given by (14) and (15) with the resetting set Z
given by (19). Assume that Dci ⊂ D is a compact positively

invariant set with respect to G such that 0 ∈
◦

Dci, assume
that Gp is lossless with respect to the supply rate s(u, y) and
with a positive definite, continuously differentiable storage
function Vp(xp), xp ∈ Dp, and assume there exists a smooth
(i.e., infinitely-differentiable) function Vc : Dc × R

l → R+

such that Vc(xc, y) ≥ 0, xc ∈ Dc, y ∈ R
l, and Vc(xc, y) = 0

if and only if xc = η(y) and (17) holds. Furthermore, assume
that every x0 ∈ Z is transversal to (14) and s(u, y) +
sc(uc, yc) = 0, x �∈ Z . Then the zero solution x(t) ≡ 0 to the
closed-loop system G is asymptotically stable. In addition,
the total energy function V (x) of G given by (18) is strictly
decreasing across resetting events. Finally, if Dp = R

np ,
Dc = R

nc , and V (·) is radially unbounded, then the zero
solution x(t) ≡ 0 to G is globally asymptotically stable.

IV. HYBRID CONTROL DESIGN FOR EULER-LAGRANGE

SYSTEMS

Consider the governing equations of motion of an n̂p
degree-of-freedom dynamical system given by the Euler-
Lagrange equation

d

dt

[
∂L

∂q̇
(q(t), q̇(t))

]T

−

[
∂L

∂q
(q(t), q̇(t))

]T

= u(t),

q(0) = q0, q̇(0) = q̇0, (20)

where t ≥ 0, q ∈ R
n̂p represents the generalized system po-

sitions, q̇ ∈ R
n̂p represents the generalized system velocities,

L : R
n̂p × R

n̂p → R denotes the system Lagrangian given
by L(q, q̇) = T (q, q̇) − U(q), where T : R

n̂p × R
n̂p → R is

the system kinetic energy and U : R
n̂p → R is the system

potential energy, and u ∈ R
n̂p is the vector of generalized

control forces acting on the system. Furthermore, let H :
R

n̂p × R
n̂p → R denote the Legendre transformation of the

Lagrangian function L(q, q̇) with respect to the generalized
velocity q̇ defined by H(q, p) � q̇Tp − L(q, q̇), where p
denotes the vector of generalized momenta given by

p(q, q̇) =

[
∂L

∂q̇
(q, q̇)

]T

, (21)

where the map from the generalized velocities q̇ to the
generalized momenta p is assumed to be bijective (i.e., one-
to-one and onto).

Next, we present a hybrid feedback control framework for
Euler-Lagrange dynamical systems. Consider the Lagrangian
system (20) with outputs

y =

[
h1(q)
h2(q̇)

]
=

[
h1(q)

h2

(
∂H
∂p

(q, p)
) ]

, (22)

where h1 : R
n̂p → R

l1 and h2 : R
n̂p → R

l−l1 are
continuously differentiable, h1(0) = 0, h2(0) = 0, and
h1(q) �≡ 0. We assume that the system kinetic energy is
such that T (q, q̇) = 1

2 q̇T[∂T
∂q̇

(q, q̇)]T, T (q, 0) = 0, and

T (q, q̇) > 0, q̇ �= 0, q̇ ∈ R
n̂p . We also assume that the

system potential energy U(·) is such that U(0) = 0 and
U(q) > 0, q �= 0, q ∈ Dq ⊆ R

n̂p , which implies that
H(q, p) = T (q, q̇)+U(q) > 0, (q, q̇) �= 0, (q, q̇) ∈ Dq×R

n̂p .
Next, consider the energy-based hybrid controller

d

dt

[
∂Lc

∂q̇c
(qc(t), q̇c(t), yq(t))

]T

−

[
∂Lc

∂qc
(qc(t), q̇c(t), yq(t))

]T

= 0, qc(0) = qc0,

q̇c(0) = q̇c0, (qc(t), q̇c(t), y(t)) �∈ Zc, (23)[
∆qc(t)
∆q̇c(t)

]
=

[
η(yq(t)) − qc(t)

−q̇c(t)

]
,

(qc(t), q̇c(t), y(t)) ∈ Zc, (24)

u(t) =

[
∂Lc

∂q
(qc(t), q̇c(t), yq(t))

]T

, (25)

where t ≥ 0, qc ∈ R
n̂c represents virtual controller positions,

q̇c ∈ R
n̂c represents virtual controller velocities, yq �

h1(q), Lc : R
n̂c × R

n̂c × R
l1 → R denotes the controller

Lagrangian given by Lc(qc, q̇c, yq) � Tc(qc, q̇c)−Uc(qc, yq),
where Tc : R

n̂c × R
n̂c → R is the controller kinetic

energy, Uc : R
n̂c × R

l1 → R is the controller potential
energy, η(·) is a continuously differentiable function such
that η(0) = 0, Zc ⊂ R

n̂c × R
n̂c × R

l is the resetting set,
∆qc(t) � qc(t

+) − qc(t), and ∆q̇c(t) � q̇c(t
+) − q̇c(t). We

assume that the controller kinetic energy Tc(qc, q̇c) is such
that Tc(qc, q̇c) = 1

2 q̇T
c [∂Tc

∂q̇c
(qc, q̇c)]

T, with Tc(qc, 0) = 0 and
Tc(qc, q̇c) > 0, q̇c �= 0, q̇c ∈ R

n̂c . Furthermore, we assume
that Uc(η(yq), yq) = 0 and Uc(qc, yq) > 0 for qc �= η(yq),
qc ∈ Dqc

⊆ R
n̂c .

Similarly, note that Vp(q, q̇) � T (q, q̇) + U(q) is the
plant energy and Vc(qc, q̇c, yq) � Tc(qc, q̇c) + Uc(qc, yq)
is the controller emulated energy. Finally, V (q, q̇, qc, q̇c) �
Vp(q, q̇)+Vc(qc, q̇c, yq), is the total energy of the closed-loop
system. It is important to note that the Lagrangian dynamical
system (20) is not lossless with outputs yq or y. Next, we
study the behavior of the total energy function V (q, q̇, qc, q̇c)
along the trajectories of the closed-loop system dynamics.
For the closed-loop system, we define our resetting set as

Z � {(q, q̇, qc, q̇c) : (qc, q̇c, y) ∈ Zc}. (26)

To obtain an expression for d
dt

Vc(qc, q̇c, yq) when
(q, q̇, qc, q̇c) �∈ Z , define the controller Hamiltonian
by

Hc(qc, q̇c, pc, yq) � q̇T
c pc − Lc(qc, q̇c, yq), (27)

where the virtual controller momentum pc is given by

pc(qc, q̇c, yq) =
[

∂Lc

∂q̇c
(qc, q̇c, yq)

]T

.

Next, note that the controller (23) and (25) can be written
in Hamiltonian form. Specifically, it follows from (23) and
(27) that

ṗc(t) = −

[
∂Hc

∂qc
(qc(t), q̇c(t), pc(t), yq(t))

]T

,

(q(t), q̇(t), qc(t), q̇c(t)) �∈ Z, (28)

q̇c(t) =

[
∂Hc

∂pc
(qc(t), q̇c(t), pc(t), yq(t))

]T

,
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(q(t), q̇(t), qc(t), q̇c(t)) �∈ Z, (29)

u(t) = −

[
∂Hc

∂q
(qc(t), q̇c(t), pc(t), yq(t))

]T

, (30)

where Hc(qc, q̇c, pc, yq) = Tc(qc, q̇c) + Uc(qc, yq). Now, it
follows from (23) and the structure of Tc(qc, q̇c) that, for
t ∈ (tk, tk+1],

d

dt
V (q(t), q̇(t), qc(t), q̇c(t))

= u(t)Tq̇(t) −
∂Lc

∂q
(qc(t), q̇c(t), yq(t))q̇(t)

= 0, (q(t), q̇(t), qc(t), q̇c(t)) �∈ Z, tk < t ≤ tk+1,

(31)

which implies that the total energy of the closed-loop system
between resetting events is conserved.

The total energy difference across resetting events is given
by

∆V (q(tk), q̇(tk), qc(tk), q̇c(tk))

= Tc(qc(t
+
k ), q̇c(t

+
k )) + Uc(qc(t

+
k ), yq(tk))

−Vc(qc(tk), q̇c(tk), yq(tk))

= −Vc(qc(tk), q̇c(tk), yq(tk)),

(q(tk), q̇(tk), qc(tk), q̇c(tk)) ∈ Z, k ∈ Z+, (32)

which implies that the resetting law (24) ensures the total
energy decrease across resetting events by an amount equal
to the accumulated emulated energy.

Here, we concentrate on an energy dissipating state-
dependent resetting controller that affects a one-way energy
transfer between the plant and the controller. Specifically,
consider the closed-loop system (20), (22)–(25), where Z is
defined by

Z �

{
(q, q̇, qc, q̇c) :

d

dt
Vc(qc, q̇c, yq) = 0

and Vc(qc, q̇c, yq) > 0} . (33)

The next theorem gives sufficient conditions for stabi-
lization of Euler-Lagrange dynamical systems using state-
dependent hybrid controllers. For this result define the
closed-loop system states x � [qT, q̇T, qT

c , q̇T
c ]T.

Theorem 4.1: Consider the closed-loop dynamical system
G given by (20), (22)–(25), with the resetting set Z given
by (33). Assume that Dci ⊂ Dq × R

n̂p × Dqc
× R

n̂c is
a compact positively invariant set with respect to G such

that 0 ∈
◦

Dci. Furthermore, assume that the transversality
condition (9) holds with X (x) = d

dt
Vc(qc, q̇c, yq). Then

the zero solution x(t) ≡ 0 to G is asymptotically stable.
In addition, the total energy function V (x) of G is strictly
decreasing across resetting events. Finally, if Dq = R

n̂p ,
Dqc

= R
n̂c , and the total energy function V (x) is radially

unbounded, then the zero solution x(t) ≡ 0 to G is globally
asymptotically stable.

V. THERMODYNAMIC STABILIZATION OF

EULER-LAGRANGE SYSTEMS

In this section, we use the recently developed notion of
system thermodynamics [7] to develop thermodynamically
consistent hybrid controllers for Euler-Lagrange systems.
Specifically, since our energy-based hybrid controller archi-
tecture involves the exchange of energy with conservation

laws describing transfer, accumulation, and dissipation of
energy between the controller and the plant, we construct
a modified hybrid controller that guarantees that the closed-
loop system is consistent with basic thermodynamic princi-
ples after the first resetting event. To develop thermodynam-
ically consistent hybrid controllers consider the closed-loop
system G given by (20), (22)–(25), with Z given by

Z � {x ∈ Dq × R
n̂p ×Dqc

× R
n̂c :

φ(x)(Vp(x) − Vc(x)) = 0 and Vc(x) > 0}, (34)

where φ(x) � ∂Lc

∂q
(qc, q̇c, yq)q̇, Vp(x) � Vp(q, q̇), and

Vc(x) � Vc(qc, q̇c, yq). It follows from (31) that φ(·) is the
net energy flow from the plant to the controller, and hence,
we refer to φ(·) as the net energy flow function.

We assume that the energy flow function φ(x) is infinitely-
differentiable and the transversality condition (9) holds with
X (x) = φ(x)(Vp(x) − Vc(x)). To ensure a thermodynami-
cally consistent energy flow between the plant and controller
after the first resetting event, the controller resetting logic
must be designed in such a way so as to satisfy three
key thermodynamic axioms on the closed-loop system level.
Namely, between resettings the energy flow function φ(·)
must satisfy the following two axioms [7]:

Axiom i) For the connectivity matrix C ∈ R
2×2 associated

with the closed-loop system G defined by

C(i,j) �

{ 0, if φ(x(t)) ≡ 0
1, otherwise

, i �= j, i, j = 1, 2,

t ≥ t+1 , (35)

and

C(i,i) = −C(k,i), i �= k, i, k = 1, 2, (36)

rank C = 1, and for C(i,j) = 1, i �= j, φ(x(t)) = 0 if and
only if Vp(x(t)) = Vc(x(t)), x(t) �∈ Z , t ≥ t+1 .

Axiom ii) φ(x(t))(Vp(x(t)) − Vc(x(t))) ≤ 0, x(t) �∈ Z ,
t ≥ t+1 .

Furthermore, across resettings the energy difference be-
tween the plant and the controller must satisfy the following
axiom [8]:

Axiom iii) [Vp(x + fd(x)) − Vc(x + fd(x))][Vp(x) −
Vc(x)] ≥ 0, x ∈ Z .

The fact that φ(x(t)) = 0 if and only if Vp(x(t)) =
Vc(x(t)), x(t) �∈ Z , t ≥ t+1 , implies that the plant and
the controller are connected; alternatively, φ(x(t)) ≡ 0,
t ≥ t+1 , implies that the plant and the controller are
disconnected. Axiom i) implies that if the energies in the
plant and the controller are equal, then energy exchange
between the plant and controller is not possible unless a
resetting event occurs. This statement is consistent with
the zeroth law of thermodynamics, which postulates that
temperature equality is a necessary and sufficient condition
for thermal equilibrium of an isolated system. Axiom ii)
implies that energy flows from a more energetic system to
a less energetic system and is consistent with the second
law of thermodynamics, which states that heat (energy) must
flow in the direction of lower temperatures. Finally, Axiom
iii) implies that the energy difference between the plant and
the controller across resetting instants is monotonic, that is,
[Vp(x(t+k ))− Vc(x(t+k ))][Vp(x(tk))− Vc(x(tk))] ≥ 0 for all
Vp(x) �= Vc(x), x ∈ Z , k ∈ Z+.

With the resetting law given by (34), it follows that the
closed-loop dynamical system G satisfies Axioms i)–iii) for
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all t ≥ t1. To see this, note that since φ(x) �≡ 0, the
connectivity matrix C is given by

C =

[
−1 1
1 −1

]
, (37)

and hence, rank C = 1. The second condition in Axiom
i) need not be satisfied since the case where φ(x) = 0
or Vp(x) = Vc(x) corresponds to a resetting instant. Fur-
thermore, it follows from the definition of the resetting set
(34) that Axiom ii) is satisfied for the closed-loop system
for all t ≥ t+1 . Finally, since Vc(x + fd(x)) = 0 and
Vp(x+fd(x)) = Vp(x), x ∈ Z , it follows from the definition
of the resetting set that

[Vp(x + fd(x)) − Vc(x + fd(x))][Vp(x) − Vc(x)]

= Vp(x)[Vp(x) − Vc(x)] ≥ 0, x ∈ Z, (38)

and hence, Axiom iii) is satisfied across resettings. Hence,
the closed-loop system G is thermodynamically consistent
after the first resetting event in the sense of [7], [8].

Next, we give a hybrid definition of entropy for the
closed-loop system G that generalizes the continuous-time
and discrete-time entropy definitions established in [7], [8].

Definition 5.1: For the impulsive closed-loop system G

given by (20), (22)–(25), a function S : R
2

+ → R satisfying

S(E(x(T ))) ≥ S(E(x(t1))) −
1

c

∑
k∈Z[t1,T )

Vc(x(tk)),

T ≥ t1, (39)

where k ∈ Z[t1,T ) � {k : t1 ≤ tk < T}, E � [Vp, Vc]
T,

c > 0, is called the entropy function of G.
The next result gives necessary and sufficient conditions

for establishing the existence of an entropy function of G over
an interval t ∈ (tk, tk+1] involving the consecutive resetting
times tk and tk+1, k ∈ Z+.

Theorem 5.1: For the impulsive closed-loop system G

given by (20), (22)–(25), a function S : R
2

+ → R is an
entropy function of G if and only if

S(E(x(t̂))) ≥ S(E(x(t))), tk < t ≤ t̂ ≤ tk+1,

(40)

S(E(x(tk) + fd(x(tk)))) ≥ S(E(x(tk))) −
Vc(x(tk))

c
,

k ∈ Z+. (41)
The next theorem establishes the existence of an entropy

function for the closed-loop system G.
Theorem 5.2: Consider the impulsive closed-loop system

G given by (20), (22)–(25), with Z given by (34). Then the
function S : R

2

+ → R given by

S(E) = loge(c + Vp) + loge(c + Vc) − 2 loge c,

E ∈ R
2

+, (42)

where c > 0, is a continuously differentiable entropy func-
tion of G. In addition,

Ṡ(E(x(t))) > 0, x(t) �∈ Z, tk < t ≤ tk+1, (43)

−
Vc(x(tk))

c
< ∆S(E(x(tk))) < −

Vc(x(tk))

c + Vc(x(tk))
,

x(tk) ∈ Z, k ∈ Z+. (44)
Note that it follows from (43) that the entropy of the

closed-loop system strictly increases between resetting events

after the first resetting event, which is consistent with
thermodynamic principles. This is not surprising since in
this case the closed-loop system is adiabatically isolated
(i.e., the system does not exchange energy (heat) with
the environment) and the total energy of the closed-loop
system is conserved between resetting events. Alternatively,
it follows from (44) that the entropy of the closed-loop
system strictly decreases across resetting events since the
total energy strictly decreases at each resetting instant, and
hence, energy is not conserved across resetting events.

Using Theorem 5.2, the resetting set Z given by (34) can
be rewritten as

Z �

{
x ∈ Dq × R

n̂p ×Dqc
× R

n̂c :
d

dt
S(E(x)) = 0

and Vc(x) > 0} , (45)

where X (x) � d
dt

S(E(x)) is a continuously differentiable
function that defines the resetting set as its zero level set.
The resetting set (34) or, equivalently, (45) is motivated by
thermodynamic principles and guarantees that the energy of
the closed-loop system is always flowing from regions of
higher to lower energies after the first resetting event, which
is in accordance with the second law of thermodynamics. As
shown in Theorem 5.2, this guarantees the existence of en-
tropy function S(E) for the closed-loop system that satisfies
the Clausius-type inequality (43) between resetting events.
If φ(x) = 0 or Vp(x) = Vc(x), then inequality (43) would
be subverted, and hence, we reset the compensator states in
order to ensure that the second law of thermodynamics is
not violated.

Finally, if Dci ⊂ Dq×R
n̂p ×Dqc

×R
n̂c is a compact posi-

tively invariant set with respect to the closed-loop dynamical

system G given by (20), (22)–(25) such that 0 ∈
◦

Dci, and the
transversality condition (9) holds with X (x) = d

dt
S(E(x)),

then it follows from Theorem 4.1 that the zero solution
x(t) ≡ 0 of the closed-loop system G, with resetting set
Z given by (34), is asymptotically stable. Furthermore, in
this case, the hybrid controller (23) and (24), with resetting
set (34), is a thermodynamically stabilizing compensator.
Analogous thermodynamically stabilizing compensators can
be constructed for lossless and port-controlled Hamiltonian
dynamical systems.
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