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Abstract— We announce a new global small-gain theorem for
feedback interconnections of monotone input-output systems
with multi-valued input-state characteristics. This extends a
small-gain theorem of Angeli and Sontag for monotone systems
with singleton-valued characteristics. The proof of our theorem
is based on Thieme’s convergence theory for asymptotically
autonomous systems. We also provide an illustrative example.

Index Terms— Monotone control systems, asymptotic equi-
libria, set-valued input-state characteristics

I. INTRODUCTION

The recent extension [1] of monotone dynamical systems
theory to input-output (i/o) control systems has been used to
analyze the global behavior of a large variety of important
dynamics; see for example [1], [2], [3], and Section II
below for the corresponding definitions. (See also [7] for an
extensive discussion of monotone dynamical systems.) Of
particular interest in the monotone control systems literature
are feedback interconnections of monotone subsystems–or
“modules”–that possess a unique globally asymptotically
stable equilibrium, depending on the particular constant input
applied. This led to the development of the notion of input-
state (i/s) characteristics, which assign to each constant input
value the equilibrium point to which all solutions converge.
In many applications, i/s characteristics can be computed
from experimental data (e.g., gene expression levels, for
instance). Monotonicity, however, may be considered as a
structural or qualitative property of an i/o system; see the
graphical tests for monotonicity in [2] for example. Mono-
tonicity of the subsystems and existence of characteristics
are key ingredients for proving small-gain theorems [1], [2],
[3].

In practice, on the other hand, a monotone i/o system
subject to a constant input may possess several equilibria,
with all solutions converging to one of them, depending on
their initial values. Such systems are sometimes called multi-
stable. In fact, as monotone i/o systems subject to constant
inputs are monotone dynamical systems, this type of global
behavior is to be expected (see [7]). This suggests that the
concept of i/s characteristics should be generalized to multi-
valued maps which assign to each constant input value the
set of all the equilibria to which solutions converge.
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This naturally suggests the question of whether the small-
gain theorem for monotone i/o systems in [1] remains
valid if instead of the original notion of i/s characteristics,
one assumes there are multi-valued characteristics for the
subsystems. In this note, we explain how such an extension
is possible. In our main theorem, we find that a negative
feedback interconnection of monotone i/o subsystems with
multi-valued characteristics is itself multi-stable, as long as
all solutions of a particular discrete-time inclusion (which is
typically of significantly lower dimension than the subsys-
tems) converge.

Our result provides a significant extension of the Angeli-
Sontag monotone control systems theory from [1] because
[1] requires singleton-valued characteristics and thus globally
asymptotically stable equilibria. For other approaches to
proving multi-stability, see [6] (which is based on density
functions and concludes convergence for almost all initial
values) and [2] (where positive feedback interconnections of
monotone i/o subsystems are considered and the trajectories
also converge for almost all initial values). This earlier work
does not include our result because, for example, (a) we
do not require any regularity such as singleton-valuedness,
differentiability, or non-degeneracy for the i/s characteristics,
(b) our results provide global stabilization from all initial
values, and (c) our results are intrinsic in that we make
no use of density or Lyapunov functions. For an alternative
approach to negative interconnections of monotone systems
based on a symmetric embedding into a higher dimensional
space, leading to an alternative small gain theorem under
an additional injectiveness assumption on the the output
map and a more restrictive boundedness assumption on the
trajectories of the embedded system, see [5].

This paper is organized as follows. In Section II, we pro-
vide the relevant background and definitions for monotone
control systems, asymptotically autonomous systems, multi-
valued characteristics, and weakly non-decreasing set-valued
maps. In Section III, we announce our small-gain theorem
and discuss how it extends the small-gain theorems in [1],
[2], [3]. In Section IV, we sketch the proof our theorem and
we illustrate our theorem in Section V. We close in Section
VI with ideas for future research. While our discussions in
this note will be mainly conceptual, complete proofs of all
the results below are in [4].

II. BACKGROUND AND MOTIVATION

A. Monotonicity and Characteristics

We start with the relevant definitions for monotone control
systems and input-state characteristics. Our monotonicity
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definitions follow [1], but our treatment of characteristics
is apparently new because we allow unstable equilibria
and discontinuous multi-valued characteristics. Our general
setting is that of an input-output (i/o) system

ẋ = f(x, u), y = h(x), x ∈ X , u ∈ U , y ∈ Y (1)

where X ⊆ R
n is the closure of its interior and partially

ordered, f and h are locally Lipschitz on some open set X
containing X , and U and Y are subsets of partially ordered
Euclidean spaces BU and BY respectively. We call X the
state space of (1), U its input space, and Y its output space.
In general, X is not a linear space, since for example we
often choose X = R

n
≥0 := {x ∈ R

n : xi ≥ 0 ∀i}. We use
� to denote the partial orders on our spaces, although the
partial orders on our various spaces could in principle differ.

The set of control functions (which are also called inputs)
for (1), which we denote by U∞, consists of all locally
essentially bounded (Lebesgue) measurable functions u :
R → U . We let t �→ φ(t, xo,u) denote the trajectory of
(1) for a given initial value xo ∈ X and u ∈ U∞. We
always assume f is forward complete and X -invariant, which
means φ(·, xo,u) is defined on [0,∞) and valued in X for
all xo ∈ X and u ∈ U∞. When we consider more than one
dynamic, we often use sub- or superscripts to emphasize the
state variable or dynamic, so for example φf is the flow
map for the dynamic f and Yz is the output space for an i/o
system with state variable z.

We always assume our partial orders � are induced
by closed nonempty sets K (called ordering cones) and
sometimes write KX to indicate the cone inducing the partial
order on the state space X and similarly for the other partial
orders. We always assume K is a pointed convex cone,
meaning,

aK ⊆ K ∀a ≥ 0, K + K ⊆ K, K ∩ (−K) = {0}.
When we say a cone K induces a partial order �, we mean:
x � y if and only if y − x ∈ K . This induces a partial
order on U∞ as follows: u � v if and only if u(t) � v(t)
for Lebesgue almost all (a.a) t ≥ 0. A function g mapping a
partially ordered space into another partially ordered space is
monotone provided: x � y implies g(x) � g(y). We call (1)
single-input single-output (SISO) provided BU = BY = R,
taken with the usual order, which is the order induced by the
cone K = [0,∞).

Definition 1: We say that (1) is monotone provided h is
monotone and

(p � q and u � v) =⇒ (φ(t, p,u) � φ(t, q,v) ∀t ≥ 0)

holds for all p, q ∈ X and u,v ∈ U∞.
We let Equil(f) denote the set of all equilibrium pairs

for our dynamic f , meaning, the set of all input-state pairs
(ū, x̄) such that f(x̄, ū) = 0. For each (ū, x̄) ∈ Equil(f),
we let Df (ū, x̄) denote the domain of attraction of ẋ =
f(x, ū) to x̄, which is the set of all p ∈ X for which
φ(t, p, ū) → x̄ as t → +∞, where φ denotes the flow
map for f . Since we are not assuming our equilibria are

stable, the sets Df (ū, x̄) are not necessarily open and could
in principle be singletons. Given (ū, x̄) ∈ Equil(f), we
say that f is static Lyapunov stable at (ū, x̄), and write
f ∈ SLS(ū, x̄), provided the following condition holds for
all ε > 0: There exists δ = δ(ū, x̄, ε) > 0 such that for all
xo ∈ Df (ū, x̄) ∩Bδ(x̄)(= radius δ open ball centered at x̄),
we have |φ(t, xo, ū)− x̄| ≤ ε for all t ≥ 0. The stipulation in
the SLS definition that xo ∈ Df (ū, x̄) ∩ Bδ(x̄) is motivated
by the fact that our domains of attraction Df (ū, x̄) may or
may not be open, even for systems with no controls.

Recall the following notions from [9], where we let f ū

denote the constant input system f(·, ū) for each ū ∈ U .
Given ū ∈ U , we say that two nonempty (but not necessarily
distinct) sets M1, M2 ⊆ X are f ū-chained provided there
exist a value y ∈ X \(M1∪M2) and a trajectory x : R → X
for f ū satisfying x(0) = y whose α-limit set

α(x) :=
⋂

{x((−∞,−t]) : t ≥ 0}
lies in M1 and whose ω-limit set

ω(x) :=
⋂

{x([t, +∞)) : t ≥ 0}
lies in M2. We say that a finite collection of nonempty sets
M1, M2, . . . , Mr ⊆ X is f ū-cyclically chained provided
the following holds: If r = 1, then M1 is f ū-chained to
itself; and if r > 1, then Mi is f ū-chained to Mi+1 for
i = 1, 2, . . . , r − 1 and Mr is f ū-chained to M1. In this
situation, we call {Mi} an f ū-cycle. An f ū-equilibrium is
any point x̄ ∈ X such that f(x̄, ū) = 0. A set M ⊆ X is
called f ū-invariant provided the flow map φ for f satisfies
M = {φ(t, x, ū) : t ≥ 0, x ∈ M}. A compact f ū-invariant
set M ⊆ X is called f ū-isolated compact invariant provided
there exists an open set O ⊆ X such that there is no compact
f ū-invariant subset M̃ ⊆ X satisfying M ⊆ M̃ ⊆ O except
M . We use the symbol ⇒ to denote a set-valued map (also
called a multifunction), e.g., F : Z1 ⇒ Z2 means that F
assigns each p ∈ Z1 a (nonempty) set F (p) ⊆ Z2.

Definition 2: We say that (1) is endowed with a static
input-state (i/s) characteristic kx : U ⇒ X provided:

1) Graph(kx) = Equil(f);
2) ∪{Df (ū, x̄) : x̄ ∈ kx(ū)} = X for all ū ∈ U ;
3) f ∈ SLS(ū, x̄) for all (ū, x̄) ∈ Equil(f); and
4) For each ū ∈ U , kx(ū) consists of f ū-isolated compact

invariant f ū-equilibria and contains no f ū-cycles.

In this case, we also call ky := h ◦ kx an input-output (i/o)
characteristic for (1).

This definition reduces to the standard singleton-valued i/s
characteristic definition in [1] when Card{kx(ū)} = 1 for
all ū ∈ U . See [4] for a sufficient condition for the no-cycles
requirement in 4) in terms of an ordering of the equilibria.
While we do not use the SLS property below, we include
it to make our definition of i/s characteristics include the
singleton-valued characteristic definition in [1]. Condition 2
in the definition says for each initial state and each ū ∈ U ,
the corresponding f ū-trajectory asymptotically approaches
some state x̄ ∈ kx(ū) (where x̄ can in principle depend on
the initial state of the trajectory).
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B. Weakly Non-Decreasing Set-Valued Maps

One basic property of singleton-valued i/s characteristics
kx is that they are non-decreasing in the relevant partial
orders, by which we mean the following holds for all u, v ∈
Ux: u � v implies kx(u) � kx(v); see [1] for the elementary
proof. It is natural to ask whether set-valued i/s charac-
teristics enjoy some analogous (but more general) order-
preserving property. This motivates the following definition
and lemma:

Definition 3: Let Z1 and Z2 be partially ordered Eu-
clidean spaces and F : Z1 ⇒ Z2 be any set-valued map. We
say that F is weakly non-decreasing provided the following
holds for all p, q ∈ Z1 such that p � q: For each kp ∈ F (p)
and kq ∈ F (q), there exist rp ∈ F (p) and rq ∈ F (q) such
that rp � kq and kp � rq .

Lemma 4: If kx is an i/s characteristic for (1) and (1) is
monotone, then kx is weakly non-decreasing.

Proof: Let p, q, kp, and kq be as in the hypotheses of
Definition 3 and φ be the flow map of f . The corresponding
trajectories for the constant inputs then satisfy φ(t, kq , p) �
φ(t, kq , q) = kq for all t ≥ 0, and φ(t, kq, p) → rp for
some rp ∈ kx(p) as t → +∞, so rp � kq , because ordering
cones are closed. The other order inequality is proved in an
analogous way.

Definition 3 reduces to non-decreasingness in the rele-
vant orders when F is singleton-valued. We are especially
interested in solution sequences wk satisfying discrete set-
valued inclusions wk+1 ∈ F (wk) for all k ∈ N where F
is weakly non-decreasing. To further motivate our study of
weakly non-decreasing multifunctions, let us first assume
that F : [0, 1] → [0, 1] is a singleton-valued and non-
decreasing map in the usual orders (that is, F (x) ≤ F (y)
when x ≤ y). Then it is obvious that every solution of
xk+1 = F (xk) converges. Indeed, either x0 ≤ F (x0) and
then x0 ≤ F (x0) ≤ F 2(x0) ≤ · · · ≤ F k(x0) for all
k ∈ N, so the sequence {F k(x0)} must converge since it
is bounded above by 1; or else F (x0) ≤ x0, which leads
to a non-increasing sequence {F k(x0)}. That converges as
well since it is bounded below by 0. On the other hand,
this simple dynamical behavior will not occur in general for
multi-valued, weakly non-decreasing maps.

To see why, consider the following simple example. As-
sume that F : [0, 1] ⇒ [0, 1] is a multi-valued map whose
graph consists of the union of three straight line segments:
one connecting A = (0, 0) with B = (1/2, 1/4), a second
connecting B to C = (1/4, 1/2) (of slope −1), and a
third connecting C with D = (1, 1). This “inverted Zorro
map” is illustrated in Figure 1 below and is weakly non-
decreasing in the usual orders. Then the inclusion xk+1 ∈
F (xk) has periodic points of period 2. For instance, the
periodic sequence {1/2, 1/4, 1/2, 1/4, ...} is a solution of the
inclusion. In fact, to every initial condition x0 ∈ [1/4, 1/2]
corresponds a periodic sequence of period 2 satisfying the
inclusion, namely {x0, 3/4 − x0, x0, 3/4 − x0, ...} (since
3/4 − x ∈ F (x) for all x ∈ [1/4, 1/2]).

These periodic sequences are caused by the fact that the
slope of the middle line segment of the graph of F is −1.
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Fig. 1. The inverted Zorro map F (ABCD) and its perturbation Fε with
ε = 1.5 (ABED) from Section II-B.

Any slight decrease of this slope will destroy the periodic
points and leads to solutions that converge to one of the fixed
points. For example, for arbitrary ε > 0 we can define Fε as
the map whose graph consists of three straight line segments
connecting A to B, B to E = ((1 + 2ε)/(4 + 4ε), 1/2)
(so the slope of this line segment is −1 − ε), and E to D.
Then every solution of the inclusion xk+1 ∈ Fε(xk) will
converge to one of the three fixed points of F . In fact, each
solution sequence of this inclusion converges to either 0 or
1, except for the constant sequence at the middle fixed point
x̃ = (3+2ε)/(4(2+ε)). To see why, notice that if xo > 1/2,
then (xk, Fε(xk)) remains on the segment ED, so xk ↑ 1
by the argument for the singleton-valued case. Similarly, if
xo < (1+2ε)/(4+4ε), then (xk, Fε(xk)) remains on AB so
xk ↓ 0 again by the singleton-valued case; while if xk stays
in [(1+2ε)/(4+4ε), 1/2], then xk+1 = −(1+ε)xk+ 3

4+ ε
2 for

all k. Then either xk ≡ x̃, or else |xk+1−xk| = (1+ε)k|x1−
xo| → +∞ as k → +∞ which is impossible. Therefore,
either xk stays at x̃, or else xk exits [(1+2ε)/(4+4ε), 1/2]
and then converges to either 0 or 1, as claimed.

C. Asymptotically Autonomous Systems

Recall the following “Converging-Input Converging-State”
(CICS) Property, which was shown in [8]:

Lemma 5: Let ū ∈ U , and let x̄ be an asymptotically
stable equilibrium point for f ū. Let K be a compact subset
of Df (ū, x̄). If x : [0,∞) → X is a K-recurrent trajectory
of f for some continuous input u : [0,∞) → U , and if
u(t) → ū as t → +∞, then x(t) → x̄ as t → +∞.

Here K-recurrence of x(t) means for each T > 0, there
exists t > T such that x(t) ∈ K. By asymptotic stability of
x̄, we mean in particular that the following holds (in addition
to attractivity): For each ε > 0, there exists δ > 0 such that
|φ(t, ξ, ū) − x̄| ≤ ε for all ξ ∈ Bδ(x̄) and t ≥ 0. The proof
of the CICS property in [8] uses the fact that Df (ū, x̄) is
open, which holds because x̄ is a stable equilibrium.

However, in our more general situation where the i/s
characteristics are multi-valued, the domains of attraction
will not necessarily be open, so the CICS property does
not apply. Instead, we use the theory of asymptotically
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autonomous systems of Thieme [9]. To this end, we invoke
the following equilibrium condition (EC) from [9]:

(EC) For each ū ∈ U , the ω-limit set of any pre-
compact f ū-trajectory on [0,∞) consists of an f ū-
equilibrium.

An asymptotically autonomous system is defined to be a
system ẋ = H(t, x) that admits a second dynamic ẋ = H̄(x)
(called a limiting dynamic) such that H(t, x) → H̄(x) as
t → +∞ locally uniformly in x. For example, if u ∈ U∞
is continuous and ū ∈ U is such that u(t) → ū as t →
+∞, then for our dynamic f , ẋ = H(t, x) := f(x, u(t))
is asymptotically autonomous with limiting dynamic ẋ =
H̄(x) := f(x, ū). Notice that monotone i/o systems with
i/s characteristics satisfy (EC), since all of their trajectories
for constant inputs converge. Using this observation, the
following lemma is immediate from [9, Corollary 4.3] and
our definitions:

Lemma 6: Assume (1) is endowed with an i/s charac-
teristic. Let ū ∈ U and u : [0,∞) → U be any locally
Lipschitz function for which u(t) → ū as t → +∞. Let
x : [0,∞) → X be any bounded trajectory for (1) and this
input u(t). Then x(t) converges towards an f ū-equilibrium
as t → +∞.

III. SMALL-GAIN THEOREM

We next state our small-gain theorem, which extends [1,
Theorem 3]. The main novelty of our result is that it applies
to cases where one of the interconnected subsystems has
a multi-valued i/s characteristic, but see Remark 10 for
the extension to interconnections where both subsystems
have multi-valued i/s characteristics. In what follows, an
equilibrium of a discrete inclusion wk+1 ∈ F (wk) is any
value w̄ such that w̄ ∈ F (w̄); the set of all equilibria for
this inclusion is denoted by E(F ). A multi-function F is
locally bounded provided it maps bounded sets into bounded
sets. A dynamics F has a pointwise globally attractive set
S provided each maximal trajectory for F asymptotically
approaches some point in S, which generally depends on
the specific trajectory. We prove the following theorem in
[4]:

Theorem 7: Consider the following interconnection of
two SISO dynamic systems:

ẋ = fx(x, w), y = hx(x)
ż = fz(z, y), w = hz(z) (2)

with Ux = Yz and Uz = Yx. Assume the following:
1) The first system is monotone when its input w and

output y are ordered by the “standard order” induced
by the positive real semi-axis.

2) The second system is monotone when its input y is
ordered by the standard order and its output w is
ordered by the opposite order (induced by the negative
real semi-axis).

3) The respective static i/s characteristics kx and kz exist
with kx singleton-valued and kz locally bounded.

4) Each trajectory of (2) is bounded; and each solution
sequence {vk} of vk+1 ∈ (ky ◦ kw)(vk) converges.

Then ∪{{kx(w̄)} × (kz ◦ ky)(w̄) : w̄ ∈ E(kw ◦ ky)} is the
pointwise globally attractive set for (2).

Here ky = hx ◦ kx and kw = hz ◦ kz . Theorem 7 differs
from the small-gain theorem [1, Theorem 3] primarily in that
(a) we replaced the discrete system wk+1 = (kw ◦ ky)(wk)
from [1] with a discrete inclusion, (b) we replaced the single
valuedness of kz with local boundedness of kz , and (c) we
conclude that (2) is attracted to a set of equilibrium points
instead of to a single point as in [1]. Moreover, unlike [2],
our theorem gives global convergence of the interconnection
from all initial values.

Remark 8: Assumption 4 in Theorem 7 is equivalent to
the following:
4′ Each trajectory of (2) is bounded; and the sequence

{ky(wk)} converges for each solution sequence {wk}
of wk+1 ∈ (kw ◦ ky)(wk).

In fact, if Assumption 4 holds and wk is a solution of
wk+1 ∈ (kw ◦ ky)(wk), then ky(wk) converges because the
sequence vk = ky(wk) is a solution for vk+1 ∈ (ky◦kw)(vk).
Conversely, if Assumption 4′ holds, and if {vk} is any
solution of vk+1 ∈ (ky ◦ kw)(vk), then we may inductively
find a new sequence rk such that vk+1 ≡ ky(rk) and
rk+1 ∈ (kw◦ky)(rk) for all k. Thus, vk converges. However,
it could be that Assumption 4 holds but that there exists a
divergent solution {wk} for wk+1 ∈ (kw ◦ ky)(wk) [4]. On
the other hand, if the trajectories of (2) are bounded, and if
each solution sequence of wk+1 ∈ (kw ◦ ky)(wk) converges,
then Assumption 4′ (and equivalently Assumption 4) holds
because ky is continuous (by arguments from [1, Proposition
V.5] and our assumption that kx is singleton valued).

IV. DISCUSSION OF PROOF OF THEOREM 7

We next sketch the proof of our small-gain theorem.
For a complete proof, see [4]. The following key lemma
generalizes [1, Proposition V.8] to systems with multi-valued
characteristics. In it, we set uinf := lim inft→+∞ u(t)
and usup := lim supt→+∞ u(t) for any continuous scalar
function u on [0,∞).

Lemma 9: Let the hypotheses of Theorem 7 hold,
(x(t), z(t)) be any trajectory of (2), and ζ ∈ ω(z). Then
there exist k− ∈ kz(yinf) and k+ ∈ kz(ysup) such that
k− � ζ � k+.

Proof: We only prove the existence of k−; the proof of
the existence of k+ is analogous. Set µ = yinf and let ξ be
the initial value for z(t). Let tj → +∞ and µj → µ be two
sequences such that µj ∈ Uz and y(t) ≥ µj for all t ≥ tj
and all j. Then for all t ≥ tj and j ∈ N,

z(t) = φ(t, ξ, y) = φ(t − tj , φ(tj , ξ, y), y(· + tj))
� φ(t − tj , φ(tj , ξ, y), µj), (3)

where φ is the flow map for fz and the last inequality follows
from the monotonicity of fz . Hence, if z(sl) → ζ for some
sequence sl → +∞, then we can set t = sl in (3) and use
the closedness of order cones to get values vj ∈ kz(µj) for
which

ζ � lim
l→∞

φ(sl − tj , φ(tj , ξ, y), µj) = vj ∀j ∈ N. (4)
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Since kz is locally bounded with closed graph (by the
continuity of the dynamic fz in all arguments), there are
k− ∈ kz(µ) such that ζ � vj → k−, by passing to
a subsequence without relabeling, which gives the desired
order inequality.

Next notice that since w is ordered by the negative real
semi-axis, and since kz is weakly non-decreasing (by Lemma
4), it follows that

max
kp∈kw(p)

min
kq∈kw(q)

(kp − kq)(p − q) ≤ 0 ∀p, q ∈ Uz. (5)

Choose any initial value ξ for (2), and let (x(t), z(t))
denote the corresponding trajectory for (2) starting at ξ.
This trajectory is defined on [0,∞) since our trajectories
are assumed to be bounded. Set y+ = ysup and y− = yinf .
Using (5) and proceeding inductively, it is possible (see [4])
to construct sequences {s(r)

± } satisfying the following for all
j ∈ N:

(ky ◦ kw)2j(y−) � s(2j)
− ≤ y− ≤ y+

≤ s(2j)
+ ∈ (ky ◦ kw)2j(y+) (6)

(ky ◦ kw)2j−1(y+) � s(2j−1)
+ ≤ y− ≤ y+

≤ s(2j−1)
− ∈ (ky ◦ kw)2j−1(y−). (7)

This can be done in such a way that

s(j)
± ∈ (ky ◦ kw)j−1(s(1)

± ) ∀j ∈ N (8)

so Assumption 4 from our theorem provides values r̄± such
that s(j)

± → r̄± as j → +∞. Letting j → +∞ in (6) shows
that r̄− ≤ r̄+; and letting j → +∞ in (7) gives r̄+ ≤ r̄−.
Thus, r̄+ = r̄− = y+ = y− =: ȳ. Applying Lemma 6 to
f = fz and the input u(t) = y(t) → ȳ gives z(t) → z̄ for
some z̄ ∈ kz(ȳ). As hz is continuous, w(t) converges also;
i.e., w+ = w− =: w̄. Thus, w̄ = hz(z̄) ∈ kw(ȳ), and one
can also show that ȳ = ky(w̄). We conclude that w̄ ∈ (kw ◦
ky)(w̄), so w̄ ∈ E(kw ◦ ky). Therefore, Theorem 7 follows
once we show that (x(t), z(t)) converges to some point in
{kx(w̄)} × (kz ◦ ky)(w̄) as t → +∞. To this end, first note
that x(t) → kx(w̄) as t → +∞ as a consequence of Lemma
5 above, applied to f = fx and the input u(t) = w(t) → w̄,
since we are assuming that kx is singleton-valued. As z̄ ∈
kz(ȳ) = kz(ky(w̄)), the result follows.

Remark 10: One can extend our theorem to examples
where kx and kz are both multi-valued (see [4]). In fact,
our theorem remains true if we replace Assumption 3 by:

3′. The respective i/s characteristics kx and kz exist and
are locally bounded .

The conclusion of the theorem becomes that our intercon-
nection (2) has ∪{kx(w̄) × (kz ◦ ky)(w̄) : w̄ ∈ E(kw ◦ ky)}
as its pointwise globally attractive set.

Remark 11: Our small gain theorem remains true even if
the local boundedness condition on kz is replaced by:

(A) For each bounded subset S ⊆ Xz , there exist a, b ∈ Xz

such that a � x � b for all x ∈ S.

This is related to the bounded orders requirement from [1]
but is more restrictive since we require a and b to be in Xz

rather than merely in the ambient Banach space. To see why
our theorem remains true under this alternative hypothesis, it
suffices to prove Lemma 9 under this alternative hypothesis
since that is the only place in the proof of the theorem where
the local boundedness of kz is used; see [4]. To this end, we
argue exactly as in the proof of the lemma up through (4).
We can assume {µi} is increasing. Pick φ ∈ Xz such that
φ � φ(tj , ξ, y) for all j, which exists by Assumption (A).
Then

φ(sl − tj , φ(tj , ξ, y), µj) � φ(sl − tj , φ, µ1) ∀l, j,

by the definition of monotonicity. Pick v ∈ Xz such that
φ(t, φ, µ1) → v as t → +∞. Then ζ � vj � v for all j. By
our pointedness assumption Kz ∩ (−Kz) = {0}, it follows
that the order interval

[v, ζ] = {x ∈ Xz : v � x � ζ}
is bounded (see [1, p. 1690]) hence compact, so vj has a
convergent subsequence. The remainder of the proof of the
lemma is as before.

V. ILLUSTRATION

We next illustrate our theorem using the interconnection

ẋ = −x + 5 + w, y = x
ż = −P (z) + y, w = 1

1+z2
(9)

evolving on [0,∞)×[0,∞), where P (z) = z(2z2−9z+12).
We order x and z by the standard cone [0,∞). The dynamic
(9) satisfies Conditions 1-2 from Theorem 7. Replacing w
with 1

1+w2 in (9) gives the planar positive feedback system

ẋ = −x + 5 + 1
1+w2 , y = x

ż = −P (z) + y, w = z.
(10)

Using superscripts o to label the characteristics of our
original interconnection (9) and using kx and so on to denote
the characteristics of (10) (where they exist), we get

ko
x

(
1

1 + w2

)
≡ kx(w)

and ko
z ≡ kz . Moreover, if uk+1 ∈ (ko

w◦ko
y)(uk) with uk > 0

for all k, then wk+1 ∈ (kw ◦ky)(wk) for all k when the wk’s
are taken to satisfy

1
1 + w2

k

= uk

for all k ∈ N. Moreover, since w in (9) is always positive,
(ko

w ◦ko
y)(0) ⊆ (0,∞), so uk > 0 for all k ≥ 1 along all so-

lution sequences {uk} of uk+1 ∈ (ko
w◦ko

y)(uk). Thus, if each
solution sequence {wk} for wk+1 ∈ (kw◦ky)(wk) converges,
then each solution sequence {uk} for uk+1 ∈ (ko

w ◦ ko
y)(uk)

converges as well, which gives the required convergence of
solutions of vk+1 ∈ (ko

y ◦ ko
w)(vk) by Remark 8. The fact

that Condition 4 also holds for the original interconnection
(9) will then follow once we show that (10) has bounded
trajectories, because (9) has the same trajectories as (10).

It therefore remains to check (i) that (10) satisfies Con-
dition 3 from our theorem, (ii) that all its trajectories are
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bounded, and (iii) that each solution of wk+1 ∈ (kw◦ky)(wk)
converges (by Remark 8). To this end, first note that since
the outputs of both subsystems in (10) are their states,
the i/s and i/o characteristics coincide for (10)-where they
exist–so we define k1 = kx = ky and k2 = kz = kw

wherever the characteristics exist. The characteristic of the
first subsystem in (10) is k1(w) = 5+ 1

1+w2 (w ∈ R+), while
the characteristic for the second subsystem is multi-valued
and only determined implicitly as follows:

k2(y) = {z ∈ R : P (z) = y}, y ∈ R+.

A bifurcation analysis of ż = −P (z) + y, with y ∈ R+ as
a bifurcation parameter, shows that k2(y) is a characteristic
which is

1) single-valued if y ∈ [0, 4) or if y ∈ (5,∞).
2) triple-valued if y ∈ (4, 5).
3) double-valued if y = 4 (with k2(4) = {1/2, 2}) or

y = 5 (with k2(5) = {1, 5/2}).
The four defining properties of a characteristic (see Defini-
tion 2) can indeed be readily verified: For each y ∈ R+, the
subsystem ż = −P (z) + y has a finite number of isolated
compact equilibria and has no cycles (since the system is
scalar), and every solution converges to one of the equilibria.
It is not difficult to see that k2 is locally bounded. To
apply Theorem 7, we only need to verify that (10) satisfies
Condition 4 of our theorem.

One can readily show (cf. [4]) that the trajectories of (10)
(or equivalently of (9)) are bounded. This boundedness can
be shown as a consequence of the following [4]: Claim (G):
If (x(t), z(t)) is any trajectory of (9) defined on some interval
[0, T ], then there is a compact set D depending only on
(x(0), z(0)) (and not on T ) such that (x(t), z(t)) ∈ D for all
t ∈ [0, T ]. The boundedness of the trajectories then follows
by applying Claim (G) with T = 1, 2, 3 and so on.

Next we consider the discrete inclusion

wk+1 ∈ (k2 ◦ k1) (wk),

which reduces to a discrete equation wk+1 = (k2 ◦ k1) (wk)
because k1(w) > 5 and k2(y) is single-valued when y > 5.
In fact, for all w0 ∈ R+, the discrete equation gives wk >
5/2 for all k ≥ 1. Also, the interval (5/2,∞) is forward
invariant for the discrete equation. Finally, since |k′

1(w)| is
decreasing for w ≥ 5/2, elementary calculus gives

|k′
2(k1(w))k′

1(w)| ≤ 5
(1 + 25/4)2

2
9

< 1 ∀w ≥ 5/2,

since k′
2(y) = 1/P ′(k2(y)) ≤ 2/9 when y ≥ 5. Hence k2◦k1

is a contraction map on [5/2,∞), so the discrete equation
has a unique globally attractive fixed point w̄. Therefore,
Remark 8 tells us that (10) satisfies Conditions 3-4 of our
theorem, as claimed. Since

E(ko
w ◦ ko

y) =
{

1
1 + w̄2

: w̄ ∈ E(k2 ◦ k1)
}

,

we conclude that (9) has the unique globally attractive
equilibrium{(

5 +
1

1 + w̄2
, k2

(
5 +

1
1 + w̄2

))}
.

Figure 2 below illustrates this.

k2

k1

0

1

2

3

4

5

6

7

y

0.5 1 1.5 2 2.5 3 3.5

w

Fig. 2. Characteristics k1(w), k2(y) and R(w) from Section V.

Remark 12: In the preceding example, wk+1 ∈ (kw ◦
ky)(wk) had a unique equilibrium, but our theory applies
to examples where E(kw ◦ ky) has more than one element
as well; see [4] for an example of this phenomenon.

VI. CONCLUSION

We announced a new small-gain theorem for interconnec-
tions of monotone i/o systems with set-valued i/s character-
istics. This allows cases where the trajectory for any given
constant input can converge to several possible equilibrium
states, depending on its initial value. This extends a recent
small gain theorem of Angeli and Sontag that applies to
systems with singleton-valued characteristics. Our result is
based on the theory of asymptotically autonomous systems,
which requires that the equilibria of the subsystems contain
no chains. This suggests the question of how to extend our
theory to cases where the sets of equilibria of the subsystems
are more general, e.g., cases where they contain chains or
limit cycles. Research on these questions is in progress.
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