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Abstract— In the context of infinite Markov jump linear
systems (IMJLS), stochastic stability (a sort of L2-stability) is a
structural concept intimately related to a certain bounded linear
operator (D). Infinite (or finite) here, has to do with the state
space of the Markov chain being finite or infinite countable.
In the path to solving the maximal solution problem in the
infinite countable case, a certain sequence of bounded linear
operators (which converges trivially to D in the finite case)
arises and convergence in the norm topology (uniform operator
topology) becomes a relevant point. In this paper, we provide
a condition that insures that this convergence also holds in the
infinite countable case. This condition is automaticaly satisfied
when we reduce the problem to the finite case. The issue of
whether this is a restrictive condition or not, is brought to
light using arguments that stems from the probabilistic nature
of the Markov chain. This, in conjunction with a class of
counterexamples, unveil further differences between the finite
and the infinite countable case. We also establish a (weaker)
condition for the spectrum of the limit of the above sequence
of operators being in the closed left half-plane of the complex
numbers.

I. INTRODUCTION

We address to a class of dynamical systems, where pa-
rameters vary according to a Markov chain that takes values
in a countably infinite state space (see [11]), described by
the following stochastic differential equation:

(A,B,Λ) :

{
ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t), t ≥ 0
x(0) = x0, θ(0) = θ0.

(1)

In the above equation, x(t) ∈ C
n denotes the state vector,

u(t) ∈ C
m the control input and {θ(t), s ≤ t ≤ T} a

standard conservative Markov chain with infinitesimal matrix
Λ and a countably infinite state space S = {1, 2, ...}. We
consider (x0, θ0) an initial joint random variable. Random-
ness is introduced in the parameters by means of some
correspondence i �→ ηi, for θ(t) = i, ηi standing for the
system matrices Ai or Bi, which are all norm bounded
uniformly on i. In the specialized control literature, the so-
called Infinite Markov Jump Linear Systems (IMJLSs) are
those according to the above stochastic equation.

Markov Jump Linear Systems (MJLS) model physical
systems that have their structures subject to abrupt changes.
Without any intention of being exhaustive, we mention [8],
[10], [14], [18], [20] and the references therein as a sample
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of works dealing with stability, optimal control, filtering,
H∞-control and Riccati differential equations. Results on
maximal solution, which is the subject matter of this pa-
per, can be found in [14] and [15]. We mention also [3],
[16] and [19] as works dealing with applications. Potential
applications include safety-critical and high-integrity systems
(e.g., aircraft, chemical plants, nuclear power station, robotic
manipulator systems and large scale flexible structures for
space stations such as antenna, solar arrays, etc.). A common
feature in these papers is that they deal with the case
where the state space of the Markov chain is finite, i.e.,
S = {1, ..., N}. First results for infinite horizon continuous-
time control problems, with MJLSs within the framework of
a countably infinite state space for the Markov chain, were
obtained in [11], [12] and [13]. These problems are tackled
with the appropriate concept of stochastic stability (SS), to
which a certain bounded linear operator (D) in an infinite
dimensional Banach space (Hn

1 ) is intimately related. More
explicitly, a MJLS is stochastically stable iff the spectrum of
D lies in the open left-half plane of the complex numbers.
This parallel the standard deterministic case where stability
means having the eigenvalues of the system’s matrix in this
same subset.

Another problem, where stochastic stability plays an im-
portant role, and therefore the operator D, is concerned with
the existence of maximal solution to a certain infinite count-
able set of coupled algebraic Riccati equation associated to
IMJLSs, which is denoted in [2] by BPARE (an abreviation
for Banach space perturbed algebraic Riccati equation). This
sort of problem has been treated in [7] for the finite
dimensional case by using stability in the usual sense plus
an inconvenient contraction assumption (assumption 2.1 of
this reference) originally introduced in [21] (essentially, this
assumption imposes the rate of transition between modes
not to be too large). In the path to solving the maximal
solution problem in the infinite countable case and free
from the contraction assumption (see [2]), a certain sequence
of bounded linear operators (which converges trivially to
D in the finite case) arises and convergence in the norm
topology (uniform operator topology) becomes a relevant
point. Another point of interest is whether the maximal
solution is a strong solution to the BPARE.

In this paper, motivated by the fact that, unlike the finite
dimensional case, spectral continuity may not occur every-
where in the space of all bounded linear operators (see, e.g.,
[4] and [17, pp 56]), we exhibit a weaker sufficient condition
than that of spectral continuity to having a strong (maximal)
solution. Spectral continuity is therefore shown not to be a
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necessary condition to this purpose. In the sequel, we provide
a condition, given by (13)/(14), that insures convergence in
the norm topology of the sequence of operators mentioned
above. This condition is automatically satisfied when we
reduce our problem to the finite case. The issue whether
this is a restrictive condition or not (we shall conclude that
it is not) is brought to light using arguments that stem
from the probabilistic nature of the Markov chain and so
avoiding a direct convergence analysis. This, in conjunction
with a class of counterexamples, unveil further differences
between the finite and the infinite countable case. Except
for the discussion about condition (13)/(14), the arguments
and proofs here encompasses a wider class of operators
sequences than the one afore mentioned.

II. NOTATIONS AND PRELIMINARIES

As usual, C
n stands for the complex n-space. We denote

by S the countably infinite set S = N = {1, 2, ...}. In
the case of control problems involving linear systems with
Markov jump parameters, S corresponds to the state space
of the Markov chain. We use the superscript ∗ for conjugate
transpose of a matrix. We call M(Cm, Cn) the normed linear
space of all n by m complex matrices and, for simplicity,
write M(Cn) whenever n = m. The notation L ≥ 0 is
adopted if a self-adjoint matrix is nonnegative and we write
M(Cn)+ = {L ∈ M(Cn);L = L∗ ≥ 0}. Furthermore, In

stands for the identity operator in M(Cn).
We denote by ‖·‖ the norm in C

n or the spectral induced
norm in M(Cn). We set Hm,n

1 (respectively Hm,n
∞ ) the linear

space of all infinite sequences of complex matrices H =
(H1, H2, ...), Hi ∈ M(Cm, Cn) such that

∑∞
i=1 ‖Hi‖ <

∞ (respectively sup{‖Hi‖ , i ∈ S} < ∞) and write Hn
1

and Hn
∞ whenever n = m. For H ∈ Hm,n

1 (respectively
H ∈ Hm,n

∞ ) we define ‖H‖1 =
∑∞

i=1 ‖Hi‖ (respectively
‖H‖∞ = sup{‖Hi‖ , i ∈ S}) the norm in the Banach
space (Hm,n

1 , ‖·‖1) (respectively (Hm,n
∞ , ‖·‖∞)).

We define the nonnegative sets Hn+
1 = {H ∈ Hn

1 , Hi ∈
M(Cn)+, i ∈ S} and Hn+

∞ = {H ∈ Hn
∞, Hi ∈ M(Cn)+,

i ∈ S}, the strictly positive set H̆n+
∞ = {H ∈ Hn+

∞ , Hi >
αHI for some αH > 0, i ∈ S} and the sets Hn∗

1 = {H ∈
Hn

1 , H∗
i = Hi, i ∈ S} and Hn∗

∞ = {H ∈ Hn
∞, H∗

i = Hi,
i ∈ S}. For H = (H1,H2, ...) and L = (L1, L2, ...) in Hn∗

1

or Hn∗
∞ , we say that H � L if Hi � Li for each i in S and,

for L and H in Hn+
· , we have that H � L ⇒ ‖H‖1 � ‖L‖1

and ‖H‖∞ � ‖L‖∞. For C = (C1, C2...) ∈ Hn
∞, we denote

C∗ = (C∗
1 , C∗

2 ...) ∈ Hn
∞ and C−1 = (C−1

1 , C−1
2 ...) ∈ Hn

∞

whenever C−1
i , i ∈ S, are invertible.

We represent by (l1, ‖·‖1) and (l∞, ‖·‖∞) the spaces
made up of all infinite sequences of complex numbers
x = (x1,x2, ...) such that ‖x‖1 =

∑∞
i=1 |xi| < ∞ and

‖x‖∞ = sup{|xi| , i = 1, 2, ...} < ∞, respectively. It
is easy to verify that (Hm,n

∞ , ‖·‖∞) and (l∞, ‖·‖∞) are
uniformly homeomorphic. Since (l∞, ‖·‖∞) is a Banach
space, (Hm,n

∞ , ‖·‖∞) is also a Banach space. The same stands
for (Hm,n

1 , ‖·‖1) and (l1, ‖·‖1).
For any complex Banach space Y , we write Blt (Y ) for

the Banach space of all bounded linear transformations of

Y into Y with the norm topology (generated by the uniform
induced norm and denoted by ‖·‖B) and, for L ∈ Blt (Y ),
we refer to σ (L) as the spectrum of L. Blt (Hn

1 ) here
is a Banach algebra with identity (the identity operator in
Blt (Hn

1 )). In addition, we define the product of an element
A∈ Hm,n

η by another element B ∈ Hq,m
ν by

AB = (A1B1, A2B2, ...), (2)

where η and ν stands either for ∞ or 1. AB then belongs
either to Hq,n

∞ or Hq,n
1 , as we shall see below (it is worth

noticing that both Hn
∞ and Hn

1 equipped with (2) are Banach
algebras with identity (In, In, ...)). Finally, we denote by E[·]
the expectation operator.

We conclude this section with an auxiliary result.
Lemma 1: For every A∈ Hm,n

∞ , B ∈ Hq,m
1 , C∈ Hm,n

1

and D ∈ Hq,m
∞ ,

(i) AB and CD belong to Hq,n
1 where ‖AB‖

1
�

‖A‖
∞

‖B‖
1

and ‖CD‖
1

� ‖C‖
1
‖D‖

∞

, and

(ii) AD belongs to Hq,n
∞ where ‖AD‖

∞

� ‖A‖
∞

‖D‖
∞

.
Proof: Each entry of AB, CD and AD is finite and,

from (2),

(i) ‖AB‖
1

=
∑∞

i=1 ‖AiBi‖ �
∑∞

i=1 ‖Ai‖ ‖Bi‖ �

‖A‖
∞

‖B‖
1
. Similarly for ‖CD‖

1
.

(ii) ‖AD‖
∞

= supi∈S ‖AiDi‖ � supi∈S ‖Ai‖ supi∈S ‖Di‖
= ‖A‖

∞

‖D‖
∞

III. STABILITY ASPECTS AND PROBLEM
STATEMENT

Let the operator Γ = (Γ1,Γ2, ...) ∈ Blt(Hn
1 ) be as it

appears in control problems involving MJLSs with infinite
countable state space S (see, e.g., [11] and references
therein):

Γi(W ) =
∞∑

j=1,j �=i

λjiWj , i ∈ S (3)

W = (W1,W2, ...) ∈ Hn
1 . Or else, viewing W as an infinite

column of matrices, ΓW = ((Λ− diag(λii)) ⊗ In)∗W ,
where Λ = [λij ]i,j∈S is the infinitesimal matrix of a standard
conservative Markov chain {θ} with values in S, λij ≥ 0,
i 
= j, 0 < −λii =

∑∞
j=1,j �=i λij � cte < ∞.

For A ∈ Hn
∞, B ∈ Hm,n

∞ and K ∈ Hn,m
∞ , define the

operator D = (D1,D2, ...) ∈ Blt(Hn
1 ) such that, for every

W = (W1,W2, ...) ∈ Hn
1 and each i ∈ S,

Di(W ) = (Ai + 1
2λiiIn − BiKi)Wi

+Wi(Ai + 1
2λiiIn − BiKi)

∗ + Γi(W ).
(4)

Note that Γi is responsible for the interconnection among
the individual components Di. In view of (2) and (4), D
also writes

D(W ) = (A + 1
2λI − BK)W

+W (A + 1
2λI − BK)∗ + Γ(W ),

(5)

where λ := (λ11, λ22, ...) and I := (In, In, ...). Clearly,
A + 1

2λI − BK ∈ Hn
∞. To see that D ∈ Blt (Hn

1 ) refer
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to [11]). In order to emphasize the structural aspect, which
associate the equation to the relevant parameters, we denote
by (A,B,Γ) the differential equation

Ẇ (t) = D(W (t)), t ≥ 0. (6)

We define now the following L2−type of stability, where
we preserve the nomenclature of the MJLS scenario:

Definition 2 (Stochastic Stability for (6)): We say that
(A,B,Γ) is stochastically stabilizable (SS) if there exists
(a stabilizing) K ∈ Hn,m

∞ such that, for any W (0) ∈ Hn
1 ,∫ ∞

0

‖W (t)‖1 dt < ∞, (7)

where W (t) ∈ Hn
1 is given by (6).

Invoking Lemmas 4.3 and 6.6 of [11], we may link
stability with the spectrum of D as below.

Lemma 3: The following assertions are equivalent.

(a) (A,B,Γ) is stochastically stabilizable (SS) with sta-
bilizing K.

(b) sup{ Reλ : λ ∈ σ(D)} < 0.
By its turn, the concept of stochastic stability for MJLSs

is as follows (see [11] and [12]).
Definition 4 (Stochastic Stability for (1)): We say that

(A,B,Λ) is stochastically stabilizable (SS) if there exists
(a stabilizing) K ∈ Hn,m

∞ such that, for any joint initial
distribution ϑ0, ∫ ∞

0

E[‖x(t)‖
2
]dt < ∞,

where x(t) is given by (1) with u(t) = −Kθ(t)x(t), or else,
by

(A,B,Λ) :

{
ẋ(t) = (Aθ(t) − Bθ(t)Kθ(t))x(t), t ≥ 0
x(0) = x0, θ(0) = θ0.

(8)
The relevance of the operator D stems from the fact

that the above definitions and assertion (b) of Lemma 3
are equivalent. An argument for this is that equation (6)
describes the behavior of a version of the state correlation
matrix running in the MJLSs. We shall omit references to the
BPARE stated in the introduction and deal with a broader set
of elements (S) in Hn

∞ to which solutions to equations of the
sort of the BPARE belong. Hence, let us state the following
definitions.

Definition 5: S is a stabilizing element to (A,B,Γ) if S ∈
Hn

∞ and K = R−1B∗S stabilizes (A,B,Γ) (clearly K ∈
Hn,m

∞ ).
Definition 6: S is a strong element to (A,B,Γ) if S ∈

Hn
∞ and

sup{Reλ : λ ∈ σ(D)} ≤ 0,

with D equipped with K = R−1B∗S.
Now set an arbitrary sequence (Sj)j∈N of stabilizing

elements to (A,B,Γ) and an element S̄ ∈ Hn
∞ such that

S̄i := lim
j→∞

Sj
i , ∀i ∈ S. (9)

Also define the sequence of (stable) operators (Dj)j∈N and
D in Blt(Hn

1 ) with

Dj as in (5) equipped with K = R−1B∗Sj . (10)

and

D as in (5) equipped with K = R−1B∗S̄. (11)

In the maximal solution problem (Sj)j∈N is a particular
sequence of stabilizing elements to (A,B,Γ) such that the
element S̄ given by (9) turns out to be the maximal solution
to the BPARE. Our aim is finding conditions, other than that
of spectral continuity, that insures S̄ being a strong element
to (A,B,Γ) (remind that, unlike the finite dimensional case,
spectral continuity may not occur everywhere in the space
of all bounded linear operators (see, e.g., [4] and [17, pp
56])). A basic need is having (Dj)j∈N → D in the norm
topology. Hence, we also look for a condition that insures
this convergence. We use arguments that stem from the
probabilistic nature of the Markov chain to evaluate the
restrictions imposed by this condition.

IV. RESULTS

A. Sufficient conditions for S̄ to be a strong element to
(A,B,Γ)

Theorem 8 below gives us sufficient conditions for S̄ being
a strong element to (A,B,Γ), or else, for D as in (11) being
such that sup{Reλ : λ ∈ σ(D)} ≤ 0.

We start with the following definitions. Let (αn)j∈N be a
sequence in C of non-empty compact sets.

Definition 7: (see, e.g., [4] and [17, pp 56])

(i) lim supn αn = {λ ∈ C : λ = limk→∞ λnk
where λnk

∈
αnk

and nk+1 > nk},

(ii) lim infn αn = {λ ∈ C : λ = limn→∞ λn where λn ∈
αn} and

(iii) (αn)j∈N is called convergent iff lim supn αn =
lim infn αn, in which case this common value is called
limn→∞ αn.

Theorem 8: Suppose Dj → D in the norm topology
(uniform operator topology), with (Dj)j∈N and D given by
(10) and (11), respectively. Then, the equivalent conditions
(a1) and (a2) as well as the weaker condition (b) are sufficient
for S̄ being a strong element to (A,B,Γ):

(a1) the spectrum σ(·) (a set-valued function defined in
Blt(Hn

1 )) is lower semicontinuous at D, i.e. (see [17, pp
56]),

σ(D) ⊂ lim inf
j

σ(Aj)

∀ (Aj)j∈N such the Aj → D in the norm topology.

(a2) the spectrum is continuous at D, i.e.,

σ(D) = lim
j→∞

σ(Aj)

whenever Aj → D in the norm topology.

1737



(b)

σ(D) ⊂ lim sup
j

σ(Aj)

whenever Aj → D in the norm topology.
Proof: Upper semicontinuity of the spectrum holds in

an infinite dimensional Banach algebra with identity, which
is the case of Blt(Hn

1 ). Since by assumption the spectrum
is also lower semicontinuous, then it is continuous and
(a1) =⇒ (a2) follows. The equivalence of (a1) and (a2) is
therefore straightforward. Now, (a) implies (b), so it suffices
to prove that condition (b) implies S̄ to be a strong element
to (A,B,Γ). We proceed as follows. Since Kj stabilize
(A,B,Γ), then from Lemma 3 (a) =⇒ (b),

sup{Reλ : λ ∈ σ(Dj)} < 0, j ∈ N.

Hence, if c ∈ C with Re(c) ≥ 0, then c 
∈ σ(Dj), j ∈ N,
or else,

c 
∈ {γ ∈ C : ∃j ∈ N such that γ ∈ σ(Dj)}

=: ∪∞
j=1σ(Dj) ⊃ ∩∞

j=1 ∪
∞
k=j σ(Dk).

But the closure of ∩∞
j=1 ∪

∞
k=j σ(Dk) equals lim supj σ(Dj)

and so sup{Reλ : λ ∈ lim supj σ(Dj)} ≤ 0. Since, in
particular, (b) assumes that σ(D) ⊂ lim supj σ(Dj), then
sup{Reλ : λ ∈ σ(D)} ≤ 0.

Since condition (b) does not imply (a) and (a) implies
(b), it follows that continuity (or lower semicontinuity) is
not necessary for S̄ to be a strong element to (A,B,Γ).
Condition (b) is a weaker sufficient condition than that of
continuity for S̄ to be a strong element to (A,B,Γ).

It is noteworthy that we can disregard considerations about
topology in Blt(Hn

1 ) (in particular the convergence Dj →
D), and state (more loosely) the following version of the
above theorem: each of the conditions

(a’1) σ(D) ⊂ lim infj σ(Dj),

(a’2) σ(D) = limj→∞ σ(Dj) and

(b’) σ(D) ⊂ lim supj σ(Dj)

are sufficient for S̄ to be a strong (respectively stabilizing)
element to (A,B,Γ), where lim sup and lim inf are given
by Definition 7 (respectively, lim supσn = ∩n≥1 ∪k≥n σk

and lim inf σn = ∪n≥1 ∩k≥n σk). Note that conditions
(a’1) and (a’2) are no more equivalent. More explicitly,
(a’2)=⇒(a’1)=⇒(b’).

Remark 9: The sets lim supn αn and lim infn αn defined
above slightly differ from lim supn αn = ∩n≥1 ∪k≥n αk

and lim infn αn = ∪n≥1 ∩k≥n αk, respectively. In fact, the
former sets are the closure of the latter. This difference is
perceptible in both finite (when only the point spectrum is
present) and infinite dimensional cases. This is the reason
for obtaining in theorem 8 ”a strong element to (A,B,Γ)”
instead of ”a stabilizing element to (A,B,Γ)”.

B. Convergence of (Dj)j∈N in the norm topology

Theorem 8 requires (Dj)j∈N → D in the operator’s norm
topology, with Dj and D given by (10) and (11), respectively.
Lemma 10 below reduces this convergence to that of Sj → S̄
in the Hn

∞ norm, which in turn is insured by (13) of Lemma
11. The discussion whether (13) is a restrictive condition or
not is brought up in the final part of this section by viewing(
Sj

)
as a statistic of the Markov chain that embeds the

operator Γ (note that Sj may be viewed as a function of
Λ, for given parameters A and B).

Lemma 10: (Sj)j∈N → S̄ in the Hn
∞ norm, or equiva-

lently, (Sj
i )j∈N → S̄i in the M(Cn) norm uniformly with

respect to i, implies (Dj)j∈N → D in the norm topology.
Proof: (except for the equivalence part).∥∥(Dj −D)(W )

∥∥
1

=
∥∥Dj(W ) −D(W )

∥∥
1

=
∥∥∥(F̂ j − F̂ )W − W (F̂ j − F̂ )∗

∥∥∥
1
≤ 2

∥∥∥F̂ j − F̂
∥∥∥
∞

‖W‖1

≤ 2
∥∥BR−1B∗

∥∥
∞

∥∥Sj − S̄
∥∥
∞

‖W‖1 ,

so that∥∥(Dj −D)
∥∥

B
= sup‖W‖

1
=1

∥∥(Dj −D)(W )
∥∥

1

≤ 2
∥∥BR−1B∗

∥∥
∞

∥∥(Sj − S̄)
∥∥
∞

→ 0 as j → ∞.

Define
U j := Sj − S̄. (12)

Lemma 11: The mild assumption

‖Uj

i ‖
‖Uj‖

∞


−→ 0 as j → ∞ for some i ∈ N

( or equivalently, lim sup
j→∞

‖Uj

i ‖
‖Uj‖

∞

> 0

for some i ∈ N)

(13)

and (∥∥U j
∥∥
∞

)
does not exhibits, simultaneously,

infinitely many zeros and nonzero numbers.
(14)

implies
lim

j→∞

∥∥U j
∥∥
∞

= 0. (15)

Proof: Suppose
∥∥U j

∥∥
∞


= 0 ∀j except for a finite

number of j. Then, for arbitrary i, limj→∞

∥∥∥U j
i

∥∥∥ = 0, or

else, limj→∞
‖Uj

i ‖
‖Uj‖

∞

∥∥U j
∥∥
∞

= 0. This shows that having
‖Uj

i ‖
‖Uj‖

∞


−→ 0 as j → ∞ for some i suffices to obtain

limj→∞

∥∥U j
∥∥
∞

= 0. The equivalence is straightforward: if

the limit exist, then limj→∞
‖Uj

i ‖
‖Uj‖

∞

= lim supj→∞
‖Uj

i ‖
‖Uj‖

∞

.

If there is no limit, then there must be ε > 0 such that
‖Uj

i ‖
‖Uj‖

∞

≥ ε holds for infinitely many j, which means that lim sup ·
must be greater than zero. If

∥∥U j
∥∥
∞

= 0 ∀j except for a
finite number of j, (15) trivially holds.
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Remark 12: In the finite dimensional case, it is a simple
task to obtain (15) without assumption (13), since

lim
j→∞

∥∥U j
∥∥
HnN := lim

j→∞
max{

∥∥∥U j
i

∥∥∥ , i = 1, .., N}

≤ lim
j→∞

N∑
i=0

∥∥∥U j
i

∥∥∥ =
N∑

i=0

lim
j→∞

∥∥∥U j
i

∥∥∥ = 0,

also reminding that norms are equivalent in finite dimen-
sional spaces.

Let us address ourselves to whether (13) is a restrictive
assumption. For ε ∈ (0, 1] (that does not depend on j but
may depend on i) and, for each i ∈ N, define the (unique)
N-valued strictly increasing index sequence (rs,i)s=1,...,Mi

such that∥∥∥U j
i

∥∥∥
‖U j‖

∞

≥ ε or

∥∥∥U j
i

∥∥∥
‖U j‖

∞

=
0

0
iff j = rs,i for some s.

This sequence indicates the ε-tracking of the supremum
sequence (

∥∥U j
∥∥

∞

)j∈N by (
∥∥∥U j

i

∥∥∥)j∈N, in that
∥∥U

rs,i

i

∥∥ ≥

ε ‖Urs,i‖
∞

for s = 1, ...,Mi, and does not exist if Mi = 0.
In analogy to terms used in Markov chain theory, we shall
say that i is recurrent if, for some ε, (

∥∥∥U j
i

∥∥∥) indefinitely
provides an ε-tracking of the supremum sequence, or else, if
Mi → ∞ for some ε. Clearly, if i is recurrent with respect to
ε0, it is so with respect to ε1 < ε0. The following expressions

are therefore equivalent:

(a) i is recurrent

(b) ∀N ∈ N,∃j ≥ N such that
‖Uj

i ‖
‖Uj‖

∞

≥ ε, for some ε

(j = rs,i for some s ∈ N).

(c)
‖Uj

i ‖
‖Uj‖

∞


−→ 0 as j → ∞.

We shall say that i is nonrecurrent if, for every ε ∈ (0, 1],

(
∥∥∥U j

i

∥∥∥) provides an ε-tracking of the supremum sequence for

a finite number of times at most, or else, if Mi(ε) < ∞ ∀ε.
Clearly, ”i is nonrecurrent” is the negation of ”i is recurrent”.
The assertions that follow are equivalent:

(a’) i is nonrecurrent

(b’) ∀ε ∃N ∈ N such that
‖Uj

i ‖
‖Uj‖

∞

< ε, j ≥ N,

(c’)
‖Uj

i ‖
‖Uj‖

∞

−→ 0 as j → ∞.

Clearly, if i is nonrecurrent with respect to ε0, it is so with
respect to ε1 > ε0.

It is straightforward from assertion (c′) that (13) does not
hold if and only if every i is nonrecurrent.

In the case where S assumes a finite number of entries
(i.e., the Markov chain θ assumes a finite number of states),
a recurrent state with ε = 1 (and therefore with ε ≤ 1) must
always exist. Indeed, the maximum in this case is always
attained by some state, so all of them cannot be nonrecurrent.
Consequently, assumption (13) is always satisfied in the finite
dimensional case. Now, in the infinite dimensional case, we

can build sequences (Sj) for which (13) does not hold, as
Appendix V-A shows). The matter then is whether this sort of
hand-conducted sequences can actually be generated by some
Markov chain with given parameters A and B. In fact, this
appears to be unnatural, and so the case of complete absence
of recurrent states. By its turn, (14) means, for instance, that
there are infinitely many Sj = S̄, or else, the sequence

(
Sj

)
visits its limit point S̄ infinitely many times, which is an is
an anomalous situation. Hence, (13)/(14) seems in fact to be
a mild assumption.

V. APPENDIX

A. Examples with no recurrent states

We consider the space H1
∞ ≡ l∞ and two situations for

the sequence (U j)j∈N ⊂ H1
∞:

I. U j
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
j+1 , j < i

1
j , j = i

1
ji+1 , j > i

II. U j
i =

⎧⎪⎪⎨
⎪⎪⎩

1
j+1 , j < i

1
j , j = i

1
j2 , j > i

We have that (
∥∥∥U j

i

∥∥∥)j∈N are non-increasing monotone and
converge to zero, as required by [2], (9) and (12).

Our aim is showing that∥∥∥U j
i

∥∥∥
‖U j‖∞

−→ 0 as j → ∞ for every i, (16)

i.e., every i is nonrecurrent.
Now, assertion (16) is equivalent to having item (b’) of

Section IV-B valid for every i. Cases I and II are therefore
inspired on a particular situation of this latter condition,
which is having the supremum sequence (

∥∥U j
∥∥

∞

) ε-tracked

by (
∥∥∥U j

i

∥∥∥)j∈N with ε = 1 (instead of 0 < ε ≤ 1), one time
only for each i ∈ N. Note that, in the finite dimensional case,
even this peculiar situation cannot occur, since a recurrent
state must always exist.

Turning back to the proof of (16), define aj
i :=

∥∥∥U j
i

∥∥∥ and

bj :=
∥∥U j

∥∥
∞

, i,j ∈ N. Thus,

Case I :

bj = maxi aj
i

= max{maxi>j
1

j+1 , 1
j ,maxi<j

1
ji+1 }

= max{ 1
j+1 , 1

j , 1
j2 } = 1

j

Case II :

bj = maxi aj
i

= max{maxi>j
1

j+1 , 1
j ,maxi<j

1
j2 }

= max{ 1
j+1 , 1

j , 1
j2 } = 1

j
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and so

Case I

aj

i

bj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j
j+1 , j < i

1, j = i

1
ji , j > i

Case II

aj

i

bj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j
j+1 , j < i

1, j = i

1
j , j > i

Hence, for arbitrary i,

Case I :(
aj

i

bj

)
j∈N

= (1
2 , 2

3 , ...,

(i−1)th︷ ︸︸ ︷
i − 1

i
,

ith︷︸︸︷
1 ,

(i+1)th︷ ︸︸ ︷
1

(i + 1)i
,

(i+2)th︷ ︸︸ ︷
1

(i + 2)i
, ...)

Case II :(
aj

i

bj

)
j∈N

= (1
2 , 2

3 , ...,

(i−1)th︷ ︸︸ ︷
i − 1

i
,

ith︷︸︸︷
1 ,

(i+1)th︷ ︸︸ ︷
1

i + 1
,

(i+2)th︷ ︸︸ ︷
1

i + 2
, ...)

where the i − 1 first terms in both sequences should be
ignored if i = 1). So, for 0 < ε < 1

2 , we have that

aj
i

bj
≥ ε for j = 1, ..., k(ε)

with k such that

Case I : 1
ki ≥ ε, or else, k ≤

(
1
ε

) 1
i < ∞

Case II : 1
k ≥ ε, or else, k ≤ 1

ε < ∞

(clearly the k′s are even smaller for ε ≥ 1
2 ). Thus, in both

cases, k is finite for every ε ∈ (0, 1] and each i, which is the
same as saying that every i is nonrecurrent.

In what follows, we prove expression (16) via the concept
of rate of convergence, which is a simpler procedure but
poorer in interpretation and insight.

In case I, the rate of convergence of aj
i as j → ∞ increases

as i increases. This is clear since

aj
i

aj
i−1

=
1/ji+1

1/ji
=

1

j
→ 0 as j → ∞, i = 2, 3, ....

Still, (aj
1)j∈N = (1, 1

22 , 1
32 , 1

42 ...) - which exhibits the
lowest convergence rate among all other sequences indexed
by i = 2, 3, ..., has a convergence rate higher than that of the

supremum sequence (bj)j∈N. In fact aj
1

bj = 1/j2

1/j = 1
j → 0 as

j → ∞. Assertion (16) then follows.
In case II, the rate of convergence of every sequence

(aj
i )j∈N is uniform with respect to i, but still higher than that

of the supremum sequence {bj}j∈N. Indeed, aj

i

bj = 1/j2

1/j =
1
j → 0 as j → ∞. Assertion (16) again follows.
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