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Abstract— This paper provides sufficient conditions when
certain information about the past of a stochastic sequential
decision processes can be ignored by a controller and when
the problem state space can be reduced to a smaller set. We
illustrate the results with particular applications to queueing
control, control of semi-Markov decision processes with iid
sojourn times, and uniformization of continuous-time Markov
decision processes.

I. INTRODUCTION

What information should be used by a controller is one

of the central questions in control of stochastic processes

and, in particular, in Markov decision processes (MDPs).

In the general scheme of MDPs, the history consists of the

past states and actions. In this paper, we study the question

whether the controller can achieve a better performance by

using additional information. We consider a more general

model than an MDP. In the model considered in this paper,

transition probabilities may depend on the past states and ac-

tions and we call such a model a Stochastic Decision Process

(SDP). Under general assumptions we show that, if neither

the transition probabilities nor the objective criterion depends

on the additional information, this information cannot be

used to improve the system performance. This allows the

controller to reduce the state space of the problem. We also

provide such results for continuous-time jump problems.

In addition, we discuss particular applications. We con-

sider control of an MX/G/1 queue with a removable server,

control of a Semi-Markov Decision Process (SMDP) with

iid time intervals between jumps, uniformized Continuous-

Time Markov Decision Processes (CTMDPs), and admission

control. For SMDPs with iid sojourn times and uniformized

MDPs, we prove that the continuous time parameter can

be ignored for the average cost per unit time criterion.

Therefore, a uniformized CTMDP is equivalent to the cor-

responding discrete-time MDPs. If there is a stationary

optimal policy for this MDP, this policy is optimal for the

original CTMDP because it is optimal for the uniformized

CTJMDP and can be implemented in the original CTMDP.

For an MX/G/1 queue with a removable server and holding

costs depending only on the workload, we show that the

knowledge of the numbers of arriving customers in batches

and their workloads is not useful when the total workload is

known. For the call admission problem, we show that it is

possible to merge the classes of arrivals with equal payoffs.
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The results of this paper provide a rigorous justification of

the principle used in applications of MDPs that only minimal

possible information should be used in the construction of

an MDP for a particular problem. In Section II we prove this

principle for discrete-time problems, in Section III we prove

it for continuous-time problems, and Section IV deals with

applications.

II. DISCRETE-TIME PROBLEMS

Consider a Stochastic Decision Process (SDP) defined by

the quadruplet {X, A, p, v}, where X is the state space, A
is the action space, p is the transition kernel, and v is the

criterion. We assume that X and A are Borel spaces, i.e.

they are isomorphic to measurable subsets of a Polish (in

other words, complete separable metric) space; see [3] or

[5] for details. Let Hn = X × (A × X)n be the sets of

histories up to epoch n = 0, 1, . . . and let H = ∪0≤n<∞Hn

be the set of all finite histories. We can also consider the

set of infinite histories H∞ = (X × A)∞. The products of

the Borel σ-fields on X and A define Borel σ-fields on Hn,
n = 0, 1, . . . ,∞, and these σ-fields generate a Borel σ-field

on H. Then p is defined as a regular transition probability

from H×A to X , i.e. p(B|h, a) is a Borel function on H×A
for any fixed Borel subset B of X and p(·|h) is a probability

measure on A for any pair (h, a), where h ∈ H and a ∈ A.
A strategy is defined as a regular transition probability

from H to A. Therefore, a strategy defines the transition

probabilities from Hn to A and the transition kernel p defines

the transition probabilities from Hn × A to X. According

to Ionescu Tulcea’s theorem [5], any initial probability

distribution µ on X and any strategy π define a unique

probability measure Pπ
µ on H∞. Following [5], we shall call

Pπ
µ a strategic measure.

A criterion v is defined as a function of a strategic

measure, v = v(Pπ
µ ). In particular, v can be a numerical

function. If p is just a function of (xn, an), the defined SDP

becomes a Markov Decision Process (MDP).

The total expected costs (or rewards) and the average costs

(or rewards) per unit time are two important criteria studied

in the literature; see [10, page 5] for detailed definitions.

Expected total costs can be represented in a form of v =
Eπ

µU(h∞), where h∞ ∈ H∞ and U is a measurable function

on H∞. Average costs per unit time can be represented as a

limiting point of a sequence vn = Eπ
µUn(h∞), n = 0, 1, . . . ,

where Un are measurable functions on H∞.

We remark that it is natural to consider problems in which

action sets depend on the current state or even on the past

history, [3], [5], [10], [13], [14], [19], [20]. We do not do
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it here because of the following two reasons: (i) simplicity

and (ii) the functions U and Un can be set equal to −∞
on infeasible trajectories for maximization problems and to

+∞ for minimization problems.

Now assume that X = X1 × X2, where X1 and X2 are

two Borel spaces. The state of the system is x = (x1, x2).
In addition, we assume that at each stage n = 0, 1, . . .
the transition kernel p does not depend on the second

components of the state space. In other words, the probability

p(dx1
n+1|x1

0, x
2
0, a0, . . . , x

1
n, x2

n, an)
= p(dx1

n+1|x1
0, a0, . . . , x

1
n, an) (2.1)

does not depend on x2
i , i = 0, 1, . . . , n. Then it is natural

to consider an SDP with the state space X1, action set A,

and transition kernels p(dx1
n+1|x1

0, a0, . . . , x
1
n, an). Let P̃σ

η1

be a strategic measure for this smaller SDP, where η1 is an

initial probability distribution on X1 and σ is a policy in the

smaller model. Every P̃σ
η1 is a probability measure on the

space (X1 × A)∞.

Theorem 2.1. Consider an SDP with the state space X =
X1×X2 and let assumption (2.1) hold. For any initial state
distribution µ on X = X1×X2 and for any policy π for this
SDP, consider a policy σ for the SDP with the state space
X1 defined for all n = 0, 1, . . . (Pπ

µ -a.s.) by

σ(dan|x1
0a0x

1
1a1 . . . x1

n) =
Pπ

µ (dx1
0da0dx1

1da1 . . . dx1
ndan)

Pπ
µ (dx1

0da0dx1
1da1 . . . dx1

n)
.

(2.2)

Then

Pπ
µ (dx1

0da0dx1
1da1 . . .) = P̃σ

µ1(dx1
0da0dx1

1da1 . . .),

where µ1 is the marginal probability measure on X1 induced
by µ, i.e. µ1(C) = µ(C ×X2) for any measurable subset C
of X1. In other words, P̃σ

µ1 is the projection of the strategic
measure Pπ

µ on (X1 × A)∞.

Proof: By Kolmogorov’s extension theorem, it is suffi-

cient to prove that for any n = 0, 1, . . .

Pπ
µ (dx1

0da0dx1
1da1 . . . dx1

n) = P̃σ
µ1(dx1

0da0dx1
1da1 . . . dx1

n).
(2.3)

We prove this equality by induction in n. It holds for

n = 0 because Pπ
µ (x1

0 ∈ C) = P̃σ
µ1(x1

0 ∈ C) = µ1(C) for

any policies π and σ in the corresponding models.

Let (2.3) hold for some n. Then

P̃σ
µ1(dx1

0da0dx1
1da1 . . . dx1

ndan)
= P̃σ

µ1(dx1
0da0dx1

1da1 . . . dx1
n)σ(dan|x1

0a0x
1
1a1 . . . x1

n)
= Pπ

µ (dx1
0da0dx1

1da1 . . . dx1
ndan),

(2.4)

where the first equality follows from the definition of a

strategic measure and the second equality follows from (2.2)

and (2.3). Since the transition probabilities in the first model

do not depend on x2, we have

P̃σ
µ1(dx1

0da0dx1
1da1 . . . dx1

ndandx1
n+1)

= P̃σ
µ1(dx1

0da0 . . . dx1
ndan)p(dx1

n+1|x1
0, a0, . . . , x

1
n, an)

= Pπ
µ (dx1

0da0 . . . dx1
ndan)p(dx1

n+1|x1
0, a0, . . . , x

1
n, an)

= Pπ
µ (dx1

0da0dx1
1da1 . . . dx1

ndandx1
n+1),

(2.5)

where the first equality follows from the definition of the

strategic measure P̃σ
µ1 and the second equality follows from

(2.4).

Corollary 2.1. Consider an SDP with the state space
X = X1 × X2 and let assumption (2.1) hold. In addi-
tion, let the criterion v be defined as a limiting point of
Eπ

µUn(x1
0, a0, x

1
1, a1, . . .), where Un are measurable func-

tions. For an arbitrary policy π in this SDP, consider a policy
σ defined by (2.2) in the SDP with the state space X1. Then
v(µ, π) = v(µ1, σ), where the initial probability µ1 on X1

is defined by µ1(B) = µ(B×X2) for any measurable subset
B of X1. In other words, if

v(µ, π) = lim
nk→∞Eπ

µUnk
(x1

0, a0, x
1
1, a1, . . .) (2.6)

then

v(µ1, σ) = lim
nk→∞Eσ

µ1Unk
(x1

0, a0, x
1
1, a1, . . .) = v(µ, π).

(2.7)

III. CONTINUOUS-TIME JUMP PROBLEMS

In the defined SDP, all time intervals between decisions

equal 1. In this section, we extend Theorem 2.1 to a more

general situation when these intervals may be random and

different.

We define a Continuous-Time SDP (CTSDP). A trajectory

of a CTSDP is a sequence x0, a0, τ0, x1, a1, τ1, . . . , where

xn is the state of the system after jump n, an is the action

selected after the jump occurred, and τn is the time until

the next jump. The above definition of an SDP is so general

that we can use it to define a CTSDP. We set τ−1 = 0 and

define a CTSDP {X, A, q}, as an SDP {[0,∞)×X, A, q, v},

where X is a Borel state space, A is a Borel action space,

and q is a transition kernel which is a conditional joint

distribution of the sojourn time and the next state. According

to this definition, the transition probabilities after the n-th

jump are q(dτn, dxn+1|x0, a0, τ0, x1, a1, . . . , τn−1, xn, an).
The objective criterion is a function of a strategic measure

for this SDP. For SDPs, we consider only initial distributions

µ on [0,∞) × X with µ(0, X) = 1, i.e. τ−1 = 0 with

probability 1. Therefore, we interpret µ as a probability

measure on X and will not mention τ−1 anymore. A CTSDP

is called a Semi-Markov Decision Process (SMDP) if the

SDP {[0,∞) × X, A, q} is an MDP. In other words, if the

transition kernel q has the form q(dτn, dxn+1|xn, an).
Similarly to the discrete time case, consider an SDP with

a Borel state space X = X1 ×X2 and a Borel action space

A. We assume that the joint distributions of τn and x1
n+1 do
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not depend on x2
i , i = 0, 1, . . . , n, i.e.

q(dτn, dx1
n+1|x1

0, x
2
0, a0, τ0, x

1
1, x

2
1, a1, τ1, . . . , x

1
n, x2

n, an)
= q(dτn, dx1

n+1|x1
0, a0, τ0, x

1
1, a1, τ1, . . . , x

1
n, an).

(3.1)

Similarly to the discrete time case, we can consider a

smaller CTSDP with the state space X1, action space A,

and transition kernel

q(dτn, dx1
n+1|x1

0, a0, τ0, x
1
1, a1, τ1, . . . , x

1
n, an). Theorem

2.1 implies a similar result for CTSDPs.

Corollary 3.1. Consider a CTSDP with the state space X =
X1×X2 and let assumption (3.1) hold. For any initial state
distribution µ on X = X1 × X2 and for any policy π for
the CTSDP with the state space X = X1 × X2, consider
a policy σ for the CTSDP with the state space X1 defined
(Pπ

µ -a.s.) by

σ(dan|x1
0a0τ0x

1
1a1τ1 . . . x1

n)

= P π
µ (dx1

0da0dτ0dx1
1da1dτ1...dx1

ndan)

P π
µ (dx1

0da0dτ0dx1
1da1dτ1...dx1

n)
,

(3.2)

n = 0, 1, . . . . Then

Pπ
µ (dx1

0da0dτ0dx1
1da1dτ1 . . .)

= P̃σ
µ1(dx1

0da0dτ0dx1
1da1dτ1 . . .), (3.3)

where µ1 is the marginal probability measure X1 induced
by µ, i.e. µ1(C) = µ(C,X2) for any measurable subset C
of X1. In other words, P̃π

µ1 is the projection of the strategic
measure Pπ

µ on (X1 × A × [0,∞))∞.

Corollary 3.2. Consider a CTSDP with the state space
X = X1 × X2 and let assumption (3.1) hold. In addi-
tion, let the criterion v be defined as a limiting point of
Eπ

µUt(x1
0, a0, τ0, x

1
1, a1, τ1, . . .), where Ut are measurable

functions for each t ≥ 0. For an arbitrary policy π for
this CTSDP, consider a policy σ for the CTSDP with the
state space X1 defined by (3.2). Then v(µ, π) = v(µ1, σ),
where the initial probability µ1 on X1 is defined by µ1(B) =
µ(B × X2) for any measurable subset B of X1. In other
words, if

v(µ, π) = lim
tk→∞Eπ

µUtk
(x1

0, a0, τ0, x
1
1, a1, τ1, . . .) (3.4)

then

v(µ1, σ) = lim
tk→∞Eσ

µ1Utk
(x1

0, a0, τ0, x
1
1, a1, τ1, . . .) = v(µ, π).

(3.5)

The average cost per unit time is an important example

of a criterion that satisfies the conditions of Corollary 3.2.

Let c(x, a, t) ≥ 0 be the cost incurred during time t elapsed

since the last jump, where x is the current state and a is

the last selected action. Let t0 = 0 and tn+1 = tn + τn,
n = 0, 1, . . . . We set N(t) = sup{n = 0, 1, . . . |tn ≤ t}.
The cumulative cost up to time t is

Ut(h∞) =
N(t)−1∑

n=0

c(xn, an, τn) + c(xN(t), aN(t), t − tN(t))

(3.6)

for any trajectory h∞ = x0, a0, τ0, x1, a1, τ1, . . . . The

average cost per unit time is defined as

v(µ, π) = lim sup
t→∞

t−1Eπ
µUt(h∞). (3.7)

This criterion satisfies (3.4).

IV. EXAMPLES OF APPLICATIONS

Control of MX/G/1 queues with removable servers.

Consider a single-server queue with batch arrivals. The

batches arrive according to a Poisson process with a given

intensity. At the arrival epoch, the workload in the batch

becomes known. Let Yi be the workload in batch i, where

Yi, i = 1, 2, . . . , are nonnegative iid random variables that

are also independent on the arrival process and the state of

the queue.

The server can be in one of two states: on and off. If the

server is on, its service rate constant and deterministic. The

service rate is the amount of workload leaving a nonempty

system per unit time. Without loss of generality, we assume

that the service rate equals 1. The server can be switched

on and off any time. It costs K0 to switch the server on

and K1 to switch the server off, where these switching costs

are nonnegative and at least one of them is positive. If the

server is on, the running cost is r > 0 and if the server is off,

the running cost is zero. The holding cost is a nonnegative

function h(w) of the workload w.
The workload can change continuously. However, this

problem can be described as an SMDP. The state of this

SMDP is a pair (w, g), where w is the current workload, g =
0 means that the server is off, and g = 1 means that the server

is on. Thus, the system state space is X = [0,∞) × {0, 1},

where the first coordinate is the workload and the second

coordinate is the state of the server.

Let the initial state of the system x0 = (w0, g0) be

given. An action set is defined as A = [0,∞). The first

decision epoch t0 is 0. Though the workload may change

continuously, it is possible to model this system by a process

whose states do not change between decision epochs. If

action an is selected at state xn = (wn, gn) at some

decision epoch tn, the system stays at xn during the time

τn = min{an, ξn}, an ∈ A, until the next decision epoch

tn+1 = tn + τn, where ξn is the time until the next batch

arrives. The random variables ξn are independent and have

exponential distributions with the intensity of the Poisson

process formed by arriving batches. In addition, if an < τn,

i.e. an arraval did not happened during the selected time an,

the state of the server gn changes at the epoch tn+1 from

0 to 1 or vice versa. The dynamics of the system can be

described by

xn+1 = (wn+1, gn+1) =

⎧⎪⎪⎨
⎪⎪⎩

((wn − gna)+, (1 − gn)),
if ξn > an;

((wn − gnξn)+ + Zn, g),
if ξn ≤ an;

where d+ = max{d, 0} for any number d and Zn are iid

random variable with the same distribution as Y1.

7316



It is easy to calculate q(dτn, dxn+1|xn, an) by using the

explicit definitions of τn and xn+1 provided above. However,

we do not need here the explicit formula for q. The costs

incurred during the first u units of time that the system spent

at state xn is

c(xn, an, u) =
∫ u

0
h((wn − gnt)+)dt + r(1 − gn)u

+KgnI{u = an},
lllwhere u ≤ τn. Consider the average cost per unit time

criterion (3.7).

Control of queues with the removable server and known

workload has been studied in the literature since 1973 when

Balachandran [1] introduced a notion of a D policy that

switches the server on when the workload is greater than

or equal to D and switches the server off when the system

becomes empty. The optimality of D policies under broad

conditions was proved in [8], where it was assumed that the

controller knows only the workload w and the state of the

server.

At the arrival epochs, the controller may also observe the

numbers of arrivals in batches and their individual workloads,

and use this information to control the system. This formula-

tion leads to the SMDP with the state space X1×X2, where

X1 = X = [0,∞) × {0, 1} and X2 = ∪0≤k<∞[0,∞)k

with [0,∞)0 = ∅. The second coordinate of the state space

x2 = (x2(1), . . . , x2(k)) ∈ X2 is the vector of workloads

carried by arrivals in a batch with k = 0, 1, . . . items. In

particular, x2
n = ∅ means either that there is no arrival at the

n-th decision epoch. Corollary 3.2 implies that for any policy

π that uses the described additional information there exists

a policy σ with the following properties: (i) the expected

average costs per unit time (3.7) incurred by σ and π are

equal, and (ii) the current and past information about the

states of the system that π knows is limited to workloads

and the states of the servers. According to [8], D-policies are

optimal among policies satisfying (ii). Therefore, D-policies

are optimal for MX/G/1 queues in the problem formulation

considered in [8] even when the controller takes into an

account the numbers of arriving jobs and their individual

workloads.

SMDPs with iid sojourn times. Consider an SMDP in

which the sojourn times τn do not depend on states and

actions and form a sequence of nonnegative iid random

variables. Let the costs c incurred during the first u units of

time in state xn, where u ≤ τn, be nonnegative and satisfy

the condition c(xn, an, u) ≤ C1 + C2u for all xn ∈ X,
an ∈ A, where C1 and C2 are nonnegative finite constants.

The function c is assumed to be measurable. Let c̄(x, a) =
Ec(x, a, τ1) be the expected total reward until the jump if

an action a is selected at a state x. We shall also assume

that 0 < τ̄ < ∞, where τ̄ = Eτ1.
From an intuitive point of view, such an SMDP with

average rewards per unit time is essentially an MDP and

the knowledge of a real time parameter t is unimportant. We

prove this fact by using Corollary 2.1.

Let t0 = 0 and tn+1 = tn + τn, n = 0, 1, . . . . Consider

the cost function Ut defined by (3.6) and the average costs

per unit time defined in (3.7).

Since all sojourn times are iid, it is intuitively clear that

the rewards do not depend on actual sojourn times. Our

immediate goal is to prove that, for any initial distribution µ
and for any policy π, the average cost per unit time v(µ, π)
can be represented as

v(µ, π) = lim sup
n→∞

n−1Eπ
µ

n−1∑
i=0

c̄(xti
, ati

)/τ̄ . (4.1)

To prove (4.1) we first rewrite it in the following form

v(µ, π) = lim sup
n→∞

(nτ̄)−1Eπ
x Utn

. (4.2)

Second, we observe that

lim sup
n→∞

(nτ̄)−1Eπ
x Utn

= lim sup
n→∞

(nτ̄)−1Eπ
x Unτ̄ . (4.3)

To prove (4.3), we notice that

|Eπ
µUtn − Eπ

µUnτ̄ |
n

≤ C1

Eπ
µ |Nπ

µ (nτ̄) − n|
n

+ C2

Eπ
µ |tn − nτ̄ |

n
(4.4)

and the right hand side of (4.4) tends to 0 as n → ∞.
The first summand in the right hand side of (4.4) tends to 0

according to [12, Theorem 5.1, p. 54], [12, Theorem 1.1, p.

166], and the fact that a.s. convergence implies convergence

in probability. The second summand tends to 0 according to

[11, Lemma 13, p. 192]. Thus, (4.3) is proved.

We observe that

lim sup
n→∞

(nτ̄)−1Eπ
x Unτ̄

= lim sup
t→∞

(τ̄ [t/τ̄ ])−1Eπ
x Uτ̄ [t/τ̄ ]

= lim sup
t→∞

t−1Eπ
x Uτ̄ [t/τ̄ ].

In addition,

0 ≤ t−1[Ut −Uτ̄ [t/τ̄ ]] ≤ t−1C1(N(t)−N(t− τ̄)) + C2τ̄ /t.
(4.5)

By taking the expectation in (4.5), setting t → ∞, and

applying the renewal theorem, we obtain the equality

v(µ, π) = lim sup
t→∞

t−1Eπ
x Uτ̄ [t/τ̄ ].

This equality, t−1τ̄ [t/τ̄ ] → 1, and (4.3) imply (4.2). Thus,

(4.1) is proved.

We consider this CTSDP as an SDP with the state space

X1 × X2, where X1 = X and X2 = [0,∞). The time

parameter t ∈ X2 affects neither the transition probabilities

between states in X1 nor the objective criterion w. The latter

follows from (4.1). Therefore, in view of Corollary 2.1, the

policies that do not use the information about sojourn times

τ0, τ1, . . . are as good as policies that use this information.

We remark that the assumption that c(xn, an, u) ≤ C1 +
C2u, where C1 and C2 are constants, for SMDPs with iid

sojourn times is similar to the assumption that costs are
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bounded in discrete-time MDPs. The case of unbounded

costs is important but we do not study it in this paper.

Uniformized Continuous-Time Markov Decision
Processes (CTMDPs). A CTMDP is an SMDP

with exponential sojourn times independent from

the states the system jumps to. In other words,

q(dτndxn+1|xn, an) = λ(xn, an)p(dxn+1|xn, an), where

(i) 0 ≤ λ(x, a) < K for all x ∈ X, a ∈ A, and for some

K < ∞, and (ii) p is a transition kernel from X × A
into A with the property p(x|x, a) = 0 for all x ∈ X.
The system incurs two types of costs: (i) the instant costs

c(xn, an, xn+1) when the system jumps from state xn

to state xn+1 and the control an is used, and (ii) the

continuous costs C(xn, an) incurred per unit time in state

xn if the control an is chosen. For simplicity, we assume

that the functions c and C are nonnegative and bounded. In

addition, we assume that these functions are measurable.

Though for CTMDPs it is possible to consider policies that

change actions between jumps (see [7], [15], [16]), we do

not do it here for the sake of simplicity. In fact, according

to the terminology in [7], CTJMDPs considered here are

ESMDPs (exponential SMDPs or, more precisely, SMDPs

with exponential sojourn times).

Uniformization (see Lippman [17] or monographs [2],

[19], [20]) introduces fictitious jumps from states xn into

themselves with intensities (K − λ(xn, an)). This reduces

a CTMDP with jump intensities bounded above by K to

a CTMDP with sojourn times being iid exponential ran-

dom variable with the intensity K. The above results on

CTSDPs with iid sojourn times imply that the controller

does not benefit from the knowledge of sojourn times in

the uniformized CTMDP. Therefore, for the uniformized

CTMDP, it is possible to restrict the set of all policies to the

policies that do not use any information about sojourn times

of the uniformized process. This completes the reduction of

the uniformized CTMDP to the corresponding discrete time

MDP.

If there is a stationary optimal policy for the corresponding

discrete time MDP, this policy is optimal for the original

CTMDP. This follows from the following three observations:

(i) this stationary policy is optimal for the uniformized

CTJMDP, (ii) this stationary policy can be implemented in

the original CTMDP, and (iii) any policy in the original

CTMDP can be implemented in the uniformized CTMDP.

We remark that the results on the reduction of continuous-

time models to discrete time hold also for discounted total

rewards. We concentrate on average costs per unit times

in this paper because this is a more difficult case than

discounting. Though uniformization can also be applied

to discounted costs [4, p. 432], discounted CTMDPs and

discounted SMDPs can be directly reduced to discrete time

discounted MDPs without using uniformization; see [7].

Admission control. Consider a finite queue with a renewal

process of arrivals. If this queue contains n customers,

the departure time has an exponential distribution with the

intensity µn. Arriving customers belong to different types.

To simplify the problem formulation, suppose that there are

m types of customers. A type i customer pays Ri for the

service when the customer is admitted, i = 1, . . . ,m. Let

Ri have the cumulative distribution function Fi. The types

of arriving customers are iid and do not depend on any other

events associated with the system. Given the arrival’s type,

the possible payoff does not depend on any other events.

The service intensity µn does not depend on the types of

accepted customers.

An arrival can be either accepted or rejected when it

is entering the system. If the system is full, the arrival is

rejected. An arrival can also be rejected to maximize average

rewards per unit time. The arrival type i and the amount Ri

are known at the arrival epoch. The question is which arrivals

should be rejected to maximize the average rewards per unit

time?

By considering arrival epochs as decision epochs, it is

easy to formulate this problem as an average reward SMDP

with iid sojourn times equal to interarrival times. The state

space is X1 × X2, where X1 is the set of pairs (n, r) with

n equal to the number of customers that an arrival sees in

the system and with r equal to the amount that the arrival

is willing to pay if admitted, and X2 is the arrival type. We

observe that transition probabilities do not depend on the type

of an arriving customer.In addition, the reward function is

r = r(x1, x2) = r((n, r),m) = r and therefore the rewards

do not depend on the second coordinate x2 = m, which is

the customer type.

Therefore, one can use the policies for this problem that

do not take into account the customer type. In particular,

Miller [18] and Feinberg and Reiman [9] studied Markovian

problems when the type i customer payoff ri is deterministic.

Of course, it is natural to consider the situation when ri �= rj

for i �= j. However, if ri = rj for i �= j, we can merge these

customer classes without loss of optimality. This follows

from the above results for CTSDPs with iid sojourn times.

The need to consider the problem with ri = rj for i �= j
appears in problems with multiple criteria and constraints.

Even when different classes have different rewards, the

method of Lagrangian multipliers may lead to the situation

when different classes have equal rewards [6].

V. CONCLUSIONS

For discrete-time and continuous-time stochastic sequen-

tial decision processes, this paper proves the following nat-

ural and simple observation: if the states of the system consist

of two coordinates and neither the transition mechanism nor

the objective function depend on the second coordinate, this

coordinate can me dropped. In other words, the controller

cannot benefit from the knowledge of the irrelevant informa-

tion.

We apply these general results to various particular

problems of queueing control and to uniformization of

continuous-time Markov Decision Processes and simplify

these problems. In fact, this paper was motivated by these

applications.
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