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Abstract— This paper presents a robustification algorithm
for the optimal controller for unobserved linear system states
with input delay, linear observations with delay confused with
white Gaussian noises, and a quadratic criterion, which is based
on integral sliding mode compensation of disturbances. The
general principles of the integral sliding mode compensator
design are modified to yield the basic control algorithm oriented
to time-delay systems, which is then applied to robustify the
optimal controller. As a result, the sliding mode compensating
control leading to suppression of the disturbances from the
initial time moment is designed. The obtained robust control
algorithm is verified by simulations in the illustrative example.

I. INTRODUCTION

This paper presents an integral sliding mode algorithm
for robustifying the optimal controller for unobserved linear
system states with input delay over linear delayed observa-
tions. The integral sliding mode technique was introduced
as a method for disturbance suppression from the very
beginning of the system functioning [1], [2] and has been
successfully applied to robustification of some optimal filters
and regulators for time delay systems in [3], [4], [5], where
a detailed comment on the up-to-date state of the control and
filtering theory for time delay systems has also been given.
Comprehensive reviews of theory and algorithms for time
delay systems can be found in [6], [7], [8], [9], [10].

The principal result of this paper is the design of an
integral sliding mode regulator robustifying the obtained
optimal controller for linear systems with input and obser-
vation delays and a quadratic criterion, which has recently
been obtained in [11], [12], [13]. The idea is to add two
compensators, one to the known optimal control and another
to the observation process, to suppress external disturbances
in the state and observation equations, respectively, that
deteriorate the optimal system behavior. The integral sliding
mode compensators are realized as relay controls in a such
way that the sliding mode motion starts from the initial
moment, thus eliminating the external disturbances from the
beginning of system functioning [1], [2]. This constitutes the
crucial advantage of the integral sliding modes in comparison
to the conventional ones. Other original modifications of
the sliding mode control technique applicable to disturbance
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suppression were suggested in [14], [15]. Note that in the
framework of this modified (in comparison to [4], [5])
integral sliding mode approach, the optimal control is not
required to be differentiable and the sliding mode manifold
matrix is always invertible. It should be also noted that
the compensator in the state equation can simultaneously
suppress observation disturbances, as well as the observation
compensator can simultaneously suppress state disturbances,
if certain matching conditions hold.

The paper is organized as follows. In Section 2, the
optimal controller problem is stated and its solution is
given for unobserved linear system states with input delay,
linear observations with delay confused with white Gaussian
noises, and a quadratic criterion. Section 3 outlines the
general principles of the integral sliding mode compensator
design, which yield the basic control algorithm oriented to
time-delay systems. This basic algorithm is then applied to
robustify the optimal controller. As a result, two integral
sliding mode control compensators are designed in Section
4 to suppress the disturbances in state and observation
equations, respectively, from the initial time moment. Section
5 presents an example illustrating the quality of simultaneous
disturbance suppression in state and observation equations,
provided by the robust integral sliding mode control com-
pensator in the observation equation only, in comparison
to performance the optimal controller in the presence of
disturbances. Satisfactory results are obtained.

II. OPTIMAL CONTROLLER PROBLEM

Let ( ,F,P) be a complete probability space with an
increasing right-continuous family of -algebras Ft , t ≥ 0,
and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-
dent Wiener processes. The partially observed Ft -measurable
random process (x(t),y(t)) is described by delay-differential
equations for the system state

dx(t) = a(t)x(t)dt +B(t)u(t− )dt +b(t)dW1(t), (1)

with the initial condition x(s) = (s), s ∈ [t0− , t0], and the
observation process

dy(t) = (A0(t)+A(t)x(t−h))dt +F(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control
input, y(t) ∈ Rp is the observation process, (s) is a mean
square piecewise-continuous Gaussian stochastic process
(see [16] for definition) given in the interval [t0− , t0] such
that (s), W1(t), and W2(t) are independent.

The observation process y(t) depends on the delayed state
x(t − h), where h is an observation delay, which assumes
that collection of information on the system state for the
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observation purposes is possible only after a certain time h.
It is assumed that A(t) is a nonzero matrix and F(t)FT (t)
is a positive definite matrix. All coefficients in (1)–(2)
are deterministic functions of appropriate dimensions. The
quadratic cost function J to be minimized is defined as
follows

J = E[
1
2
xT (T ) x(T )+ (3)

1
2

∫ T

t0

uT (s)R(s)u(s)ds+
1
2

∫ T

t0

xT (s)L(s)x(s)ds],

where K is positive definite and , L are nonnegative definite
symmetric matrices, T > t0 is a certain time moment, the
symbol E[ f (x)] means the expectation (mean) of a function
f of a random variable x, and aT denotes transpose to a
vector (matrix) a.

The optimal controller problem is to find the control
u∗(t), t ∈ [

t0,T
]
, that minimizes the criterion J along with

the unobserved trajectory x∗(t), t ∈ [
t0,T

]
, generated upon

substituting u∗(t) into the state equation (1).
The following solution to this problem was obtained (see

[11], [12], [13]). The optimal control law is given by

u∗(t − ) = (R(t))−1BT (t)exp(−
∫ t

t−
aT (s)ds)Q(t)m(t − ),

(4)
where matrix function Q(t) is the solution of the Riccati
equation

Q̇(t) = −aT (t)Q(t)−Q(t)a(t)+L(t)−Q(t)× (5)

exp(−
∫ t

t−
a(s)ds)B(t)R−1(t)BT (t)exp(−

∫ t

t−
aT (s)ds)Q(t),

with the terminal condition Q(T ) = . Upon substituting
the optimal control (4) into the optimal estimate equation,
the following optimally controlled state estimate equation is
obtained

dm(t) = (a(t)m(t)+B(t)(R(t)−1BT (t)exp(−
∫ t

t−
aT (s)ds)×

(6)

Q(t)m(t− ))dt +P(t)exp(−
∫ t

t−h
aT (s)ds)×

AT (t)(F(t)FT (t))−1(dy(t)− (A0(t)+A(t)m(t−h))dt),

with the initial condition m(s) = E( (s)), s ∈ [t0− , t0) and
m(t0) = E( (t0) |FY

t0
), s = t0, where the error variance matrix

P(t) satisfies the Riccati equation

dP(t) = (P(t)aT (t)+a(t)P(t)+b(t)bT (t)− (7)

P(t)exp(−
∫ t

t−h
aT (s)ds)AT (t)

(
F(t)FT (t)

)−1×

A(t)exp(−
∫ t

t−h
a(s)ds)P(t))dt.

with the initial condition P(t0) = E((x(t0)−m(t0))(x(t0)−
m(t0))

T | y(t0)).
Thus, the optimally controlled state estimate equation (6),

the gain matrix constituent equation (5), the optimal control
law (4), and the variance equation (7) give the complete
solution to the optimal controller problem for unobserved
states of linear systems with control and observation delays.

III. ROBUST CONTROL PROBLEM

In practical applications, a control system operates under
uncertainty conditions that may be generated by parameter
variations or external disturbances. Consider a real trajectory
of the disturbed control system

ẋ(t) = f (x(t))+B(t)u+g1(x(t), t)+g2(x(t − ), t). (8)

Here u ∈ Rm is the control input, the rank of matrix B(t) is
complete and equal to m for any t > t0, and the pseudoinverse
matrix of B is uniformly bounded:

‖B+(t)‖≤ b+, b+ = const > 0, B+(t) := [BT (t)B(t)]−1BT (t),

and B+(t)B(t) = I, where I is the m-dimensional identity
matrix. Uncertain inputs g1 and g2 represent smooth distur-
bances corresponding to perturbations and nonlinearities in
the system. For g1,g2, the standard matching conditions are
assumed to be held: g1,g2 ∈ spanB, or, in other words, there
exist smooth functions 1, 2 such that

g1(x(t), t) = B(t) 1(x(t), t), (9)

g2(x(t − ), t) = B(t) 2(x(t − ), t),

|| 1(x(t), t)|| ≤ q1||x(t)||+ p1, q1, p1 > 0,

|| 2(x(t − ), t)|| ≤ q2||x(t− )||+ p2, q2, p2 > 0.

The last two conditions provide reasonable restrictions on
the growth of the uncertainties.

Let us also consider the nominal control system

ẋ0(t) = f (x0(t))+B(t)u0(x0(t− ), t), (10)

where a certain delay-dependent control law u0(x(t − ), t)
is realized. The problem is to reproduce the nominal state
motion determined by (10) in the disturbed control system
(8).

The following initial conditions are assumed for the sys-
tem (10)

x(s) = (s), (11)

where (s) is a piecewise continuous function given in the
interval [t0 − , t0].

Thus, the control problem now consists in robustification
of control design in the nominal system (10) with respect to
uncertainties g1,g2: to find such a control law u = u0(x(t −
), t) + u1(t) that the disturbed trajectories (8) with initial

conditions (11) coincide with the nominal trajectories (10)
with the same initial conditions (11).

A. Design principles for state disturbance compensator

Let us design the control law for (8) in the form

u(t) = u0(x(t − ), t)+u1(t), (12)

where u0(x(t − ), t) is the nominal feedback control de-
signed for (10), and u1(t)∈Rm is the relay control generating
the integral sliding mode in some auxiliary space to reject
uncertainties g1,g2. Substitution of the control law (12) into
the system (8) yields

ẋ(t) = f (x(t))+B(t)u0(x(t − ), t)+B(t)u1(t)+ (13)
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g1(x(t), t)+g2(x(t − ), t).

Define the auxiliary function

s(t) = z(t)+ s0(x(t), t), (14)

where s0(x(t), t) = B+(t)x(t), and z(t) is an auxiliary variable
defined below. Then,

ṡ(t) = ż(t)+G(t)[ f (x(t))+B(t)u0(x(t− ), t)+ (15)

B( 1(x(t), t))+ 2(x(t− ), t))+B(t)u1(t)]+( s0(x(t), t)/ t),

G(t) = s0(x(t), t)/ x = B+(t) and s0(x(t), t)/ t =
(d(B+(t))/dt)x(t). Note that in the framework of this modi-
fied (with respect to [4], [5]) integral sliding mode approach,
the optimal control u0(x(t)) is not required to be differen-
tiable and the sliding mode manifold matrix GB = B+B = I
is always invertible.

The philosophy of integral sliding mode control is the
following: in order to achieve x(t) = x0(t) at all t ∈ [t0, ),
the sliding mode should be organized on the surface s(t),
since the following disturbance compensation should have
been obtained in the sliding mode motion

B+(t)B(t)u1eq(t) =

−B+(t)B(t) 1(x(t), t)−B+(t)B(t) 2(x(t −h), t),

that is
u1eq(t) = − 1(x(t), t)− 2(x(t −h), t).

Note that the equivalent control u1eq(t) can be unambigu-
ously determined from the last equality and the initial
condition for x(t).

Define the auxiliary variable z(t) as the solution to the
differential equation

ż(t) = −B+(t)[ f (x(t))+B(t)u0(x(t− ), t)]+

d((B+(t))/dt)x(t),

with the initial condition z(0) = −s0(0) = −B+(0) (0).
Then, the sliding manifold equation takes the form

ṡ(t) = B+(t)[B(t)( 1(x(t), t))+ 2(x(t− ), t))+B(t)u1(t)] =

= 1(x(t), t)+ 2(x(t − ), t)+u1(t) = 0.

Finally, to realize sliding mode, the relay control is de-
signed

u1(t) = −M(x(t),x(t− ), t)sign[s(t)], (16)

M = q(||x(t)||+ ||x(t− )||)+ p,

q > q1,q2, p > p1 + p2.
The convergence to and along the sliding mode mani-

fold s(t) = 0 is assured by the Lyapunov function V (t) =
sT (t)s(t)/2 for the system (9) with the control input u1(t) of
(16):

V̇ (t) = sT (t)[ 1(x(t), t)+ 2(x(t −h), t)+u1(t)] ≤
−|s(t)|([q(||x(t)||+ ||x(t− )||)+ p]+

[ 1(x(t), t)+ 2(x(t − ), t)]) < 0,

where |s(t)| =
m

i=1
|si(t)|.

B. Design principles for observation disturbance compen-
sator

Let the observation process (2) be corrupted with unknown
disturbances

dy(t) = (A0(t)+A(t)x(t−h))dt +F(t)dW2(t)+ (17)

(k1(x(t), t)+ k2(x(t −h), t))dt,

where k1(x(t), t) and k2(x(t − h), t) are non-Gaussian and,
possibly, deterministic noises not bearing any useful infor-
mation and depending on the current and delayed states. Such
disturbances obviously deteriorate the quality of estimation
and should be eliminated.

For this purpose, assume that the disturbances satisfy the
following conditions (note that no matching conditions are
assumed)

||k1(x(t), t)|| ≤ q3||x(t)||+ p3, q3, p3 > 0,

||k2(x(t −h), t)|| ≤ q4||x(t−h)||+ p4, q4, p4 > 0,

providing reasonable restrictions on their growth.
The observation process (17) consists of the useful and

parasitic parts, y(t) = yu(t)+ yp(t), where dyu(t) = (A0(t)+
A(t)x(t − h))dt + B(t)dW2(t) and dyp(t) = (g1(x(t), t) +
g2(x(t − h), t))dt. If only the useful signal yu(t) is present,
the optimal filter based on the observations yu(t) yields the
desirable estimate mu(t) for the unobserved state x(t). At
this point, the problem is to suggest a tuning adjustment
y1(t) that, being added to the actual observations y(t) =
yu(t) + yp(t), compensates for observation disturbances k1,
k2.

The following sliding mode technique solves this prob-
lem: define the sliding manifold s(t) as s(t) = z(t)+ s0(t),
where s0(t) = m(t) and z(t) is an auxiliary variable to be
assigned. The condition of motion along the sliding manifold,
ds(t)/dt = 0, yields:

ds(t) = dz(t)+(E( f (x(t)) | FY
t0

)+B(t)u(t− ))dt+ (18)

C(t)[dy(t)− (A0(t)+A(t)m(t−h))dt + y1(t)dt] = 0,

where y(t) is the disturbed observation process (17), C(t) =
P(t)exp(−∫ t

t−h aT (s)ds) AT (t) (F(t)FT (t))−1 is the filter
gain matrix, and y1(t) is the tuning adjustment to observa-
tions, whose values on the sliding manifold are denoted by
y1eq(t). The value of the tuning adjustment on the sliding
manifold must be equal to

y1eq(t) = −(k1(x(t), t)+ k2(x(t −h), t)),

thus compensating for unknown disturbances. In doing so,
in view of ds(t)/dt = dz(t)/dt + ds0(t)/dt, the auxiliary
variable z(t) is assigned by the equation

dz(t) = (−E( f (x(t)) | FY
t0

)−B(t)u(t− ))dt− (19)

C(t)[dyu(t)− (A0(t)+A(t)m(t−h))dt],

with the initial condition z(0) = −s0(0) = −m(0), where
yu(t) is an average of some a priori known realizations
of the useful signal. Thus, the estimate m(t) based on the
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disturbed observations with compensator y(t) + y1(t) and
the desired estimate mu(t) coincide in the mean square as
random variables on the sliding manifold s(t) = 0, and the
sliding manifold equation takes the form

ṡ(t) = k1(x(t), t)+ k2(x(t −h), t)+ y1eq(t) = 0,

thus assuring compensation of the observation disturbances.
Finally, to realize sliding mode, the relay compensator

control is designed

y1(t) = −M(x(t),x(t−h), t))sign[s(t)], (20)

where M = q̃(||x(t)||+ ||x(t−h)||)+ p̃, q̃ > q3,q4, p̃ > p3 +
p4. The mean square convergence to and along the sliding
mode manifold is proved using the same Lyapunov function
as in the preceding subsection.

IV. ROBUST SLIDING MODE CONTROLLER DESIGN FOR

LINEAR SYSTEM WITH INPUT AND OBSERVATION DELAYS

Consider the disturbed state equation (1), whose behavior
is affected by uncertainties g1,g2, presenting perturbations
and nonlinearities in the system

dx(t) = a(t)x(t)dt +B(t)u(t− )dt+ (21)

b(t)dW1(t)+g1(x(t), t)+g2(x(t −h), t),

with the initial condition x(s) = (s), s ∈ [t0− , t0], and the
observation equation (2), which is now affected by uncer-
tainties k1,k2, presenting perturbations and nonlinearities in
the observations (2)

dy(t) = (A0(t)+A(t)x(t−h))dt +F(t)dW2(t)+ (22)

(k1(x(t), t)+ k2(x(t −h), t))dt.

It is also assumed that the uncertainties satisfy the standard
matching and growth conditions (9) given in Section 3, and
the quadratic cost function (2) is the same as in Section 2.

The optimally controlled estimate equation (7) for the state
(21) over the observations (22) takes the form

dm(t) = (a(t)m(t)+B(t)(R(t)−1BT (t)× (23)

exp(−
∫ t

t−
aT (s)ds)Q(t)m(t− )+Bg1(x(t), t)+

Bg2(x(t −h), t))dt +P(t)exp(−
∫ t

t−h
aT (s)ds)AT (t)×

(F(t)FT (t))−1(dy(t)− (A0(t)+A(t)m(t−h))dt),

with the initial condition m(s) = E( (s)), s ∈ [t0− , t0) and
m(t0) = E( (t0) | FY

t0
), s = t0.

The problem is to robustify the obtained optimal controller
(4)–(7), using the methods specified by (14)–(16) and (18)–
(20). First, define the new control (12) as follows: u(t) =
u0(x(t − ), t) + u1(t), where the optimal control u0(x(t −
), t) coincides with (4) and the robustifying component u1(t)

is obtained according to (16)

u1(t) = −M(x(t),x(t− ), t)sign[s(t)],

M = q(||x(t)||+ ||x(t− )||)+ p,

q > q1,q2, p > p1 + p2. Consequently, the sliding mode
manifold function s(t) is defined as s(t) = z(t)+ s0(x(t), t),
where s0(m(t), t) = B+(t)m(t), and the auxiliary variable z(t)
satisfies the delay differential equation

dz(t) = −B+(t)[a(t)m(t)dt+

B(t)(R(t)−1BT (t)exp(−
∫ t

t−
aT (s)ds)Q(t)m(t− )dt+

C(t)(dy(t)− (A0(t)+A(t)m(t−h))dt)],

with the initial condition z(0) =−B+(0) (0)), where C(t) =
P(t) exp(−∫ t

t−h aT (s)ds) AT (t) (F(t)FT (t))−1.
Note that the compensator u1(t) introduced at this step

can also compensate for observation disturbances k1,k2, if
the filter gain matrix C(t) belongs to the matrix B(t) span,
i.e., C(t) = B(t)M(t). This fact readily follows from the
sliding mode equation (15) and the structure of the disturbed
controlled estimate equation (23).

Thus, the introduced control u1(t) can compensate for
state disturbances g1,g2 and observation disturbances k1,k2,
if the matching condition C(t) = B(t)M(t) holds. However,
the compensator (20) should still be applied to compensate
for observation disturbances in the unmatched case. For this
purpose, define the new observation process y(t) + y1(t),
where y(t) are actual observations, and the robustifying
component y1(t) is obtained according to (20)

y1(t) = −M(x(t),x(t−h), t))sign[s(t)],

where M = q̃(||x(t)||+ ||x(t−h)||)+ p̃, q̃ > q3,q4, p̃ > p3 +
p4. Consequently, the sliding mode manifold function s(t)
is defined as s(t) = z(t)+ s0(t), where s0(t) = m(t), and the
auxiliary variable z(t) satisfies the delay differential equation

dz(t) = (−a(t)m(t)−

B(t)(R(t)−1BT (t)exp(−
∫ t

t−
aT (s)ds)Q(t)m(t− ))dt−

C(t)[dyu(t)− (A0(t)+A(t)m(t−h))dt],

with the initial condition z(0) = −s0(0) = −m(0). The
undisturbed observations yu(t) could be determined from
the nominal system corresponding to (21),(22), where all
disturbances and white noises are absent and the initial
condition for (21) coincides with m0.

Note that the compensator y1(t) introduced at this step
can also compensate for state disturbances g1,g2, if the state
disturbances satisfy the matching conditions with the filter
gain matrix C(t), i.e.,

g1(x(t), t) = C(t) 1(x(t), t),

g2(x(t −h), t) = C(t) 2(x(t −h), t).

This fact readily follows from the sliding mode equation
(18) and the structure of the disturbed controlled estimate
equation (23). A case of joint compensation of state and ob-
servation disturbances using the only observation disturbance
compensator (20) is presented in the next section.
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V. EXAMPLE

Let us consider a scalar linear system

ẋ(t) = x(t)+u(t−0.1), x(s) = (s), s ∈ [−0.1,0], (24)

where (s) = N(0,1) for s ∈ [−0.1,0], and N(0,1) is a
Gaussian random variable with zero mean and unit variance.
The observation process is given by

y(t) = x(t −0.2)+ (t), (25)

where (t) is a white Gaussian noise, which is the weak
mean square derivative of a standard Wiener process (see
[16]). The equations (24) and (25) present the conventional
form for the equations (1) and (2), which is actually used in
practice [17].

The control problem is to find the control u(t), t ∈ [0,T ],
that minimizes the criterion

J = E{1
2
[x(T )− x∗]2 +

1
2

∫ T

0
u2(t)dt}, (26)

where T = 0.45, and x∗ = 25 is a large value of x(t), which
would a priori be unreachable for the optimally controlled
system at the time T . In other words, the control problem is
to maximize the unobserved state x(t) using the minimum
energy of control u.

Let us apply the optimal controller (4)–(7) for linear
systems with control and observation delays to the sys-
tem (24),(25). Since exp(−∫ t

t−h aT (s)ds) = exp(−0.2) and
exp(−∫ t

t− aT (s)ds) = exp(−0.1), the control law (4) takes
the form

u∗(t−0.1) = (exp(−0.1))Q(t)m(t−0.1), (27)

where
ṁ(t) = m(t)+u(t−0.1)+ (28)

(exp(−0.2))P(t)(y(t)−m(t−0.2)),

m(s) = 0, s < 0, m(0) = m0,

Q̇(t) = −2Q(t)− (exp(−0.1)Q(t))2, Q(0.45) = 1, (29)

Ṗ(t) = 2P(t)− (exp(−0.2)P(t))2, P(0) = P0. (30)

Upon substituting the control (27) into (28), the optimally
controlled estimate equation takes the form

ṁ(t) = m(t)+(exp(−0.1))Q(t)m(t−0.1)+ (31)

(exp(−0.2))P(t)(y(t)−m(t−0.2)),

m(s) = 0, s < 0, m(0) = m0.

For numerical simulation of the system (24),(25), the
initial value x(0) = 0.05 is assigned for realization of the
Gaussian variable x(0) = (0) in (24), the values m0 = 1.9
and P0 = 10 are assigned as the initial conditions of the
estimate m(t) and the filter gain P(t), respectively, and the
disturbance (t) in (25) is realized using the built-in MatLab
white noise function.

The results of applying the controller (4)–(7) to the system
(24),(25) are shown in Fig. 1, which presents the graphs of
the state (24) x(t) controlled by (27), the controlled estimate

(31) m(t), the criterion (26) J(t), the control (27) u∗(t), the
variance (30) P(t), and the control gain (29) Q(t), in the
interval [0,T ]. The values of the state (24), the controlled
estimate (28), and the criterion (26) at the final moment T =
0.45 are x(0.45) = 6.87, m(0.45) = 6.876, and J(0.45) =
215.43.

The next task is to introduce state and observation distur-
bances into the controlled system (24). These disturbances
are realized as a constant: g(t) = k(t) = 100. The match-
ing conditions are valid, because state x(t), control u(t),
and observations y(t) have the same dimension: dim(x) =
dim(u) = dim(y) = 1. The restrictions on the disturbance
growth hold with q1 = q2 = p2 = q3 = q4 = p4 = 0 and
p1 = p3 = 100, since ||g(t)|| = ||k(t)|| = 100. The disturbed
controller equation (31) takes the form

ṁ(t) = m(t)+(exp(−0.1))Q(t)m(t−0.1)+100+ (32)

(exp(−0.2))P(t)(y(t)−m(t−0.2)+100),

m(s) = 0, s < 0, m(0) = m0.

The system behavior significantly deteriorates upon in-
troducing the disturbances. Figure 2 presents the graphs
of the state (24) x(t) controlled by (27), the controlled
estimate (32) m(t), the criterion (26) J(t), and the control
(27) u(t), in the interval [0,T ]. The value of the state (24),
the controlled estimate (32) and the criterion (26) at the final
moment T = 0.45 are x(0.45) = 255.7, m(0.45) = 511, and
J(0.45) = 96660. The deterioration of the criterion value in
comparison to that obtained using the optimal controller (28)
is more than 300 times.

Let us finally design the robust integral sliding mode
observation disturbance compensator for the introduced dis-
turbances. The new controlled state equation should be

ṁ(t) = m(t)+(exp(−0.1))Q(t)m(t−0.1)+100+ (33)

(exp(−0.2))P(t)(y(t)−m(t−0.2)+100+ y1(t)),

m(s) = 0, s < 0, m(0) = m0.

where the compensator y1(t) is obtained according to (24)

y1(t) = −M(x(t),x(t−h), t)sign[s(t)], (34)

and M = 230.4 > p1(exp(0.2))( max
t≤0.45

(P−1(t))) + p3. The

sliding mode manifold s(t) is defined by s(t) = z(t)+ s0(t),
where s0(t) = m(t).

The auxiliary variable z(t) satisfies the delay differential
equation

ż(t) = −m(t)− (exp(−0.1))Q(t)m(t−0.1)−
(exp(−0.2))P(t)(yu(t)−m(t−0.2)),

with the initial condition z(0) = −m(0) = −1.9, where
the undisturbed observations yu(t) are determined from the
undisturbed system (24),(25)

ẋu(t) = x(t)+(exp(−0.1))Q(t)xu(t−0.1),

yu(t) = xu(t−0.2),

1957



with the initial condition xu(s) = 0, s < 0, xu(0) = m0.
Upon introducing the compensator (34) into the controller

equation (33), the controlled estimate behavior is very much
improved. Figure 3 presents the graphs of of the state (24)
x(t) controlled by (27), the controlled estimate (33) m(t), the
criterion (26) J(t), and the control (27) u(t), after applying
the compensator (34), in the interval [0,T ]. The value of
the state (24), the controlled estimate (33) and the criterion
(26) at the final moment T = 0.45 are x(0.45) = 8.087,
m(0.45) = 8.066, and J(0.45) = 215.31. Thus, the values of
the criterion and state after applying the compensator (43)
are even better than those for the controller (31), although
approximation of the true state by the estimate m(t) is a
bit worse. This phenomenon is produced by difference in
random realizations of the observation white noise in (25) in
both cases.
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Fig. 1. Graphs of the state (24) x(t) controlled by the optimal linear
regulator (27) designed for systems with input and observation delays, the
controlled estimate (31) m(t), the criterion (26) J(t), the control (27) u∗(t),
the variance (30) P(t), and the control gain (29) Q(t), in the interval [0,0.45].
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Fig. 2. Controlled system in the presence of disturbance. Graphs of
the disturbed state (24) x(t), the disturbed controlled estimate (32) m(t),
the disturbed criterion (26) J(t), and the disturbed control (27) u(t) in the
interval [0,0.45].
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Fig. 3. Controlled system after applying robust integral sliding mode
compensator. Graphs of the compensated state (24) x(t), the compensated
controlled estimate (33) m(t), the compensated criterion (26) J(t), and the
compensated control (27) u(t) in the interval [0,0.45].
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