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Abstract— This paper deals with detectability for the class
of discrete-time Markov jump linear systems (MJLS) with the
underlying Markov chain having countably infinite state space.
The formulation here relates the convergence of the output with
that of the state variables. Our approach introduces invariant
subspaces for the autonomous system and exhibits the role
that they play. This allows us to show that detectability can
be written equivalently in term of two conditions: stability
of the autonomous system in a certain invariant space and
convergence of general state trajectories to this invariant space
under convergence of input and output variables. This, in turn,
provides the tools to show that detectability here generalizes
uniform observability ideas as well as previous detectability
notions for MJLS with finite state Markov chain, and allows us
to solve the jump-linear-quadratic control problem. In addition,
it is shown for the MJLS with finite Markov state that the
second condition is redundant and that detectability retrieves
previously well-known concepts in their respective scenarios.

Index Terms— detectability, stochastic systems, Markov jump
systems, infinite Markov state space, optimal control

I. INTRODUCTION

Structural concepts such as observability and detectability

have a solid ground in system theory, as the imposing

literature for linear and linear-Gaussian systems conveys (see,

e.g., [15]). For instance, in control problems, detectability

firmly associates the solution for the optimal problems with

stability of the corresponding controlled system, whereas,

for filtering, it makes the system observations meaningful

for state estimates by connecting convergence of the output

with convergence of the state. Although the theory involving

these concepts is quite developed and a number of results are

available in the context of linear deterministic systems, there

is still a great deal of research activity in this area (see, e.g.,

[13], [17] and references therein).

Among the most important properties of detectability

for the linear deterministic scenario, we mention that: (i)

detectability can be expressed in terms of the parameters of

the autonomous version of the system, e.g., by requiring that

nonobserved modes of the autonomous system are stable; (ii)

Detectability generalizes observability.
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Another important but less acknowledged property is that

(iii) detectability is a necessary and sufficient condition to

guarantee convergence of the state from convergence of

the output (under regular nonsingular linear state feedback

controls).

Property (iii) ensures that the optimal control solution

is stabilizing and makes output observations meaningful in

filtering problems. Due to its generic formulation, these

properties constitute a paradigm for more general contexts.

The challenge then is how to devise a detectability concept

for a certain class of systems that allows one to employ the

structure of the system to retrieve properties (i)–(iii).

In this spirit, some of the authors have recently developed

a notion of detectability (called weak detectability) that

generalizes previous detectability ideas for MJLS with finite

Markov chain state, retrieves the properties (i)–(iii), and

allows an associate observability matrix, in an extension to

the well-known deterministic concepts, see [1] and [2]. In

this process all but one1 of the linear deterministic concepts

are retrieved.

However, as far as the authors are aware, these ideas have

no parallel in more complex scenarios such as the MJLS

with countably infinite state space of the Markov chain. This

is a rather general class of systems that includes the classes

of finite MJLS and linear deterministic systems, as well as

deterministic time varying systems. For this class of systems,

up to this date there is no detectability concept that retrieves

properties (i)–(iii) above. For instance, the stochastic notion

in [7] can be expressed in terms of the autonomous system

data, thus satisfying (i), but (ii) does not hold and only the

sufficiency part of (iii) holds; in [4] we derive a detectability

notion in the perspective of (iii) for which (ii) holds, but it

does not satisfy (i).

These shortfalls come from the analytical complexity

inherent to the infinite many Markov state case. In particular,

the main difficulty arises from the fact demonstrated in

this paper that converging input and output do not ensure

convergence of state trajectory to the observed space; see

Example 1 in connection. In the simpler case of finitely many

Markov states, the above convergence relation holds, and

apart from ensuring stability within the observed space, with

detectability it guarantees convergence of the state trajectory

to the origin. This is the mechanism that fails here, and in

this regard we can conclude that any detectability concept

with the perspective of (i) (stable nonobserved modes) by

1The observability idea that after a number of observations that equals
the system dimension, the initial state value can be precisely retrieved. This
is inherently a nonstochastic idea.
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itself cannot provide the property in (iii) and thus, it cannot

ensure that the optimal control is stabilizing.

With the aim of studying detectability for MJLS with

countably infinite state space of the Markov chain and to

retrieve (i)–(iii), we introduce a novel point of view toward

detectability by considering the paradigmatic property in (iii)

as a general, direct, and intuitive notion of detectability,

which relates the convergence of the input and output with

that of the state variables. Then we introduce certain invariant

subspaces for the autonomous system, which play a key

role to relate detectability with stability and convergence

of the state trajectory; this allows us to show that this

detectability sense generalizes uniform observability ideas as

well as previous detectability notions for MJLS with finite

state Markov chain, and to solve the jump-linear-quadratic

control problem. To show some subtleties of the approach,

and to clarify the role of some tools, we also analyze the

MJLS with finite state Markov chain and present illustrative

examples.

An outline of the content of the paper is as follows. In

section II we provide the bare essential of notations, state the

model, and discuss the general ideas of the paper. Section

III provides some preliminaries. Necessary and sufficient

conditions for detectability are treated in section IV, and

some sufficient conditions are presented in section V. The

finite MJLS is analyzed in section VI, and the control

problem is studied in section VII. Some illustrative examples

are exhibited in section VIII. Finally, section IX presents

some conclusions.

II. PROBLEM FORMULATION AND GENERAL IDEAS

Let R
n represent the usual linear space of all n-dimensional

vectors and Rr,n (respectively, Rn) the normed linear space

formed by all r × n real matrices (respectively, n× n). For

V ∈Rn,r, V ′ denotes the transpose of V . σ+(V ) and σ−(V )
stand, respectively, for the largest and smallest singular value

of V and ‖V‖ = σ+(V ). For V,W ∈ Rn, V > W (V ≥ W )

indicates that V −W is positive definite (semidefinite).

Let H r,n
∞ denote the linear space formed by sequences of

matrices H = {Hi ∈Rr,n; i ∈Z } such that supi∈Z ||Hi||< ∞;

also, H n
∞ ≡H n,n

∞ and ‖H‖∞ = supi∈Z ‖Hi‖. For H,V ∈H n
∞ ,

H ≥ V indicates that Hi ≥ Vi for each i ∈ Z ; similarly, for

H ∈ H r,n
∞ and V ∈ H n,s

∞ , the “product” HV indicates the

element of H r,s
∞ formed by the sequence {HiVi, i ∈ Z },

and equivalent understanding should apply to any basic

mathematical operation involving elements of H r,n
∞ . In what

follows, capital letters denote elements of H r,n
∞ , and capital

letters with an index denote elements of Rr,n.

The system we deal with is the discrete-time MJLS with

infinite countably Markov chain, defined in a fixed stochastic

basis (Ω,F,(Fk),P) by

Ψ :

{
x(k +1) = Aθ(k)x(k)+Bθ(k)u(k), k ≥ 0,

y(k) = Cθ(k)x(k)+Dθ(k)u(k), x(0) = x, θ(0) = θ ,
(1)

where y is the output process and u is the input, an (Fk)-
adapted process. The mode θ is the state of an underlying

discrete-time Markov chain Θ = {θ(k);k ≥ 0} taking values

in Z = {1,2, . . .} and having a stationary transition proba-

bility matrix P = [pi j], i, j ∈ Z . The state of the system is

the compound variable (x(k),θ(k)). The matrices Ai belong

to the sequence of matrices A ∈ H n
∞ , and similarly for

B ∈ H n,r
∞ , C ∈ H q,n

∞ , and D ∈ H q,r
∞ . In addition, without

loss of generality, we also assume that C′D = 0.

In the paper we deal with detectability for systems de-

scribed by (1). The departure point is the concept of de-

tectability that follows from property (iii) of section I. We

emphasize that the specific notion of convergence is not

relevant; the essence of the concept is the relation among

convergence of state, input and output.

Definition 1 (detectability): The system Ψ is detectable if

the state converges provided that the output and the input

converge.

With the detectability concept above at hands, the issues

pursued here are primarily summarized as follows: (I) Relate

the concept with the autonomous version of the system,

aiming at mimicking item (i) mentioned in the introduction;

(II) Show that it retrieves property (ii) mentioned in the

introduction; (III) Investigate the extent to which the above

concept is related to the weak detectability concept in [1]

and [2] for MJLS, and the usual concept for deterministic

linear systems.

We consider a cost functional that is an �2-measurement of

the output (the expected accumulated energy in the output),

Yu(x,θ) = Ex,θ

{
∞

∑
k=0

|y(k)|2
}

, (2)

defined for an admissible control u whenever x(0) = x
and θ(0) = θ . We also denote for the autonomous system

obtained from Ψ with u ≡ 0,

Y0(x,θ) = Yu≡0(x,θ). (3)

In agreement with (2), we adopt the corresponding �2-

convergence notion for each Ψ-processes, namely, we say

that the output y converges whenever Yu(·, ·) < ∞; similar

notion holds for u and x.

Our approach starts from a novel point of view, which

hinges on the following steps. We first locate an invariant

linear subspace for the autonomous system, in the sense that

the trajectories remain almost surely confined to it. Then

we indicate the role that the invariant space plays in the

convergence of an arbitrary state trajectory, showing that the

existence of an invariant space for which the autonomous

system is stable, together with the convergence to this set

of an arbitrary trajectory, is equivalent to convergence to the

origin of such a trajectory (see section IV and Theorem 1).

In order to make the above result suitable to deal with (I),

we seek the largest of such an invariant space. It turns out to
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be the linear subspace F = {(x,θ) : Y0(x,θ) < ∞}, and in

Theorem 2 we state that detectability according to Definition

1 is equivalent to requiring that

(A1) the autonomous system is stable in F ,

(A2) the state x converges to F provided that both y and

u converge.

Notice that condition (A1) accounts for the autonomous

version of system Ψ only, and it is consistent with the notion

of detectability for finite dimensional linear deterministic

systems. Together with condition (A2) for system Ψ (not

only the autonomous version), they build the essentials

to complete the mechanism yielding (iii). Due to (A2), a

complete counterpart for property (i) is not viable in the

present setup, and any attempt to enlarge F is worthless,

as we show in Lemma 5.

Section V addresses (II), where we show that detectability

according to Definition 1 generalizes uniform observability as

in [1], [3], [5], [12], which, by its turn, generalizes previous

observability concepts for MJLS, like those in [11]. We

also show that an earlier �2-detectability concept in [7] is

stricter than detectability. Moreover, we introduce a notion

of uniform observability in the invariant space F that serves

as a sufficient condition for (A2).

Regarding (III), in section VI we show that F⊥ is uni-

formly observable in the finite Markov chain case, which

renders condition (A2) always true. Thus, we have that

detectability is equivalent to (A1) in the finite case, allow-

ing us to show that the weak detectability in [2] and the

usual detectability concept in the deterministic linear case

are necessary and sufficient conditions (in their particular

contexts) for detectability according to Definition 1. The fact

that (A2) holds true for the case in which the Markov chain

is finite explains why no such condition appears in those

simpler scenarios. By contrast, (A2) may fail in the infinite

Markov chain case, as illustrated in Example 1.

Another important feature of the setting and results here

is that, unlike previous ones, the focus is not constrained

(i.e., is not ad hoc) to the optimal jump-linear-quadratic

(JLQ) control and/or controls in linear feedback form, where

detectability appears as a dual notion to stabilizability. It

covers any (Fk)-adapted converging control that induces

a finite cost Yu for each initial state, assuring that it is

stabilizing, and clearly encompassing the optimal solution.

In particular for the JLQ control, we show that the solution

to the associated infinite coupled algebraic Riccati equation

is unique (see section VII).

III. PRELIMINARIES

In this section we consider the autonomous version of (1),

which will be essential to relate detectability with stability

and convergence of the state trajectory (see (A1) and (A2)

in section 2). All proofs in this concise version are omitted.

We consider the autonomous version of system (1):

Ψ0 :

{
x0(k +1) = Aθ(k)x0(k), k ≥ 0,

y0(k) = Cθ(k)x0(k), x0(0) = x,θ(0) = θ .

Sometimes we refer to the autonomous system by the pair

(A,P) or by the triplet (A,C,P). In addition, in what follows,

for each i ∈Z , let Si ⊂ R
n stand for a vector subspace and

let S = {Si, i ∈ Z }.

Definition 2 (Ψ0-invariant space): Consider the

autonomous system Ψ0. We say that S is an invariant space

if x0(k) ∈ Sθ(k) implies that x0(t) ∈ Sθ(t) almost surely

(a.s.) for each t ≥ k.

Definition 3 (projections onto S ⊥): For each i ∈ Z , let

Pi ∈ Rn denote the orthogonal projection onto S ⊥
i . Clearly,

P = {Pi, i ∈ Z } ∈ H n
∞ .

Definition 4 (Ψ0-convergence): We say that x(·) con-

verges (in the �2 sense) to the Ψ0-invariant space S if

∞

∑
k=0

Ex,θ{|Pθ(k)x(k)|2} < ∞.

We say that x(·) converges if it converges to the trivial Ψ0-

invariant space S = 0.

Definition 5 (�2-stability): Consider the autonomous sys-

tem Ψ0. We say that (A,P) is �2-stable in the invariant space

S if x0(·) converges for each initial condition θ ∈ Z and

x ∈Sθ . We say that (A,P) is �2-stable if it is �2-stable in S
with Si = R

n, i ∈ Z
Notice that x(·) converges if and only if ∑∞

k=0 E{|x(k)|2}<
∞, since P = I whenever S is trivial. Also, �2-stability of

(A,P) is equivalent to convergence of x0(·) for each initial

condition θ ∈ Z and x ∈ R
n.

We will need the following property related with the

concept of �2-stability in S and the projections P.

Lemma 1: Assume that (A,P) is �2-stable in S . Then,

(A−AP,P) is �2-stable.

Let H n
1 denote the linear space formed by sequences of

matrices H = {Hi = H ′
i ≥ 0; i ∈Z } such that ∑i∈Z tr{Hi}<

∞. Let H n
F ⊂ H n

1 denote the closed cone formed by se-

quences of symmetric positive semidefinite matrices H =
{Hi = H ′

i ≥ 0; i ∈ Z }. For H,V ∈ H n
F we define the inner

product 〈H,V 〉 = ∑i∈Z tr{H ′
iVi} and the Frobenius norm

‖H‖F = 〈H, I〉. (4)

Recall from the definition of the Ψ0-invariant subspace S
that Si = {x : Pix = 0}. In connection, we define the spaces

S̄ = {H ∈ H n
F : PHP′ = 0} ⊂ H n

F and S̄ ⊥ = {H ∈ H n
F :

H−PHP′ = 0}. PHP′ is the orthogonal projection of H onto

S̄ ⊥; indeed, P inherits from Pi the property that P2 = P,

and it is easy to check that 〈PHP′,H −PHP′〉= 〈H,PHP′−
P2HP2′〉 = 0.

Definition 6 (convergence in H n
F ): We refer to conver-

gence of sequences in H n
F in the �1 sense: we say that a

sequence H(·) ∈ H n
F converges to the space S̄ whenever
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∑∞
k=0 ‖PH(k)P′‖F < ∞; we say that H(·) converges if it

converges to the trivial space S̄ = 0.

We define X(·) ∈ H n
F and U(·) ∈ H r

F as

Xi(k) = E{x(k)x(k)′1{θ(k)=i}}
Ui(k) = E{u(k)u(k)′1{θ(k)=i}} ∀i ∈ Z ,k ≥ 0,

(5)

where 1{·} is the Dirac indicator function. We write X0(·)
when we refer to the autonomous system. We define Y t,T

u
similarly to the functional Y in (2) as follows:

Y t,T
u (x,θ) = Ex,θ

{
t+T−1

∑
k=t

|y(k)|2
}

=
t+T−1

∑
k=t

(
〈X(k),C′C〉+ 〈U(k),D′D〉

)
(6)

whenever x(0) = x,θ(0) = θ ; for simplicity we write

Y t=0,T
u (x,θ) = Y T

u (x,θ) and also Y T
u≡0(x,θ) = Y T

0 (x,θ).
Using the notation above we can write Ex,θ{|x(k)|2} =

‖X(k)‖F and this provides a connection between convergence

in the �1 sense of X(·)∈H n
F with the �2 convergence of x(·).

A further connection is presented in the next lemma.

Lemma 2: x(·) converges to S if and only if X(·) con-

verges to S̄ .

Now, let us define for V ∈ H n,r
∞ the linear operator LV :

H r
F → H n

F

LVi(H) = ∑
j∈Z

p jiVjH jV
′
j . (7)

It is shown in [7] that the limit in (7) is well defined. We

denote L 0(H) = H, and for k ≥ 1, we can define L k(H) re-

cursively by L k(H) = L (L k−1(H)). Also, rσ (L ) denotes

the spectral radius of L . Operator L is related to system Ψ
as follows; the result is adapted from [7].

Proposition 1: The following assertions hold:

(i) X0(k +1) = LA(X0(k)), k ≥ 0;

(ii) (A,P) is �2-stable if and only if rσ (LA) < 1.

We finish the section with the following facts that we be-

lieve are worth mentioning. S̄ inherits from S the property

that it is a Ψ0-invariant subspace, that is, PX0(k)P′ = 0, k ≥ 0,

implies that PX0(t)P′ = 0, t ≥ k. The notion of convergence

in H n
F is usual, in the sense that a sequence H(·) ∈ H n

F
converges to the space S̄ if and only if ∑∞

k=0 infV∈S̄ ‖H(k)−
V‖F < ∞. Actually, the proof follows immediately from

the fact that for each H(k) there exists V ∈ S̄ for which

‖H(k)−V‖F = ‖PH(k)P′‖F (indeed, V = H(k)−PH(k)P′).

IV. A NECESSARY AND SUFFICIENT CONDITION FOR

DETECTABILITY

We show in section IV-A that a general state trajectory x(·)
converges if and only if there exists an invariant space S for

which: (i) (A,P) is �2-stable in S and (ii) x(·) converges to

S . In section IV-B we introduce the Ψ0-invariant space F
and we show that F is adequate to formulate the equivalence

between detectability and conditions (A1) and (A2).

A. Conditions for state convergence
Theorem 1: Consider system Ψ and assume that the input

converges. The state x(·) converges if and only if there exists

an invariant space S such that the following conditions hold:

(i) (A,P) is �2-stable in S ;

(ii) x(·) converges to S .

Proof. (Necessity.) Since x(·) converges to the origin, S =
0 trivially satisfies (i) and (ii). (Sufficiency.) omitted.

B. The main result
The first result of this section follows in a straightforward

manner from Theorem 1 and the definition of detectability.

Lemma 3: System Ψ is detectable if and only if there

exists an invariant space S such that:

(i) (A,P) is �2-stable in S ;

(ii) x(·) converges to S provided that y(·) and u(·) con-

verge.

Notice that, for S trivial, item (i) holds trivially and item

(ii) reduces to the definition of detectability. The larger the

invariant space S is, the more significant the result will be.

Along this line, we introduce the set F = {Fi, i ∈ Z } as

Fi = {x ∈ R
n : Y0(x, i) < ∞} ∀i ∈ Z (8)

and we show that F is the largest of such Ψ0-invariant space.

Lemma 4: F is a Ψ0-invariant space.

Next we show that F is the largest Ψ0-invariant space that

possibly meets the condition (i) in Lemma 3.

Lemma 5: If S is such that (A,P) is �2-stable in S , then

S ⊂ F .

And the main result of the paper is:

Theorem 2: System Ψ is detectable if and only if the

following conditions hold:

(A1) (A,P) is �2-stable in F ;

(A2) x(·) converges to F provided y(·) and u(·) converge.

Proof: (Sufficiency.) (A1) and (A2) satisfy the condi-

tions for detectability in Lemma 3.

(Necessity.) Since (A,C,P) is detectable, from Lemma 3

we have that there exists S for which (A,P) is �2-stable in

S and Lemma 5 provides that S ⊂F . Lemma 3 also yields

that x(·) converges to S provided y(·) and u(·) converges;

this fact together with the fact that S ⊂F lead immediately

to (A2).

Now, notice from the concept of detectability that, in

particular for the autonomous system Ψ0, x0(·) converges

whenever the corresponding output y(·) converges or, equiv-

alently, whenever x(0) ∈ Fθ(0). This means that (A,P) is

�2-stable in F and (A1) holds.

V. SUFFICIENT CONDITIONS FOR (A1) AND (A2)

In this section of the original paper, we deal with other

detectability and observability concepts that appear in the

literature of MJLS and we present the role that they play

as sufficient conditions (expressed entirely in terms of the

autonomous version of the system) for (A1) and (A2), and

therefore for the detectability concept here.
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VI. FINITE MJLS

Recall from the main result of the paper, Theorem 2, that

the system is detectable if and only if (A1) and (A2) hold.

In this section of the original paper, we show that (A2)

is made redundant when the Markov state space is finite,

Z = {1, . . . ,N}. This leads to the main result of the section:

(A1) is a necessary and sufficient condition for detectability,

in parallel with detectability notions for linear deterministic

systems and previous concepts for MJLS [2]. That result also

generalizes previous results in the literature, which require

that the control is in the linear state feedback form.

VII. DETECTABILITY AND THE JUMP LINEAR QUADRATIC

PROBLEM

We are concerned here with the JLQ problem, which

consists of obtaining the control u(·) that minimizes the

cost functional Yu(x,θ). We assume here with no loss of

generality that the control is in linear state feedback form,

u(k) = Gθ(k)x(k), G ∈ H r,n
∞ . Indeed, it is a well-known fact

that the optimal control is in this form; see, e.g., [7]. We

denote YG(·) = Yu(·) to emphasize the dependence on G.

A standard assumption in the JLQ problem, that

infi∈Z σ−(D′
iDi) = ξ > 0, is in force here. In this situation,

the convergence of the input and the output are directly

connected and the condition in (A2) (e.g., in Theorem 2)

related to the input is not essential; the following lemma

formalizes the result.

Lemma 6: If infi∈Z σ−(D′
iDi) = ξ > 0 and Yu(x,θ) < ∞,

then u(·) converges.

Proof: Employing (6) and the assumptions in the

lemma, we evaluate ∞ > Yu(x,θ) ≥ ∑∞
k=0〈U(k),D′D〉 ≥

ξ ∑∞
k=0 ‖U(k)‖F .

The next result establishes that a linear state feedback con-

trol is stabilizing whenever the associated cost is bounded.

Lemma 7: Assume that (A,C,P) is detectable. If G∈H r,n
∞

is such that YG(x,θ) < ∞ ∀x ∈ R
n,θ ∈ Z , then (A+BG,P)

is �2-stable.

Proof: Consider the system Ψ in closed loop form with

u(k) = Gθ(k)x(k),{
x(k +1) = (Aθ(k) +Bθ(k)Gθ(k))x(k), k ≥ 0,

y(k) = (Cθ(k) +Dθ(k)Gθ(k))x(k).
(9)

For each initial condition x ∈ R
n and θ ∈ Z we have from

the lemma that Yu(x,θ) = YG(x,θ) < ∞, which means that

the associated output y(·) converges; moreover, Lemma 6

provides that u(·) converges. In this situation, detectability

yields that x(·) converges, and we conclude that (A+BG,P)
is �2-stable.

In what follows, we consider the infinite coupled algebraic

Riccati equations (ICARE) in the unknown R ∈ H n
F that

arises in the JLQ problem (see, e.g., [7]):

0 =
(
Ai +BiGi

)′ ∑
j∈Z

pi jR j
(
Ai +BiGi

)
+C′

iCi +G′
iD

′
iDiGi,

(10)

Gi = −
(

D′
iDi +B′

i ∑
j∈Z

pi jR jBi

)−1

B′
i ∑

j∈Z

pi jR jAi, i ∈ Z .

(11)

The following results are adapted from [7].

Proposition 2: Assume that R ∈ H n
F satisfies the ICARE

(10)–(11). The following assertions hold:

(i) YG(x,θ) ≤ x′Rθ x;

(ii) If (A+BG,P) is �2-stable, then R ∈ H n
∞ is the unique

solution of the ICARE. Moreover, the solution of the

JLQ problem is u(k) = Gθ(k)x(k), where G is given by

(11).

Theorem 3: Assume that (A,C,P) is detectable according

to Definition 1. Then, the ICARE has at most one solution.

Moreover, if R ∈ H n
F is the solution of the ICARE, then

(A+BG,P) is �2-stable with the optimal control (11).

Proof: Let R ∈ H n
F be a solution of the ICARE. From

Proposition 2 (i) we have that YG(x,θ)≤ x′Rθ x, for each x,θ ,

and Lemma 7 provides that (A+BG,P) is �2-stable. Hence,

Proposition 2 (ii) yields that R is the unique solution of the

ICARE and the optimal control is given by (11).

Remark 1: The results in this section generalize previous

result in [7] from the fact that detectability here generalizes

the �2-detectability notion employed there.

VIII. EXAMPLES

This section in the original paper contains an example

showing that (A2) does not necessarily hold for MJLS with

infinite countably Markov chain. Another example shows that

the detectability notion according to Definition 1 depends on

the collections of matrices B and D, and thus it cannot be

related to the autonomous version Ψ0 only. A third example

shows that the detectability concept generalizes the earlier

�2-detectability and uniform observability concepts. Here we

present the first example only.

Example 1: This example illustrates that (A2) does not

necessarily hold true for MJLS with infinite countably

Markov chain. Indeed, we present a system for which the

state trajectory does not converge to F under converging

input and output.

Assume that pi i+1 = 1, i ∈ Z , in such a manner that

θ(k) = k + i a.s. whenever θ(0) = i. Let n = 1, Ai = Bi =
1, Di = 0, i ∈ Z . As regards to C ∈ H 1

F , we set C1 = 0

and Ci = (i − 1)−1/2, i ≥ 2, in order to get that Cθ(k) =
(k + i−1)−1/2, k ≥ 1.

It is simple to check for the autonomous system that

Y0(x,θ) = ∑∞
k=0 x2/(k + i−1), which converges if and only

if x = 0, thus leading to F = 0.
Now, for simplicity, we consider fixed initial conditions

x = 1 and θ = 1. Consider the control given by u(0) = 0 and
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u(k) = (k +1)−1/2 − k−1/2, k ≥ 1. We get that x(k) = k−1/2,

k ≥ 1 is the corresponding trajectory. It is a simple matter to

check that (see [16, Chap. 2.6])

Ex,θ

{
∞

∑
k=0

|u(k)|2
}

=
∞

∑
k=1

(k1/2 − (k +1)1/2)2

k(k +1)
≤

∞

∑
k=1

1

k(k +1)
,

(12)

the last series converges to one and we have that the input

converges. As regards to the output, we first evaluate

E

{
∞

∑
k=0

x(k)′C′
θ(k)Cθ(k)x(k)|x = θ = 1

}
=

∞

∑
k=1

1

k4×1/2

=
∞

∑
k=1

1

k2 ≤
∞

∑
k=0

1

2k ≤ 2, (13)

where, in the last inequality, we employed the evaluation

in [16, Chap. 3.1]). Together with (12), they provide that

Y (1,1) ≤ 3, which means that the output converges. How-

ever, we can also write that

Ex,θ

{
∞

∑
k=0

|x(k)|2
}

=
∞

∑
k=0

1

k
= ∞,

and the state does not converge to the trivial F . Thus, (A2)

does not hold and the system is not detectable.

IX. CONCLUSIONS

This paper deals with detectability for discrete-time

Markov jump linear systems with countably infinite Markov

state. Beginning with Definition 1, which expresses an idea

that at same time is purposeful and captures the abstract

notion of detectability, we show that it can be written down

in terms of conditions (A1) and (A2). Condition (A1) alone

refers to the autonomous systems and its behavior within the

invariant space F . It is reminiscent of detectability concepts

related with finite dimensional linear systems. Condition (A2)

refers to the complete system Ψ and its behavior within set

F⊥. It comes as an essential condition, connected to the fact

that the observed part of the autonomous system, represented

by F⊥, may not be uniformly observable, contrary to the

finite dimensional case. Example 1 shows that (A2) may fail

in the infinite Markov state case. This clarifies that, unlike the

finite dimensional contexts, the detectability notion yielding

property (i) (stated in section I) cannot be expressed in terms

of the parameters of the autonomous version Ψ0; thus, (iii)

cannot be completely reproduced.

Finally, although the analysis here concludes a circle of

ideas toward detectability of MJLS, which has began in [1],

[3], we believe that the approach via invariant subspaces

proposed here may be useful elsewhere, in contexts such as

nonlinear systems or other infinite dimensional systems.
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