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Abstract— A detailed study on the stability and design of
decentralized Receding Horizon Control (RHC) schemes for
decoupled systems is presented. An optimal control problem is
formulated for a set of decoupled dynamical systems where cost
function and constraints couple the dynamical behavior of the
systems. The coupling is described through a connected graph
where each system is a node and, cost and constraints of the
optimization problem associated to each node are only function
of its state and the states of its neighbors. The complexity
of the problem is addressed by breaking a centralized RHC
controller into distinct RHC controllers of smaller sizes. Each
RHC controller is associated to a different node and computes
the local control inputs based only on the states of the node
and of its neighbors. Stability of the decentralized scheme
is analyzed and its properties are compared with alternative
decentralized RHC approaches being proposed in the literature.

I. INTRODUCTION

Research on decentralized control dates back to the pio-
neering work of [1] and since then, the interest has grown
significantly due to various results that attempt to reduce the
complexity of the problem [2], [3]. Decentralized control
techniques today can be found in a broad spectrum of
applications ranging from robotics and formation flight to
civil engineering.

Approaches to decentralized control design differ from
each other in the assumptions they make on: (i) the kind
of interaction between different systems or different compo-
nents of the same system (dynamics, constraints, objective),
(ii) the model of the system (linear, nonlinear, constrained,
continuous-time, discrete-time), (iii) the model of informa-
tion exchange between the systems, and (iv) the control
design technique used. Dynamically coupled systems have
been the most studied.

In this paper, we focus on decoupled systems. In a descrip-
tive way, the problem of decentralized control for decoupled
systems can be formulated as follows. A dynamical system is
composed of (or can be decomposed into) distinct dynamical
subsystems that can be independently actuated. The subsys-
tems are dynamically decoupled but have common objectives
and constraints which make them interact between each
other. Typically the interaction is local, i.e. the objective and
the constraints of a subsystem are function of only a subset of
other subsystems’ states. The interaction will be represented
by an “interaction graph”, where the nodes represent the
subsystems and an arc between two nodes denotes a coupling
term in the objectives and/or in the constraints associated to
the nodes. Also, typically it is assumed that the exchange
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of information has a special structure, i.e., it is assumed
that each subsystem can sense and/or exchange information
with only a subset of other subsystems. Often the interaction
graph and the information exchange graph coincide. A
decentralized control scheme consists of distinct controllers,
one for each subsystem, where the inputs to each subsystem
are computed only based on local information, i.e. on the
states of the subsystem and its neighbors.

Our interest in decentralized control for dynamically de-
coupled systems arises from the abundance of networks of
independently actuated systems and the necessity of avoid-
ing centralized design when this becomes computationally
prohibitive. Networks of vehicles in formation, production
units in a power plant, network of cameras at an airport,
mechanical actuators for deforming surface are just a few ex-
amples. Other application examples and current approaches
for decentralized control design can be found in [3]–[6].

In this paper we make use of Receding Horizon Control
(RHC) schemes. The main idea of RHC is to use the model
of the plant to predict the future evolution of the system [7].
Based on this prediction, at each time step t a certain
performance index is optimized under operating constraints
with respect to a sequence of future input moves. The first
of such optimal moves is the control action applied to the
plant at time t. At time t + 1, a new optimization is solved
over a shifted prediction horizon.

The complexity of large scale control problems is usually
approached by using decentralization. The work in this paper
investigates decentralized RHC for decoupled systems [8]. A
centralized RHC controller is broken into distinct RHC con-
trollers of smaller sizes. Each RHC controller is associated to
a different node and computes the local control inputs based
only on the states of the node and of its neighbors.

We first present a systematic and rigorous mathematical
framework which takes explicitly into account constraints
and uses the model of the neighbors to predict their behavior.
Along with the benefits of a decentralized design, inherent
issues in ensuring stability and feasibility of the system have
to be faced. Local RHC designs might lead to instability of
the entire system due to the mismatch of predictions that
neighboring subsystems make about each other. Moreover,
a critical issue in decentralized RHC schemes is that the
inputs computed locally are, in general, not guaranteed to be
globally feasible for the overall team. As in classical RHC
design, one can enforce stability and feasibility in different
ways such as modifying cost and constraints. In decentralized
RHC schemes the communications structure and exchange of
information between local controllers is an additional degree
of freedom which can be used for such goal. To this end, a
detailed study of stability properties of the proposed decen-
tralized scheme is presented. We also use our framework
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to analyze stability properties of alternative decentralized
RHC approaches being proposed in the literature [8]–[12]. In
particular, the importance of information exchange between
neighbors is highlighted and its role in stabilizing the entire
system is investigated.

The framework presented in this paper has been applied in
simulation to a number of large scale control problems with
success. References to formation flight application examples
using a hovering ducted-fan unmanned air vehicle can be
found in [8], [13], [14]. The proposed scheme has also been
applied to a paper machine control problem as described in
[13], [15].

II. PROBLEM FORMULATION

A concise description of the decentralized RHC scheme
proposed in [8] follows. Consider a set of Nv linear decou-
pled dynamical systems, the i-th system being described by
the discrete-time time-invariant state equation

xi
k+1 = f i(xi

k, ui
k), (1)

where xi
k ∈ R

ni

, ui
k ∈ R

mi

, f i : R
ni × R

mi → R
ni

are
state, input and state update function of the i-th system,
respectively. Let X i ⊆ R

ni

and U i ⊆ R
mi

be given
polytopes and denote the set of feasible states and inputs
of the i-th system, respectively.

We will refer to the set of Nv constrained systems as
the overall system. Let x̃k ∈ R

Nvni

and ũk ∈ R
Nvmi

be the vectors which collect the states and inputs of the
overall system at time k, i.e. x̃k = [x1

k, . . . , xNv

k ], ũk =
[u1

k, . . . , uNv

k ], with

x̃k+1 = f(x̃k, ũk). (2)

We denote by (xi
e, u

i
e) the equilibrium pair of the i-th system

and (x̃e,ũe) the corresponding equilibrium for the overall
system.

So far the systems belonging to the overall system are
completely decoupled. We consider an optimal control prob-
lem for the overall system where cost function and con-
straints couple the dynamic behavior of individual systems.
We use a graph topology to represent the coupling in the
following way. We associate the i-th system to the i-th node
of the graph, and if an edge (i, j) connecting the i-th and
j-th node is present, then the cost and the constraints of
the optimal control problem will have a component which
is a function of both xi and xj . This leads to an undirected
interconnection graph G = {V,A}, where V is the set of
nodes V = {1, . . . , Nv} and A ⊆ V × V the sets of arcs
(i, j) with i ∈ V, j ∈ V .

Once the graph structure has been fixed, the optimization
problem is formulated as follows. Denote with x̃i the states
of all neighboring systems of the i-th system, i.e. x̃i = {xj ∈
R

nj |(j, i) ∈ A}, x̃i ∈ R
ñi

with ñi =
∑

j|(j,i)∈A nj . Analo-

gously, ũi ∈ R
m̃i

denotes the inputs to all the neighboring
systems of the i-th system. Let

gi,j(xi, xj) ≤ 0 (3)

define the interconnection constraints between the i-th and
the j-th systems, with gi : R

ni × R
nj → R

ni,j
c .

Consider the following overall cost

l(x̃, ũ) =
Nv∑
i=1

li(xi, ui, x̃i, ũi) (4)

=
∑

(i,j)∈A
li,j(xi, ui, xj , uj) +

∑
(q,r)∈A,

(i,q)∈A,(i,r)∈A

lq,r(xq, uq, xr, ur),

where li : R
ni×R

mi×R
ñi×R

m̃i → R is the cost associated
to the i-th system and is a function only of its states and
the states of its neighbor nodes. li,j : R

ni × R
mi × R

nj ×
R

mj → R represents a cost function involving two adjacent
nodes. Assume that l is a positive convex function and that
li(xi

e, u
i
e, x̃

i
e, ũ

i
e) = 0.

In the preliminary study [8], the complexity associated to
a centralized optimal control design for such class of large
scale systems is tackled by formulating Nv decentralized
finite time optimal control problems, each one associated to
a different node as detailed next. Each node has information
about its current states and its neighbors’ current states.
Based on such information, each node computes its optimal
inputs and its neighbors’ optimal inputs. The input to the
neighbors will only be used to predict their trajectories and
then discarded, while the first component of the optimal input
to the node will be implemented where it was computed. Let
the following finite time optimal control problem Pi with
optimal value function J i∗

N (xi
t, x̃

i
t) be associated to the i-th

system at time t

min
Ũi

t

N−1∑
k=0

lit(x
i
k,t, u

i
k,t, x̃

i
k,t, ũ

i
k,t) + liN (xi

N,t, x̃
i
N,t)

subj. to xi
k+1,t = f i(xi

k,t, u
i
k,t), (5a)

xi
k,t ∈ X i, ui

k,t ∈ U i, (5b)

k = 1, . . . , N − 1
xj

k+1,t = f j(xj
k,t, u

j
k,t), (i, j) ∈ A, (5c)

xj
k,t ∈ X i, uj

k,t ∈ U j , (i, j) ∈ A, (5d)

k = 1, . . . , N − 1
gi,j(xi

k,t, u
i
k,t, x

j
k,t, u

j
k,t) ≤ 0, (5e)

(i, j) ∈ A, k = 1, . . . , N − 1
gq,r(xq

k,t, u
q
k,t, x

r
k,t, u

r
k,t) ≤ 0, (5f)

(q, r) ∈ A, (q, i) ∈ A, (r, i) ∈ A,

k = 1, . . . , N − 1
xi

N,t ∈ X i
f , xj

N,t ∈ X j
f , (i, j) ∈ A (5g)

xi
0,t = xi

t, x̃i
0,t = x̃i

t, (5h)

where Ũ i
t � [ui

0,t, ũ
i
0,t, . . . , u

i
N−1,t, ũ

i
N−1,t] ∈ R

s, s �
(m̃i+mi)N denotes the optimization vector, xi

k,t denotes the
state vector of the i-th node predicted at time t+k obtained
by starting from the state xi

t and applying to system (1) the
input sequence ui

0,t, . . . , u
i
k−1,t. The tilded vectors denote

the prediction vectors associated to the neighboring systems.
Denote by Ũ i∗

t = [u∗i
0,t, ũ

∗i
0,t, . . . , u

∗i
N−1,t, ũ

∗i
N−1,t] an opti-

mizer of problem Pi.
Note that problem Pi involves only the state and input

variables of the i-th node and its neighbors at time t. We will
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define the following decentralized RHC scheme. At time t

1) Each node i solves problem Pi based on measurements
of its state xi

t and the states of all its neighbors x̃i
t.

2) Each node i implements the first sample of Ũ i∗
t

ui
t = u∗i

0,t. (6)

3) Each node repeats steps 1 to 3 at time t + 1, based on
the new state information xi

t+1, x̃i
t+1.

The solution of the i-th subproblem will yield a control
policy for the i-th node of the form ui

t = ci(xi
t, x̃

i
t), where

ci : R
ni × R

ñi → R
mi

is a time-invariant feedback control
law implicitly defined by the optimization problem Pi.

Even if we assume N to be infinite, the decentralized RHC
approach described so far does not guarantee that solutions
computed locally are globally feasible and stable. The reason
is simple: at the i-th node the prediction of the neighboring
state xj is done independently from the prediction of problem
Pj . Therefore, the trajectory of xj predicted by problem Pi

and the one predicted by problem Pj , based on the same
initial conditions, are different (since in general, Pi and Pj

will be different). This will imply that constraint fulfillment
will be ensured by the optimizer u∗i

t for problem Pi but not
for the centralized problem involving the states of all nodes.

Stability and feasibility of decentralized RHC schemes are
currently active research areas. In the following section the
stability of the decentralized RHC scheme (5)-(6) is analyzed
in detail.

III. STABILITY ANALYSIS

Without loss of generality, we assume the origin to be an
equilibrium for the overall system. In this section, we rely on
the general problem formulation introduced in Section II and
focus on systems with input and state constraints, no coupling
constraints and terminal point constraint to the origin X i

f =
0.

In order to illustrate the fundamental issues regarding
stability in a simple way, we first consider two systems
(Nv = 2). The general formulation for an arbitrary number
of nodes is treated later in Section III-B. We consider two
decentralized RHC problems P1 and P2 according to (5).
We will make the following assumption on the structure of
individual cost functions l1 and l2:

Assumption 1: The cost term li in (4) associated to the
i-th system can be written as follows

l1(x1, u1, x2, u2) = l1(x1, u1, x2, u2)
= ‖Qx1‖p + ‖Qx2‖p + ‖Q(x1 − x2)‖p + ‖Ru1‖p + ‖Ru2‖p.

(7)
Remark 1: The cost function structure in Assumption 1

can be used to describe several practical applications includ-
ing formation flight, paper machine control and monitoring
network of cameras [13].

Consider the RHC problem P1 and P2 and assume that
they are feasible at time t = 0. In classical RHC schemes,
stability and feasibility is proven by using the value function
as a Lyapunov function. In the decentralized framework
proposed in this paper, we will investigate three different
approaches to analyzing and ensuring stability of the overall
system:

1) Use of individual cost functions as Lyapunov functions
for each node (Section III-A).

2) Use of the sum of individual cost functions as Lya-
punov function for the entire system (Section III-C).

3) Exchange of optimal solutions between neighbors
(Section III-D).

A. Individual value functions as Lyapunov functions

In this section, we give sufficient conditions for the
stability of each individual node, which lead to stability of
the entire system. The following notation will be used to
describe state and input signals. For a particular variable,
the first superscript refers to the index of the corresponding
system, the second superscript refers to the location where
it is computed. For instance the input ui,j represents the
input to the i-th system calculated by solving problem Pj .
Similarly, the state variable xi,j stands for the states of
system i predicted by solving Pj . The lower indices conform
to the standard time notation of RHC schemes. For example,
variable xk,t denotes the k-step ahead prediction of the states
made at time instant t.

In order to simplify notation, we define

�1(x1
t , U

1,1
t , x2

t , U
2,1
t ) =

N∑
k=1

l1(x1,1
k,t , u

1,1
k,t , x

2,1
k,t , u

2,1
k,t), (8)

where x1
t and x2

t are the initial states of systems 1 and
2 at time t, and U1,1

t = {u1,1
0,t , . . . , u

1,1
N−1,t}, U2,1

t =
{u2,1

0,t , . . . , u
2,1
N−1,t} are the control sequences for node 1 and

2 calculated by node 1. Let [U 1,1∗
0 , U2,1∗

0 ] be an optimizer
of problem P1 for t = 0:

U1,1∗
0 = {u1,1

0,0, . . . , u
1,1
N−1,0}, U2,1∗

0 = {u2,1
0,0, . . . , u

2,1
N−1,0},

(9)
and x1,1

0 = {x1,1
0,0, . . . , x

1,1
N,0}, x2,1

0 = {x2,1
0,0, . . . , x

2,1
N,0}, be

the corresponding optimal state trajectories of node 1 and 2
predicted at node 1 by P1.

Analogously, let [U1,2∗
0 , U2,2∗

0 ] be an optimizer of problem
P2 for t = 0:

U1,2∗
0 = {u1,2

0,0, . . . , u
1,2
N−1,0}, U2,2∗

0 = {u2,2
0,0, . . . , u

2,2
N−1,0},

(10)
and x1,2

0 = {x1,2
0,0, . . . , x

1,2
N,0}, x2,2

0 = {x2,2
0,0, . . . , x

2,2
N,0}, be

the corresponding optimal state trajectories of node 1 and
2 predicted at node 2 by P2. By hypothesis, neighboring
systems either measure or exchange state information, so the
initial states for both problems are the same at each time step,
i.e. x1,1

0,0 = x1,2
0,0 and x2,1

0,0 = x2,2
0,0.

We denote the set of states of node i at time k feasible
for problem Pi by

X i
k =

{
xi | ∃ui ∈ U i such that f i(xi, ui) ∈ X i

k+1

} ∩ X i,

with X i
N = X i

f . (11)

Since we are neglecting coupling constraints, the set of
feasible states for the decentralized RHC scheme (5)-(6)
applied to the overall system is the cross product of the
feasible set of states associated to each node:

Xk =
Nv

X
i=1

X i
k, (12)
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where the symbol × denotes the standard Cartesian product
of sets.

Denote with c(x̃k) = [u1,1∗
0,k (x̃k), u2,2∗

0,k (x̃k)] the control
law obtained by applying the decentralized RHC policy (5)-
(6) with cost function (8), when the current state is x̃k =
[x1

k, x2
k]. Consider the overall system model (2) consisting

of two nodes (Nv = 2), and denote with

x̃k+1 = f (x̃k, c(x̃k)) , (13)

the closed-loop dynamics of the entire system. In the follow-
ing theorem we state sufficient conditions for the asymptotic
stability of the closed-loop system.

Theorem 1: Assume that

(A0) Q = Q′ � 0, R = R′ � 0 if p = 2 and Q,R are
full column rank matrices if p = 1,∞.

(A1) The state and input constraint sets X 1,X 2 and
U1,U2 contain the origin in their interior.

(A2) The following inequality is satisfied for all xi
0 ∈

X i
0 , xj

0 ∈ X j
0 with i = 1, j = 2 and i = 2, j = 1:

ε ≤ ‖Qxi
0‖p+‖Qxj

0‖p+‖Q(xi
0−xj

0)‖p+‖Rui,i
0,0‖p+‖Ruj,i

0,0‖p,
(14)

where

ε =
N−1∑
k=1

(
2‖Q(xj,j

k,0 − xj,i
k,0)‖p + ‖R(uj,j

k,0 − uj,i
k,0)‖p

)
. (15)

Then, the origin of the closed loop system (13) is asymptot-
ically stable with domain of attraction X 1

0 ×X 2
0 .

Proof: Consider first problem P1 and its optimal so-
lution U1,1∗

0 and U2,1∗
0 at initial time 0. The shifted

sequences U1,1
1 = {u1,1

1,0, . . . , u
1,1
N−1,0,0} and U2,1

1 =
{u2,1

1,0, . . . , u
2,1
N−1,0,0} of problem P1, are not necessarily

feasible at the next time step t = 1 since the state of system
2 at time 1 is x2,2

1,0 and not x2,1
1,0, even assuming no model

uncertainty. However, one can construct a feasible shifted
sequence by using the optimizer of problem P2

U2,2
1 = {u2,2

1,0, . . . , u
2,2
N−1,0,0}. (16)

This is possible, since the dynamics of both subsystems
are decoupled. Furthermore, we have assumed no coupling
constraints, which implies that U 1,1

1 and U2,2
1 will be feasible

at time t = 1 for problem P1.
At the next time step (t = 1), the current states of the two

systems are denoted by x1,1
0,1 and x2,2

0,1. Since the neighboring
state information is exchanged between nodes, or assumed
to be measured, we have x1,2

0,1 = x1,1
0,1 and x2,1

0,1 = x2,2
0,1 as

well. We use the following notation:

x1
0 = x1,1

0,0 = x1,2
0,0 x1

1 = x1,1
0,1 = x1,2

0,1

x2
0 = x2,2

0,0 = x2,1
0,0 x2

1 = x2,2
0,1 = x2,1

0,1

x̃0 = (x1
0, x

2
0) x̃1 = (x1

1, x
2
1)

We can compute a bound on the value function as follows:

J1(x̃1) ≤ �1(x1
1, U

1,1
1 , x2

1, U
2,2
1 ) (17a)

= J1(x̃0) − ‖Qx1
0‖p − ‖Qx2

0‖p − ‖Q(x1
0 − x2

0)‖p

−‖Ru1,1
0,0‖p − ‖Ru2,1

0,0‖p
(17b)

−
N−1∑
k=1

(‖Qx2,1
k,0‖p − ‖Qx2,2

k,0‖p) (17c)

−
N−1∑
k=1

(‖Ru2,1
k,0‖p − ‖Ru2,2

k,0‖p) (17d)

−
N−1∑
k=1

(‖Q(x1,1
k,0 − x2,1

k,0)‖p − ‖Q(x1,1
k,0 − x2,2

k,0)‖p). (17e)

It should be emphasized that in (17a) the cost function
�1 of problem P1 is evaluated using the feasible shifted
input sequence U2,2

1 for node 2 and the corresponding state
trajectory.

The cost function J1∗(x̃0) in (17) is associated to the
optimal control solution U2,1∗

0 of P1. The cost �1 in (17a)
instead is evaluated at the sequence U 2,2

1 associated to P2.
The mismatch between the two control sequences U 2,2

1 in
(16) and U2,1∗

0 in (9) generates the terms in (17d). The
difference between these control sequences generates also a
mismatch between the state trajectories of node 2 predicted
at node 1 and predicted at node 2. These are represented by
the terms in (17c) and (17e).

Using the homogenity axiom of vector norms and applying
‖α‖p − ‖β‖p ≤ ‖α − β‖p leads to

J1∗(x̃1) ≤ J1∗(x̃0) − (terms in (17b)) (18a)

+
N−1∑
k=1

(
2‖Q(x2,2

k,0 − x2,1
k,0)‖p + ‖R(u2,2

k,0 − u2,1
k,0)‖p

)
. (18b)

Notice that the term (18b) arises from the control solu-
tion mismatch between P1 and P2, and it represents ε =∑N−1

k=1 (2‖Q(xj,j
k,0 −xj,i

k,0)‖p + ‖R(uj,j
k,0 −uj,i

k,0)‖p) defined in
(15) for i = 1, j = 2. It follows that if inequality (14)
holds, then J1∗(x̃1) ≤ J1∗(x̃0). This implies that under
the assumptions of Theorem 1 J1∗

N (x̃) is positive and non-
increasing along the closed-loop trajectories, thus can be
used as a Lyapunov function for node 1. The same derivation
applies to node 2 and its associated cost function.

The rest of the proof follows from Lyapunov arguments,
close in spirit to the arguments of [16] where it is established
that the value function J∗(·) of the receding horizon problem
is a Lyapunov function for the closed-loop system. Based on
the hypothesis (A0) on the matrices Q and R, inequality (14)
is sufficient to ensure that the state of the closed-loop system
(13) converges to zero as k → ∞. Stability follows from the
fact that J1(x) and J2(x) can be lower and upper bounded
by functions α(‖x̃‖) and β(‖x̃‖), where α, β : R

+ → R
+

are of class K [7]. �

Theorem 1 highlights the relationship between the stability
of the decentralized scheme (5)-(6), the prediction mismatch
and the initial conditions of the overall system. The term
ε in inequality (14) is a function of the error between the
trajectories of node 2 predicted by node 1 and the one
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predicted by node 2 itself. The smaller the error, the larger
the set of initial states for which the value function will
decrease along the overall system trajectories.

Remark 2: It should be noted that in the two-system
scenario presented in this section, problems P1 and P2

are identical and multiple optima can arise only from non-
strictly convex cost functions. However, in general, non-
convex coupling constraints are a source of multiple optimal
solutions as well. Furthermore, for larger number of nodes
with an arbitrary graph interconnection, neighboring nodes
will not be solving the same problem even without coupling
constraints. This leads to different optimal solutions and
warrants distinguishing between U 1,1∗, U2,1∗ in (9) and
U1,2∗, U2,2∗ in (10).

Similar ideas can be used if instead of a terminal point
constraint, nonzero terminal cost and terminal set constraints
Xf 
= 0 are used. In this case, the terminal set has to be
control invariant and the terminal cost is chosen as a control
Lyapunov function [7], [17], [18].

B. Generalization to arbitrary graph

The development of Section III-A carries over to any
number of nodes and general graph structure. Let us de-
note the decentralized receding horizon control law for the
overall system with c(x̃k) = [u1,1∗

0,k (x̃1
k), . . . , uNv,Nv∗

0,k (x̃Nv

k )],
obtained by applying the decentralized RHC policy (5)-(6)
of each subproblem Pi when the current state is x̃k =
[x1

k, . . . , xNv

k ]. Note that since there are no coupling con-
straints, the feasible states for the overall system is the cross
product of the feasible states associated to each node as
defined in (11) and (12). Consider the system model (2) and
denote by

x̃k+1 = f (x̃k, c(x̃k)) , (19)

the closed-loop dynamics of the overall system. Sufficient
conditions for asymptotic stability of the closed-loop system
are given next.

Theorem 2: Assume

(A0) Q = Q′ � 0, R = R′ � 0 if p = 2 and Q,R are
full column rank matrices if p = 1,∞.

(A1) The state and input constraint sets X i and U i

contain the origin for each node in their interior.
(A2) The following inequality is satisfied for each node

and all xi
0 ∈ X i

0:
∑

j|(i,j)∈A
εi,j + εi ≤ J i∗

0 , (20)

where

εi,j =
N−1∑
k=1

(
2‖Q(xj,j

k,0 − xj,i
k,0)‖p + ‖R(uj,j

k,0 − uj,i
k,0)‖p

)
,

(21)

εi =
N−1∑
k=1

∑
(q,r)∈A,

(i,q)∈A,(i,r)∈A

(
‖Q(xq,q

k,0 − xq,i
k,0) − Q(xr,i

k,0 − xr,r
k,0)‖p

)
,

(22)

and

J i∗
0 = ‖Qxi

0‖p + ‖Rui,i
0,0‖p +

∑
j|(i,j)∈A

(‖Qxj
0‖p + ‖Ruj,i

0,0‖p)

+
∑

j|(i,j)∈A
‖Q(xi

0 − xj
0)‖p +

∑
(q,r)∈A,

(i,q)∈A,(i,r)∈A

‖Q(xq
0 − xr

0)‖p. (23)

Then, the origin of the closed loop system (19) is asymptot-

ically stable with domain of attraction XNv

i=1 X i
0 .

Proof: The proof follows along the lines of Theorem 1.
The difference is the derivation of stability condition (20) for
any particular node within an arbitrary graph interconnection
A. This derivation is omitted here for brevity and can be
found in [19].

C. Sum of value functions as Lyapunov function

If we consider the sum of individual cost functions as a
Lyapunov function for the entire system, the value function
inequality such as the one in (18) will involve significantly
more terms than the case presented in the previous sections
[19]. In fact, this condition might be less restrictive than
the one presented in (20). Even if the individual inequalities
for single systems such as (18) presented in the previous
section might not hold for every subproblem Pi, the sum of
individual value functions could still be used as a Lyapunov
function for the entire system. This will be the case if the
quantities

∑
j|(i,j)∈A εi,j and εi of nodes with decreasing

individual Lyapunov functions J i∗
N (xi, x̃i) will be small

enough to compensate for those associated with the non-
decreasing ones.

D. Exchange of information

Stability conditions derived in the previous sections show
that it is the mismatch between the predicted and actual
control solutions of neighbors that plays a central role in the
stability problem. Therefore we are prompted to investigate
how sufficient conditions for stability could be improved by
allowing the exchange of optimal solutions between neigh-
bors. By examining the stability condition (14) from this
aspect, we can immediately make two general observations:

1) Using bounds on the mismatch between the predicted
and actual inputs and states of neighbors, the stabil-
ity condition (14) could be made less restrictive by
reducing the size of positive terms in (18b), which
adversely affect the value function variation of (18).
In other words, using a coordination scheme based on
information exchange, it may be possible to reduce the
size of ε to decrease the left side of inequality (14).

2) Also, one can observe that as each node is getting
closer to its equilibrium (in our example the origin) the
right side of inequality (14) starts to diminish, which
leads to more stringent restrictions on the allowable
prediction mismatch between neighbors, represented
by the left side of the inequality.

These observations suggest that information exchange
between neighboring nodes has a beneficial effect in proving
stability, if it leads to reduced prediction mismatch. As each
system converges to its equilibrium, assumptions on the
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behavior of neighboring systems should get more and more
accurate to satisfy the stability condition (14). In fact, as
system (13) approaches its equilibrium the right hand side
of inequality (14) decreases. In turn, the left hand side of
inequality (14) has to diminish as well. This leads to the
counter-intuitive conclusion that an increasing information
exchange rate between neighbors might be needed when
approaching the equilibrium.

These conclusions are in concert with the stability condi-
tions of a distributed RHC scheme proposed in [10], where
it is shown that information exchange between neighbors
must happen increasingly more frequently as the system
equilibrium is approached. However, our simulation exam-
ples [8], [13], [20] suggest that the prediction errors between
neighbors tend to disappear as each node approaches its
equilibrium, and the prediction mismatch converges to zero
at a faster rate than the decay in the right hand side.

Exchange of information has been proposed in the ap-
proach of [12], [21] as well, where a decentralized RHC
scheme is considered for a special graph structure based
on a leader-follower architecture. Nodes transmit their op-
timal solutions each time step to their followers. Each node
incorporates the received leader information regarding the
current time step in its solution, which is robustified against
uncertain predictions about their own followers based on data
from the previous time step. Robustification to the followers’
RHC problems is based on the expected change in optimal
receding horizon solutions from one time step to another.
Characterizing the possible one-step changes of optimal
solutions is not trivial and might result in a conservative
robustification scheme.

E. The effect of horizon length

Increasing the prediction horizon length in decentralized
RHC has different consequences than classical results in
predictive control suggest. The fundamental difference comes
from inaccurate predictions made about neighboring nodes
in a decentralized scheme. These prediction errors may
increase as the horizon length is enlarged leading to loss
in performance [9] and in some cases even instability.

Based on the stability condition given in (14), it is straight-
forward to see that by increasing the prediction horizon, the
number of positive terms in ε increases and the left side
of the inequality becomes larger. If the horizon length is
too long, the inequality might not hold eventually. Although
instability does not necessarily emerge as a consequence of
this, simulation examples show that global performance starts
to deteriorate after a certain horizon length [8].

IV. ENSURING FEASIBILITY

If coupling constraints are present, ensuring feasibility in a
decentralized receding horizon control scheme without intro-
ducing excessively conservative assumptions is a challenging
problem. Consider for instance the problem of choosing local
terminal regions for each decentralized RHC problem (5).
Even if we assume terminal point constraints (the most
conservative and simplest formulation), infeasibility for the
overall system can occur since coupling constraints may be
violated due to the mismatch between neighbors’ predictions

and their closed loop behavior. Indeed, decoupled terminal
regions do not enforce feasibility of coupling constraints,
which renders them less effective than in a centralized
approach. Investigation of different options for reducing
the uncertainty about the behavior of neighboring systems
in order to ensure feasibility in the presence of coupling
constraints seems to be a more appealing approach. Prob-
lem (5) needs to be modified to accomplish this objective.
For further discussion on this topic we refer to [19], which
uses robust constraint fulfillment and proposes other alterna-
tive approaches that could be used to tackle the feasibility
problem in practice.
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[3] D. D. Šiljak, Decentralized Control of Complex Systems. Academic
Press, 1990.

[4] M. Egerstedt and C. F. Martin, “Conflict resolution for autonomous
vehicles: A case study in hierarchical control design,” International
Journal of Hybrid Systems, vol. 2, no. 3, pp. 221–234, Sept. 2002.

[5] J. van Schuppen, “Decentralized supervisory control with information
structures,” in Proc. International Workshop on Discrete Event Systems
(WODES98), IEE Press, London, 1998, pp. 36–41.
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