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Abstract— A dynamic feedforward scheme allows measur-
able signal decoupling to be solved independently of other
problems simultaneously present in the design of an actual
control system, like plant pre-stabilization, robustness with
respect to uncertainties, insensitivity to inaccessible distur-
bances etc. The synthesis procedure, based on the proper-
ties of self-bounded controlled invariant subspaces, ensures
the minimal complexity of the dynamic feedforward unit in
terms of the minimal unassignable dynamics in the case
of left-invertible systems and, on specific conditions, also in
the case of non-left-invertible systems. The output dynamic
feedback loop in charge of pre-stabilization, or, more generally,
ensuring some robustness or insensitivity properties, does not
affect the complexity of the dynamic feedforward unit. In
fact, the particular layout where the feedback unit receives an
input directly from the precompensator preserves the set of the
internal unassignable eigenvalues of the minimal self-bounded
controlled invariant. Hence, it maintains the unassignable
dynamics of the precompensator.

I. INTRODUCTION

Signal decoupling, i.e. the problem of making the output of
a dynamic system totally insensitive to an exogenous input,
has been extensively studied, particularly in the geometric
approach context [1], [2]. As for decoupling of signals
accessible for measurement, the necessary and sufficient
condition for the structural solution was given in [3], while
the necessary and sufficient condition for the solution with
stability can be found in [2], where an algebraic, mixed
feedback-feedforward scheme is proposed. However, the
more and more sophisticated control systems and the ever
increasing variety of issues to be handled (e.g., robustness
with respect to parameter uncertainties, insensitivity to in-
accessible and unpredictable disturbances, fault tolerance,
etc) induce the designer to consider more flexible control
schemes, allowing the different questions to be treated sep-
arately and intricacy of the devices aiming at satisfying
each specific requirement to be minimized whenever possible
[4], [5]. In this work, in particular, the measurable signal
decoupling problem is solved through a dynamic feedfor-
ward scheme, while the problem of pre-stabilizing the plant
(which, more generally, could also be a problem of robust-
ness or insensitivity to disturbances) is devolved to a output
dynamic feedback scheme. The synthesis of the dynamic
feedforward unit is based on the properties of the minimal
controlled invariant self-bounded with respect to the kernel of
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the output matrix satisfying the structural condition. Hence,
the dynamic feedforward unit is found to have the minimal
unassignable dynamics (and also the minimal dynamic order)
if the plant is left-invertible with respect to the control input.
The synthesis procedure is first presented for left-invertible
systems and then extended to non-left-invertible systems
by means of an original squaring-down technique. In the
case of non-left-invertible systems, it is shown that the
minimal unassignable dynamics is still guaranteed if there
is no intersection between the image of the exogenous input
matrix and the intersection between the maximal controlled
invariant contained in the kernel of the output matrix and the
image of the control input matrix. As to the output dynamic
feedback loop designed to guarantee plant stability, it is
shown that the proposed scheme, including a direct input
from the precompensator, does not affect the complexity of
the dynamic feedforward unit, since the set of the internal
unassignable eigenvalues of the minimal self-bounded con-
trolled invariant is preserved in the extended system.

The notation is assumed as in [2].

II. GEOMETRIC APPROACH BACKGROUND

The discrete-time linear system

x(t + 1) = Ax(t) + B u(t) + H h(t), (1)

y(t) = C x(t), (2)

is considered, where x∈X = R
n, u∈R

p, h∈R
s, y ∈R

q

respectively denote the state, the control input, the exogenous
input, the controlled output. The set of all admissible control
input sequences and that of all admissible exogenous input
sequences are defined as the sets Uf and Hf of all bounded
sequences with values in R

p and R
s, respectively. The

matrices B, H , C are full-rank. The symbols B, H, C
are used for im B, im H , ker C, respectively. The nota-
tion R= minJ (A,B) is used for the minimal A-invariant
containing B. The notation V∗ = maxV(A,B, C) is used
for the maximal (A,B)-controlled invariant contained in
C, S∗ = minS(A, C,B) for the minimal (A, C)-conditioned
invariant containing B, RV∗ for the reachability sub-
space on V∗. Let V ⊆X be an (A,B)-controlled in-
variant, F any real matrix such that (A+ BF )V ⊆V ,
and RV =V ∩minS(A,V,B). The assignable and the
unassignable internal eigenvalues of V are respectively de-
fined as σ((A+ BF )|RV ) and σ((A+ BF )|V/RV ), where
σ(·) denotes the spectrum. The assignable and the
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Fig. 1. Block diagram for measurable signal decoupling.

unassignable external eigenvalues of V are respectively de-
fined as σ((A+ BF )|(V+R)/V) and σ((A+ BF )|X/(V+R)).
Hence, V is an internally stabilizable (A,B)-controlled in-
variant iff there exists at least one real matrix F such
that (A+ BF )V ⊆V and σ((A+ BF )|V)⊂C

�, where C
�

denotes the set of complex numbers inside the unit circle.
Likewise, V is an externally stabilizable (A,B)-controlled
invariant iff there exists at least one real matrix F such that
(A+ BF )V ⊆V and σ((A+ BF )|X/V)⊂C

�. If (A,B)
is stabilizable, any (A,B)-controlled invariant is externally
stabilizable. The unassignable internal eigenvalues of V∗ are
the invariant zeros of the triple (A,B,C), i.e. Z(A,B,C).
Let V ⊆X be an (A,B)-controlled invariant contained in C,
V is said to be self-bounded with respect to C if V ⊇V∗ ∩B.
The set of all (A,B)-controlled invariants self-bounded with
respect to C is a non-distributive lattice with respect to ⊆,
+, ∩.

Internal stabilizability and self-boundedness of
(A,B)-controlled invariants are notions of primary
importance in the statement of the necessary and sufficient
constructive condition for measurable signal decoupling
with stability [2], [6], [7].

Lemma 1: Let H⊆V∗ +B. If the minimal
(A,B+H)-controlled invariant self-bounded with respect
to C, i.e. Vm =V∗ ∩minS(A, C,B+H), is not internally
stabilizable, no internally stabilizable (A,B)-controlled
invariant V exists, which satisfies both V ⊆C and H⊆V +B.

Problem 1: Refer to Fig. 1. Let Σ be ruled by (1), (2)
with x(0)= 0. Find a linear algebraic state feedback ma-
trix F and a linear algebraic feedforward matrix S such
that σ(A+ BF )⊂C

� and, for all admissible h(t) (t≥ 0),
y(t) = 0 for all t≥ 0.

Theorem 1: Consider the system (1), (2). Let (A,B) be
stabilizable. Problem 1 is solvable iff (i) H⊆V∗ +B, (ii) Vm

is internally stabilizable.
In Theorem 1, on the assumption that (i) holds, the stabi-

lizability condition is checked by considering Vm, i.e. the
minimal (A,B)-controlled invariant self-bounded with re-
spect to C such that H⊆Vm +B [2]. However, the necessary
and sufficient condition for measurable signal decoupling
with stability is often expressed by the compact condition
H⊆V∗

g +B, where V∗
g is the maximal internally stabilizable

(A,B)-controlled invariant contained in C [1]. Since both
Vm and V∗

g are (A,B)-controlled invariants self-bounded
with respect to C, for any F such that (A+ BF )V∗ ⊆V∗,
also (A+ BF )V∗

g ⊆V∗
g and (A+ BF )Vm ⊆Vm hold. More-

over, if Vm is internally stabilizable, since Vm is the
minimal (A,B)-controlled invariant self-bounded with re-
spect to C such that H⊆Vm +B, Vm ⊆V∗

g holds. The
property of (A+ BF )-invariance of both Vm and V∗

g for
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h
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Fig. 2. Block diagram for measurable signal decoupling by dynamic
feedforward.

any F friend of V∗ and the inclusion Vm ⊆V∗
g imply

that, if Vm is internally stabilizable, the set of the in-
ternal unassignable eigenvalues of Vm is a subset of the
set of the internal unassignable eigenvalues of V∗

g , namely
σ((A+ BF )|Vm/RV∗ )⊆σ((A+ BF )|V∗

g /RV∗ ). In the light
of the inclusion above, the synthesis procedure that will
be presented in Sections III, IV directly yields a dynamic
unit with the minimal internal unassignable dynamics if the
system is left-invertible (and even if it is not on conditions
that will be specified), since this dynamics corresponds to the
set of the internal unassignable eigenvalues of the subspace
which is assumed as the resolvent, Vm in the specific case.

III. MEASURABLE SIGNAL DECOUPLING BY
DYNAMIC FEEDFORWARD: STABLE SYSTEMS

Throughout this work, the mixed feedback-feedforward
algebraic solution shown in Fig. 1 is replaced by the
dynamic feedforward solution shown in Fig. 2, where
the precompesator Σc is defined by the quadruple
(Ac, Bc, Cc, Dc). To this aim, the plant Σ is assumed to be
stable. As mentioned in the Introduction, the convenience
of choosing the dynamic feedforward option needs to be
discussed in connection with the output dynamic feedback
inner loop that will be presented in detail in Section IV. In
fact, considering a dynamic feedforward unit to guarantee
insensitivity of the output to measurable input signals and
devolving to an output dynamic feedback inner loop the sta-
bilization of the plant (but also the questions of insensitivity
to inaccessible and unpredictable disturbances, of robustness
with respect to model uncertainties and so forth) allows the
designer to carry out separate synthesis procedures, with
different targets, thus achieving a more complicated, but
potentially better performing, overall control system (Fig. 3).
As to the synthesis of the dynamic feedforward unit attaining
decoupling of the measurable input, it is worth noting that
the minimal unassignable dynamics of the precompensator
is preserved also in the presence of the output dynamic
feedback inner loop presented in Section IV, since, as it
will be shown, that configuration maintains the internal
unassignable eigenvalues of the resolvent subspace in the

+
+
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Fig. 3. Block diagram for measurable signal decoupling by dynamic
feedforward with an output dynamic feedback inner loop.
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state space extended to include the state of the feedback
unit.

Problem 2: Refer to Fig. 2. Let Σ be ruled by (1), (2) with
x(0)= 0. Let σ(A)⊂C

�. Find a linear dynamic feedforward
compensator Σc ≡ (Ac, Bc, Cc, Dc), such that σ(Ac)⊂C

�

and, for all admissible h(t) (t≥ 0), y(t) = 0 for all t≥ 0.
On the assumption that the necessary and sufficient con-

dition stated in Theorem 1 holds, the synthesis of the
precompensator will be first considered for systems which
are left-invertible with respect to the control input, i.e.
V∗ ∩B= {0}. If the system is left-invertible, the precompen-
sator designed on the basis of Vm not only has the minimal
internal unassignable dynamics, but it also is the precompen-
sator of minimal dynamic order. In fact, since V∗ ∩B= {0},
Vm is the minimal internally stabilizable (A,B)-controlled
invariant satisfying Vm ⊆C and H⊆Vm +B.

Lemma 2: Consider the system (1), (2). Let V∗ ∩B= {0}
and H⊆V∗ +B. Let F be any real matrix such that
(A+ BF )Vm ⊆Vm. Denote by Vm a basis matrix of Vm

and assume B as basis matrix of B. Perform the similarity
transformation T = [T1 T2 T3 ], with T1 = Vm and T2 =B.
The matrices A′

F , B′, H ′, C ′, respectively corresponding to
A+ BF , B, H , C in the new basis, partitioned according
to T have the structures

A′
F =

⎡
⎣ A′

11 A′
12 A′

13

O A′
F22 A′

F23

O A′
32 A′

33

⎤
⎦ , B′ =

⎡
⎣ O

B′
21

O

⎤
⎦ ,

H ′ =

⎡
⎣ H ′

11

H ′
21

O

⎤
⎦ , C ′ =

[
O C ′

12 C ′
13

]
,

where A′
F2j =A′

2j +B′
21F

′
1j , j = 2, 3, and A′

F21 = A′
21

+B′
21F

′
11 has been set to 0 with F ′

11 =− (B′
21)

−1A′
21.

Proof: The structure of B′ is implied by Vm ∩B= {0},
which follows from V∗ ∩B= {0} and Vm ⊆V∗. The struc-
ture of H ′ depends on H⊆Vm +B, which is implied by
H⊆V∗ +B. The structure of C ′ depends on Vm ⊆C. The
zero submatrices in the first column of A′

F are due to
(A+ BF )-invariance of Vm.

Theorem 2: Consider the system (1), (2). Let σ(A)⊂C
�,

V∗ ∩B= {0}, H⊆V∗ +B. Then, Σc ≡ (Ac, Bc, Cc, Dc)
solves Problem 2 if Ac = A′

11, Bc =H ′
11, Cc = F ′

11,
Dc =−H ′

21, where A′
11, H ′

11, F ′
11, H ′

21 are defined
as in Lemma 2, with F any real matrix such that
(A+ BF )Vm ⊆ Vm and σ(A+BF )⊂C

�.
Proof: Let A′

11, H ′
11, F ′

11, H ′
21 be defined as

in Lemma 2, with F any real matrix such that
(A+ BF )Vm ⊆Vm and σ(A+ BF )⊂C

�. Let Σc be

z(t + 1) = A′
11 z(t) + H ′

11 h(t),
u(t) = F ′

11 z(t) − H ′
21 h(t),

with z(0)= 0. First, it is shown that, for any admissible
h(t) (t≥ 0), the corresponding x(t) (t≥ 0), starting from
x(0)= 0, lies on Vm, since x(t)= Vm z(t) for all t≥ 0.
In fact, x(0)= Vm z(0), due to the assumptions on the
initial conditions. Moreover, for any t≥ 0, the assumption

x(t)= Vm z(t) implies

x(t + 1) = Ax(t) + BF ′
11 z(t) + VmH ′

11 h(t)
= (A + BF )Vm z(t) + VmH ′

11 h(t)
= VmA′

11 z(t) + VmH ′
11 h(t)

= Vm z(t + 1),

where H = VmH ′
11 +BH ′

21, F ′
11 =FVm,

(A+ BF )Vm = VmA′
11 have been considered. Then, stabil-

ity of Σc is implied by σ(Ac)= σ(A′
11)⊆σ(A+ BF )⊂C

�,
due to the block-diagonal structure of A′

F .
If the plant is non-left-invertible with respect to the

control input, the synthesis of the dynamic feedforward unit
is more intricate, since it requires that a squaring-down
technique is applied to the original system and that the
synthesis procedure previously described is performed on
the new, left-invertible, system. As for the evaluation of the
complexity of the dynamic feedforward compensator thus
obtained with respect to the original problem, the minimal
internal unassignable dynamics is guaranteed if the original
system satisfies the condition H∩ (V∗ ∩B)= {0}. In fact,
as it will be shown in the following, the squaring-down
technique herein proposed preserves V∗ as the maximal
controlled invariant contained in the null space of the output
and suppresses those column vectors of B whose image
belongs to V∗. The following Lemma 3 and Theorem 3
introduce the squaring-down technique. Corollary 1 relates
the invariant zeros of the new, left-invertible, triple to the
invariant zeros of the original triple and the eigenvalues
of the controllability subspace RV∗ of the original triple.
Finally, Theorems 4 and 5 enable the dynamic feedforward
compensator for the original system to be retrieved from that
designed for the new system.

Lemma 3: Consider the system (1), (2). Let H⊆V∗ +B.
Let F be any real matrix such that (A+ BF )V∗ ⊆V∗.
Perform the similarity transformations T = [ T1 T2 T3 T4 ],
with im T1 =RV∗ , im [ T1 T2 ] =V∗, im [ T1 T3 ] =S∗, and
U = [ U1 U2 ], with im U1 =B−1V∗, im U2 =

(
B−1V∗)⊥.

The matrices A′, B′, H ′, C ′, respectively corresponding to
A, B, H , C in the new bases, partitioned according to T
and U have the structures

A′ =

⎡
⎢⎢⎣

A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

A′
31 A′

32 A′
33 A′

34

O O A′
43 A′

44

⎤
⎥⎥⎦ , (3)

B′ =

⎡
⎢⎢⎣

B′
11 B′

12

O O
O B′

32

O O

⎤
⎥⎥⎦ , H ′ =

⎡
⎢⎢⎣

H ′
11

H ′
21

H ′
31

O

⎤
⎥⎥⎦ , (4)

C ′ =
[

O O C ′
13 C ′

14

]
. (5)

The matrix A′
F , corresponding to A+ BF , partitioned ac-

cording to T has structure

A′
F =

⎡
⎢⎢⎣

A′
F11 A′

F12 A′
F13 A′

F14

O A′
22 A′

23 A′
24

O O A′
F33 A′

F34

O O A′
43 A′

44

⎤
⎥⎥⎦ , (6)
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where A′
F1j =A′

1j +B′
11F

′
1j +B′

12F
′
2j , with j = 1, 2, 3, 4,

A′
F3j =A′

3j +B′
32F

′
2j , with j = 3, 4, and where

A′
F3j =A′

3j +B′
32F

′
2j , with j = 1, 2, have been set to

zero by imposing F ′
2j =− (B′

32)
+A′

3j , with j = 1, 2,
respectively.

Proof: The structure of B′ is due to B⊆S∗

and V∗ ∩B⊆RV∗ . The structure of H ′ is implied by
H⊆V∗ +B. The structure of C ′ is implied by V∗ ⊆C. The
zero submatrices in the fourth row of A′ are due to the
structure of B′ and to (A,B)-controlled invariance of V∗.
The zero submatrix in the second row of A′ is due to the
structure of B′ and to (A,B)-controlled invariance of RV∗ .
The zero submatrices in the third row of A′

F are due to
(A+ BF )-invariance of V∗.

Theorem 3: Consider the system (1), (2). Let (A,B,C)
be non-left-invertible. Let F be any real matrix such that
(A+ BF )V∗ ⊆V∗. Let

(
B−1V∗)⊥ �= {0} and U2 be a basis

matrix of
(
B−1V∗)⊥. Set Ã= A+BF , B̃ =B U2. Then,

maxV(Ã, B̃, C)=V∗ and (Ã, B̃, C) is left-invertible.
Proof: Consider the triple (A+ BF,B,C) and perform

the similarity tranformations T , U defined in Lemma 3. First,
note that the matrix B̃′ =B′U ′

2, corresponding to B̃ =BU2

in the new bases, matches the second column of B′, since
U ′

2 =U−1U2 = [O I ]�. Also note that, in the new ba-
sis, V∗ = im [T ′

1 T ′
2 ], with T ′

1 = T−1T1 = [ I O O O ]� and
T ′

2 =T−1T2 = [O I O O ]�. Then, V∗ ∩ B̃= {0} is derived
from the comparison of the basis matrices of V∗ and B̃ in
the new coordinates, since B′

32 is full-rank. On the other
hand, V∗, which is the maximal (A,B)-controlled invariant
contained in C, is also the maximal (A+ BF )-invariant
contained in C. Hence, due to the particular structure of
B̃, V∗ is also the maximal (A+ BF, B̃)-controlled invariant
contained in C, i.e. V∗ = maxV(Ã, B̃, C).

Corollary 1: Consider the system (1), (2). Let (A,B,C)
be non-left-invertible. Let F be any real matrix such that
(A+ BF )V∗ ⊆V∗. Let

(
B−1V∗)⊥ �= {0} and let U2 be a

basis matrix of
(
B−1V∗)⊥. Set Ã = A+BF and B̃ =B U2.

Then, Z(Ã, B̃, C)=Z(A,B,C)	σ((A+ BF )|RV∗ ) holds.
Proof: By virtue of Theorem 3 maxV(Ã, B̃, C)=V∗

and all the internal eigenvalues of maxV(Ã, B̃, C) are
unassignable, since the triple (Ã, B̃, C) is left-invertible.

Theorem 4: Consider the system (1), (2). Let (A,B,C)
be non-left-invertible. Let F be any real matrix such
that (A+ BF )V∗ ⊆V∗. Let U2 be a basis matrix of(
B−1V∗)⊥ �= {0}. Let the system Σ̃ be ruled by

x̃(t + 1) = Ã x̃(t) + B̃ ũ(t) + H h(t), (7)

ỹ(t) = C x̃(t), (8)

where Ã =A+BF and B̃ = B U2. If Problem 1 stated
for system (1), (2) is solvable, then Problem 1 stated for
system (7), (8) is solvable.

Proof: Since V∗ = maxV(Ã, B̃, C) by virtue of Theo-
rem 3 and V∗ +B=V∗ + B̃ by definition of B̃,

H ⊆ V∗ + B ⇐⇒ H ⊆ maxV(Ã, B̃, C) + B̃ (9)

holds. Let the inclusions in (9) hold. The subspace Vm, which
is the minimal (A,B)-controlled invariant self-bounded with
respect to C such that H⊆Vm +B, is also the min-
imal (A+ BF )-invariant contained in C and containing
V∗ ∩B such that H⊆Vm +B. Hence, Vm is the mini-
mal (A+ BF, B̃)-controlled invariant contained in C and
containing V∗ ∩B such that H⊆Vm +B. By definition of
B̃ and by virtue of the inclusions V∗ ∩B⊆RV∗ ⊆Vm, it
follows that Vm +B=Vm + B̃, which, in turn, implies that
Vm is the minimal (Ã, B̃)-controlled invariant contained in
C and containing V∗ ∩B such that H⊆Vm + B̃. On the
other hand, Ṽm = maxV(Ã, B̃, C)∩minS(Ã, C, B̃+H) is
the minimal (Ã, B̃)-controlled invariant contained in C such
that H⊆Ṽm + B̃. Hence, Ṽm ⊆Vm holds. Due to this latter
inclusion, internal stabilizability of Vm implies that of Ṽm.
Finally, the inclusion on the right-hand side of (9) and the
internal stabilizability of Ṽm imply solvability of Problem 1
stated for system (7), (8), by virtue of Theorem 1.

Theorem 5: On the assumptions of Theorem 4, let
Σ̃c ≡ (Ãc, B̃c, C̃c, D̃c) solve Problem 2 stated for sys-
tem (7), (8). Then, Σc solving Problem 2 stated for sys-
tem (1), (2) is defined by (Ac, Bc, Cc, Dc), where Ac = Ãc,
Bc = B̃c, Cc =F Vm + U2 C̃c, Dc =U2 D̃c, with Vm denot-
ing a basis matrix of Vm, F any real matrix such that
(A+ BF )V∗ ⊆V∗ and σ((A+ BF )|Vm

)⊂C
�, and U2 a

basis matrix of
(
B−1V∗)⊥ �= {0}.

Proof: The state equations of the feedforward connec-
tion of Σc and Σ shown in Fig. 2 are{

x(t + 1) = Ax(t) + BCc z(t) + (BDc + H)h(t),
z(t + 1) = Ac z(t) + Bc h(t),

with x(0)= 0, z(0)= 0. The state equations of the corre-
sponding feedforward connection of Σ̃c and Σ̃ are⎧⎨

⎩
x̃(t + 1) = (A + BF ) x̃(t) + BU2C̃c z̃(t)

+ (BU2D̃c + H)h(t),
z̃(t + 1) = Ãc z̃(t) + B̃c h(t),

with the initial conditions x̃(0)= 0, z̃(0)= 0. The thesis
follows by imposing x(t)= x̃(t), z(t)= z̃(t) for all t≥ 0.

IV. MEASURABLE SIGNAL DECOUPLING BY
DYNAMIC FEEDFORWARD: PRE-STABILIZED

SYSTEMS

The assumption of stability of the system, introduced in
order to replace the mixed feedback-feedforward algebraic
solution with the dynamic feedforward solution, is not re-
strictive with respect to those of stabilizability of (A,B)
and detectability of (A,C) which are usually considered. On
these assumptions, the given system can be pre-stabilized by
output dynamic feedback. In this section it is shown that the
scheme introduced in Fig. 3 does not affect the complexity
of the dynamic feedforward unit achieving measurable signal
decoupling, since the set of the invariant zeros of the original
system coincides with that of the invariant zeros of the
system extended to include the output dynamic feedback unit.
On the assumptions of stabilizability and detectability of the
original system, stability of the overall system is guaranteed
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Â′
F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â′
F11 Â′

F12 Â′
F13 Â′

F14 O O O O
O A′

22 A′
23 A′

24 O O O O

O O Â′
F33 Â′

F34 O O O O
O O A′

43 A′
44 O O O O

O Â′
F52 Â′

F53 Â′
F54 Â′

F55 Â′
F56 Â′

F57 Â′
F58

O Â′
F62 Â′

F63 Â′
F64 Â′

F65 Â′
F66 Â′

F67 Â′
F68

O Â′
F72 Â′

F73 Â′
F74 Â′

F75 Â′
F76 Â′

F77 Â′
F78

O Â′
F82 Â′

F83 Â′
F84 Â′

F85 Â′
F86 Â′

F87 Â′
F88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

by virtue of the well-known separation property, recalled
without proof in Theorem 6. Instead, the result concerning
the invariant zeros is proved through Theorems 7 and 8.

Refer to Fig. 3. Consider the system Σf , ruled by

w(t + 1) = (A + GC)w(t) + B u(t)
−Gy(t) + v2(t), (10)

uF (t) = F w(t), (11)

where w∈R
n, v2 ∈R

n, uF ∈R
p respectively denote the

state, the control input, the measurable output. Also consider
the overall system Σ̂ obtained by connecting Σf to Σ, ruled
by (1), (2) with the additional control input v1 ∈R

n, so
that u(t)= uF (t)+ v1(t). Let the state, the control input,
the measurable output of Σ̂ be x̂(t)=

[
x(t)� w(t)�

]�
,

v̂(t)=
[
v1(t)� v2(t)�

]�
, ŷ(t)= y(t), respectively. Then, Σ̂

is ruled by

x̂(t + 1) = Â x̂(t) + B̂ v̂(t) + Ĥ h(t), (12)

ŷ(t) = Ĉ x̂(t), (13)

with

Â =
[

A BF
−GC A + BF + GC

]
, B̂ =

[
B O
B I

]
, (14)

Ĥ =
[

H
O

]
, Ĉ =

[
C O

]
. (15)

Theorem 6 (Separation Property): Consider Σ ruled
by (1) ,(2), Σf by (10) ,(11), Σ̂ by (12) ,(13) with (14) ,(15).
Then, σ(Â)= σ(A+ BF )	σ(A+ GC).

Corollary 2: Consider Σ ruled by (1) ,(2), Σf by
(10) ,(11), Σ̂ by (12) ,(13) with (14) ,(15). Let (A,B) be
stabilizable and (A,C) detectable. Then, there exist real
matrices F , G such that σ(Â)⊂C

�.
Theorem 7: Consider Σ ruled by (1) ,(2), Σf by (10) ,(11),

Σ̂ by (12) ,(13) with (14) ,(15). Let V ∗, RV ∗ be basis ma-
trices of V∗ = maxV(A,B, C), RV∗ =V∗ ∩minS(A, C,B),
respectively. Then, basis matrices of V̂∗ = maxV(Â, B̂, Ĉ)
and RV̂∗ = V̂∗ ∩minS(Â, Ĉ, B̂) respectively are

V̂ ∗ =
[

V ∗ O
O I

]
, RV̂ ∗ =

[
RV ∗ O
O I

]
. (16)

Proof: Let K be a basis matrix of C. Due to the struc-

ture of Ĉ, a basis matrix of Ĉ is K̂ =
[

K O
O I

]
. Then, the

thesis follows from R̂= minJ (Â, B̂)⊇ im [O I]�, implied
by the structure of B̂.

Theorem 8: Consider Σ ruled by (1) ,(2), Σf by
(10) ,(11), Σ̂ by (12) ,(13) with (14) ,(15). Then,
Z(Â, B̂, Ĉ)=Z(A,B,C).

Proof: Consider Σ, ruled by (1) ,(2). Let
F be any real matrix s.t. (A+ BF )V∗ ⊆V∗.
Perform the similarity transformations T , U as in
Lemma 3. In the new coordinates, A′, B′, C ′,
A′

F have the structures in (3), (4), (5), (6). Moreover,
V∗ = im V ′∗ = im [ T ′

1 T ′
2 ], T ′

1 =T−1 T1 = [ I O O O ]�,
T ′

2 =T−1 T2 = [ O I O O ]� and (A′ +B′F ′)V ′∗ =V ′∗X

holds with X =
[

A′
F11 A′

F12

O A′
22

]
, which implies

Z(A,B,C)= σ((A+ BF )|V∗/RV∗ )= σ(A′
22). Then,

consider Σ̂, defined according to (12) ,(13) , with (14) ,(15)
in the new bases. The matrices Â′, B̂′, Ĉ ′ have the structures

Â′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′
11 A′

12 A′
13 A′

14 Â′
15 Â′

16 Â′
17 Â′

18

O A′
22 A′

23 A′
24 O O O O

A′
31 A′

32 A′
33 A′

34 Â′
35 Â′

36 Â′
37 Â′

38

O O A′
43 A′

44 O O O O

O O Â′
53 Â′

54 Â′
55 Â′

56 Â′
57 Â′

58

O O Â′
63 Â′

64 O Â′
66 Â′

67 Â′
68

O O Â′
73 Â′

74 Â′
75 Â′

76 Â′
77 Â′

78

O O Â′
83 Â′

84 O O Â′
87 Â′

88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B̂′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B′
11 B′

12 O O O O
O O O O O O
O B′

32 O O O O
O O O O O O

B′
11 B′

12 I O O O
O O O I O O
O B′

32 O O I O
O O O O O I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ĉ ′ =
[

O O C ′
13 C ′

14 O O O O
]
,

where the relations

Â′
1j = B′

11F
′
1j̄

+ B′
12F

′
2j̄

if j = 5, 6, 7, 8,

Â′
3j = B′

32F
′
2j̄

if j = 5, 6, 7, 8,

Â′
ij = −G′̄

i1
C ′

1j if i = 5, 6, 7, 8,
and j = 3, 4,

Â′
5j = A′

1j̄
+ B′

11F
′
1j̄

+ B′
12F

′
2j̄

if j = 5, 6,
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Â′
5j = A′

1j̄
+ B′

11F
′
1j̄

+ B′
12F

′
2j̄

+ G′
11C

′
1j̄

if j = 7, 8,

Â′
6j = A′

2j̄
if j = 6,

Â′
6j = A′

2j̄
+ G′

21C1j̄ if j = 7, 8,

Â′
7j = A′

3j̄
+ B′

32F
′
2j̄

if j = 5, 6,

Â′
7j = A′

3j̄
+ B′

32F
′
2j̄

+ G′
31C

′
1j̄

if j = 7, 8,

Â′
8j = A′

4j̄
+ G′

41C
′
1j̄

if j = 7, 8,

hold, with ī = i− 4 (i= 5, 6, 7, 8) and j̄ = j − 4
(j = 5, 6, 7, 8). Let F̂ be any real matrix such that
(Â + B̂F̂ )V̂∗ ⊆ V̂∗. The matrix Â′

F = Â′ + B̂′F̂ ′ has the
structure shown in (18), where the relations

Â′
F1j = A′

1j + B′
11F̂

′
1j

+ B′
12F̂

′
2j if j = 1, 2, 3, 4,

Â′
F3j = A′

3j + B′
32F̂

′
2j if j = 3, 4,

Â′
F5j = B′

11F̂
′
1j + B′

12F̂
′
2j + F̂ ′

3j if j = 2,

Â′
F5j = B′

11F̂
′
1j + B′

12F̂
′
2j + F̂ ′

3j

−G′
11C

′
1j if j = 3, 4,

Â′
Fij = F̂ ′

ĩj
if i = 6, 8

and j = 2, 5,

Â′
Fij = F̂ ′

ĩj
− G′̄

i1
C ′

1j if i = 6, 8
and j = 3, 4,

Â′
F7j = B′

32F̂
′
2j + F̂ ′

5j if j = 2,

Â′
F7j = B′

32F̂
′
2j + F̂ ′

5j − G′
31C

′
1j if j = 3, 4,

Â′
Fij = A′̄

ij̄
+ F̂ ′

ĩj
if i = 5, 7

and j = 5, 6,

Â′
Fij = A′̄

ij̄
+ F̂ ′

ĩj
+ G′̄

i1
C ′

1j̄
if i = 5, 7

and j = 7, 8,

Â′
Fij = A′̄

ij̄
+ F̂ ′

ĩj
if i = 6

and j = 6,

Â′
Fij = F̂ ′

ĩj
if i = 8

and j = 6,

Â′
Fij = A′̄

ij̄
+ F̂ ′

ĩj
+ G′̄

i1
C ′

1j̄
if i = 6, 8

and j = 7, 8,

hold with ĩ = i− 2 (i= 6, 8), ī = i− 4 (i= 5, 6, 7, 8),
j̄ = j − 4 (j = 5, 6, 7, 8) and where the entries

Â′
F3j = A′

3j + B′
32F̂

′
2j if j = 1, 2,

Â′
F5j = B′

11F̂
′
1j + B′

12F̂
′
2j + F̂ ′

3j if j = 1,

Â′
Fij = F̂ ′

ĩj
if i = 6, 8

and j = 1,

Â′
F7j = B′

32F̂
′
2j + F̂ ′

5j if j = 1,

Â′
F1j = B′

11(F
′
1j̄

+ F̂ ′
1j)

+B′
12(F

′
2j̄

+ F̂ ′
2j) if j = 5, 6, 7, 8,

Â′
F3j = B′

32(F
′
2j̄

+ F̂ ′
2j) if j = 5, 6, 7, 8,

have been set to zero by respectively imposing

F̂ ′
2j = −(B′

32)
+A′

3j if j = 1, 2,

F̂ ′
3j = −B′

11F̂
′
1j − B′

12F̂
′
2j if j = 1,

F̂ ′
ĩj

= O if i = 6, 8 and j = 1,

F̂ ′
5j = −B′

32F̂
′
2j if j = 1,

F̂ ′
1j = F ′

1j̄
if j = 5, 6, 7, 8,

F̂ ′
2j = F ′

2j̄
if j = 5, 6, 7, 8.

According to Theorem 7, V̂∗ = im V̂ ′∗ = im [ T̂ ′
1 T̂ ′

2 T̂ ′
3 ]

and RV̂∗ = im R′
V̂ ∗ = im [ T̂ ′

1 T̂ ′
3 ], where T̂ ′

1 = [T ′�
1 | O ]�,

T̂ ′
2 = [T ′�

2 | O ]�, and T̂ ′
3 = [O| I ]�. Simple algebraic

computations show that (Â′ + B̂′F̂ ′)V̂ ′∗ = V̂ ′∗X̂ holds with

X̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Â′
F11 Â′

F12 O O O O
O A′

22 O O O O

O Â′
F52 Â′

F55 Â′
F56 Â′

F57 Â′
F58

O Â′
F62 Â′

F65 Â′
F66 Â′

F67 Â′
F68

O Â′
F72 Â′

F75 Â′
F76 Â′

F77 Â′
F78

O Â′
F82 Â′

F85 Â′
F86 Â′

F87 Â′
F88

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence, Z(Â, B̂, Ĉ)= σ((Â + B̂F̂ )|V̂∗/RV̂∗ )= σ(A′
22).

Corollary 3: Consider the system Σ, described by (1) ,(2),
the dynamic feedback unit Σf , described by (10) ,(11), and
the overall system Σ̂, described by (12) ,(13) with (14) ,(15).
Then, Σ̂ is minimum-phase iff Σ is minimum-phase.

Proof: By virtue of Theorem 8, Z(Â, B̂, Ĉ)⊂C
� iff

Z(A,B,C)⊂C
�.

In the light of the previous results, the dynamic feedfor-
ward unit Σc must be designed on the basis of the original
system Σ according to the procedure detailed in Section III,
despite of possible instability of Σ. Then, the stability of
the overall system is guaranteed by connecting Σc to the
stabilized system Σ̂ with v2(t)=−B v1(t)−GCVm z(t),
where v1(t) and z(t) respectively denote the output and the
state of Σc. This connection ensures that the state w(t) of Σf ,
starting from w(0)= 0, is identically zero in ideal conditions,
while any possible perturbation is managed by feedback.

V. CONCLUSIONS

A dynamic feedforward scheme based on the properties
of the minimal self-bounded controlled invariant guarantees
measurable signal decoupling with the minimal complexity
of the dynamic unit for left-invertible systems (and also for
non-left-invertible systems on some specified conditions).
An output dynamic feedback with a direct input from the
precompensator stabilizes the plant without affecting the
complexity of the feedforward unit.
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