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Abstract— Unmaximized Hamiltonian Inclusion (UHI) type
conditions are derived for optimal control problems with mixed
constraints. For such problems different necessary conditions
of optimality, including UHI type conditions, have previously
been proved assuming that the Jacobian of the mixed constraint
functional with respect to the control variable have full rank.
Here we show that such requirement can be replaced by
possibly weaker conditions, namely, by Mangasarian Fromowitz
type conditions. Notably we consider problems in which the
dynamics is nonsmooth.

The Unmaximized Hamiltonian Inclusion type conditions we
present here are written as a weak version of nonsmooth maxi-
mum principle stated in terms of a joint Clarke subdifferential.
They are of interest since, in contrast to more traditional non-
smooth maximum principles, they give sufficiency for normal
linear convex problems.

I. INTRODUCTION

There is a growing appreciation for the importance of

constrained optimal control problems in areas like robotics,

economics and process systems engineering. As the number

of applications increases so does the need to broaden the

scope of optimality conditions to cover larger classes of

problems. Consequently one has witnessed several attempts

to validate necessary conditions of optimality under assump-

tions which may be viewed, in some sense, as minimal (see,

for example, [1], [2], [3]).

In applications optimal control problems with mixed con-

straints are of particular relevance. One area of application

of optimality conditions for such problems is to the control

of devices modelled by differential algebraic equations (DAE

systems). DAE models are nowadays widespread in chemical

process engineering and economics([4], [5] and references

therein).

Various aspects of problems with mixed constraints, in-

cluding those of the present paper, can be captured as special

cases of the following problem:

P

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimize l(x(0), x(1))
subject to

ẋ(t) = f(t, x(t), u(t)) a.e.

0 = b(t, x(t), u(t)) a.e.

0 ≥ g(t, x(t), u(t)) a.e.

(x(0), x(1)) ∈ C

with data the functions l : R
n × R

n → R, f : [0, 1] ×
R

n × R
k → R

n, b : [0, 1] × R
n × R

k → R
mb , g : [0, 1] ×
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R
n × R

k → R
mg and a closed set C ⊂ R

n × R
n. We set

m = mb + mg and throughout this paper we assume that

k ≥ m. Usually one has mb ≥ 1 and mg ≥ 1. However we

allow for mb = 0 (no equality constraints) or mg = 0 (no

inequality constraints).

The distinguishing aspects of (P ) are the equality mixed

constraints b(t, x, u) = 0 and inequality mixed constraints

g(t, x, u) ≤ 0.

The subject of necessary conditions in the form of maxi-

mum principles for (P ) have been addressed by a number of

authors; see for example [6], [7], [8], [9], [10], to name but

a few. Weak maximum principles covering problems with

nonsmooth dynamics have been considered in [8] and [11].

For nonsmooth problems, strong maximum principles have

also received some attention ([12] and [4]).

A common requirement in the aforementioned papers is

the assumption that the Jacobian of the mixed constraint

functional with respect to the control variable have full rank.

Exceptions are to be found in [9], where necessary conditions

for smooth problems are derived under assumptions that

may be viewed as analogous to the so called Mangasarian-

Fromowitz conditions in mathematical programming (defined

further down) and in [12], where convex and non autonomous

problems are treated.

In this paper we seek necessary conditions of optimality

for problem (P ) under hypotheses: (i) closely related to

those adopted in [9], (ii) directly verifiable by the data

of the problem. In contrast to [9] we treat problems with

possibly nonsmooth dynamics. It is also worth mentioning

that throughout this paper we assume the data of (P ) to be

merely measurable with respect to t.
The necessary conditions of optimality we derive for

(P ) are a generalization of a weak nonsmooth maximum

principle, known as Unmaximized Hamiltonian Inclusion

type conditions (denote in what follows simply as UHI),

previously obtained for standard optimal control problems

in [13].

This paper is structured as follows. After the Preliminaries

in section II we introduce and discuss UHI-type conditions

for standard optimal control problems. In section IV we

briefly discuss various regularity assumptions under which

necessary conditions of optimality have previously been

derived for (P ). Finally in sections V and VI we present

our main result and a sketch of its proof.

II. PRELIMINARIES

Here and throughout, B represents the closed unit ball

centered at the origin, | · | the Euclidean norm, and | · | the
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induced matrix norm on R
m×k. The notation r ≥ 0 means

that each component ri of r ∈ R
r is nonnegative.

We make use of various concepts from nonsmooth analy-

sis, among those the limiting normal cone to a set C, NC ,

the limiting subdifferential of f , ∂f(x), and the Clarke

subdifferential. The concepts of limiting normal cone and

limiting subdifferential as well as the full calculus for these

constructions in finite dimensions is described in [14] and

[15].

In the case that a function f is Lipschitz continuous near

x, the convex hull of the limiting subdifferential, co ∂f ,

coincides with the Clarke subdifferential which may be

defined directly. Properties of generalized subdifferentials

(upper semi-continuity, sum rules, etc.), are described in [16]

and [1].

For (P ) a process is a pair (x, u) comprising a measurable

function u : [0, 1] → R
k and x ∈ W 1,1([0, 1]; Rn) satisfying

the constraints of (P ). Here W 1,1([0, 1]; Rn) denotes the

space of absolutely continuous R
n-valued functions on [0, 1].

Definition 2.1: A process (x̄, ū) is a local minimizer if

there exists some ε > 0, such that it minimizes the cost over

all processes (x, u) of (P ) which satisfy x(t) ∈ x̄(t) + εB
and it is a weak local minimizer if there exists some ε > 0,

such that it minimizes the cost over all processes (x, u) of

(P ) satisfying

(x(t), u(t)) ∈ (x̄(t), ū(t)) + εB a.e. t ∈ [0, 1] (1)

For much of the analysis we shall denote by (x̄, ū) the

optimal solution of (P ), φ̄(t) the evaluation of a function φ
at (t, x̄(t), ū(t)), where φ may be f , b, g or its derivatives.

Moreover, the set Ia(t) denotes the set of indexes of the

active constraints, i.e.,

Ia(t) =
{
i ∈ {1, . . . , mg}

∣∣ gi(t, x̄(t), ū(t)) = 0
}

and its complement, the set of indexes of the inactive
constraints, Ic(t), qa(t) denotes the cardinal of Ia(t) and

qc(t) = mg − qa(t), the cardinal of Ic(t). Also

∇ugIa(t)
(
t, x̄(t), ū(t)

) ∈ R
qa(t)×k (2)

(if qa(t) = 0, then the latter holds vacuously) is the matrix

we obtain after removing from ∇ug(t, x̄(t), ū(t)) all the rows

of index i ∈ Ic(t).

III. UHI-TYPE CONDITIONS FOR OPTIMAL

CONTROL

Consider a standard optimal control problem

(S)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Minimize l(x(0), x(1))
subject to

ẋ(t) = f(t, x(t), w(t)) a.e.

w(t) ∈ W (t) a.e.

(x(0), x(1)) ∈ C

where l, f , and C are as defined above for (P ) and W :
[0, 1] → R

k is a given multifunction. Assume that (x̄, w̄) is

a reference process of (S) and ε > 0 a parameter.

The nonsmooth maximum principle (see e.g. [16]) for (S),
which we shall refer as “nonsmooth” maximum principle

(“strong” form), asserts that for a local minimizer (x̄, w̄)
there exist a function p ∈ W 1,1 and a scalar λ ≥ 0 such that

||p||L∞ + λ > 0,

−ṗ(t) ∈ co ∂xH(t, x̄(t), p(t), w̄(t)) a.e. , (3)

max
w∈W (t)

H(t, x̄(t), p(t), w) = H(t, x̄(t), p(t), w̄(t)) a.e. , (4)

(p(0),−p(1)) ∈ λ∂l(x̄(0), x̄(1)) + NC(x̄(0), x̄(1)),

where H is the Hamiltonian for (S),

H(t, x, p, w) = p · f(t, x, w) (5)

In the above conditions ∂l denotes the limiting subdiffer-
ential of l with respect to its arguments, NC denotes the

limiting normal cone to C, and co ∂xH denotes the Clarke
subdifferential of H with respect to x.

Under mild hypotheses on the data, which include merely

Lipschitz continuity of f with respect to (x, w), a common

form of a nonsmooth weak maximum principle is obtained

when (4) is replaced by

ξ(t) ∈ co ∂wH(t, x̄(t), p(t), w̄(t)) a.e. , (6)

and

ξ(t) ∈ co NW (t)(w̄(t)) a.e. (7)

It has been highlighted that the normal form of the

nonsmooth maximum principle (“strong” or weak) fails to

provide sufficiency for linear-convex problems, in contrast

to the analogous maximum principle applicable to problems

with differentiable data.

In [13] a weak nonsmooth maximum principle (we present

further down) is proposed for standard optimal control

problems which provides, in the normal form, sufficiency

to linear-convex nonsmooth problems. It is formulated as an

Unmaximized Hamiltonian Inclusion type condition involv-

ing the joint subdifferential of the Hamiltonian in the (x, w)
variables

(−ṗ(t), ξ(t)) ∈ co ∂H(t, x̄(t), p(t), w̄(t)) a.e. (8)

together with the inclusion (7).

It is a well known fact that, for nonsmooth problems, (3)

and (6) are not equivalent to (8). Inclusion (8) can give more

information in situations when

co ∂H �= co ∂xH × co ∂wH.

Notably, the joint subdifferential inclusion (8) in UHI-type

conditions gives sufficiency for the linear convex normal

case. For discussion in this respect we refer the reader to

[13].

Let us consider the following hypotheses, which make

reference to a parameter ε > 0 and a reference process

(x̄, w̄):
H1 The function t → f(t, x, w) is Lebesgue measur-

able for each pair (x, w) and there exists a function

Kf in L1 such that∣∣f(t, x, w) − f(t, x′, w′)
∣∣

≤ K(t)[|x − x′|2 + |w − w′|2]1/2
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for x, x′ ∈ x̄(t) + εB, and w, w′ ∈ w̄(t) +
εB a.e. t ∈ [0, 1].

H2 The multifunction W has Borel measurable graph

and Wδ(t) := (w̄(t) + εB) ∩ W (t) is closed for

almost all t ∈ [0, 1].
H3 The endpoint constraint set C is closed and l is lo-

cally Lipschitz in a neighbourhood of (x̄(0), x̄(1)).
The aforementioned UHI-type conditions for (S), derived

in [13], are as follows.

Proposition 3.1: Let (x̄, w̄) denote a weak local mini-

mizer for (S). If H1–H3 are satisfied and H(t, x, p, w) =
p ·f(t, x, w) defines the Hamiltonian, then there exist λ ≥ 0,

p ∈ W 1,1([0, 1]; Rn) and ζ ∈ L1([0, 1]; Rk) such that, for

almost every t ∈ [0, 1],

(i) λ+ ‖ p ‖L∞= 1

(ii) (−ṗ(t), ζ(t)) ∈ co ∂H(t, x̄(t), p(t), w̄(t))

(iii) ζ(t) ∈ co NW (t)(w̄(t))

(iv) (p(0),−p(1)) ∈ NC(x̄(0), x̄(1)) + λ∂l(x̄(0), x̄(1)),

where ∂H denotes the limiting subdifferential in the (x, w)
variables.

Observe that if W (t) ≡ R
k, then the multiplier ζ above

is 0 and (iii) is superfluous.

The UHI-type conditions given by Proposition 3.1 above

have been used as an intermediate step to establish maximum

principles for problems with differential algebraic equations

(DAE’s) ([17]) and for different classes of problem (P ) ([4]).

Recently they have been extended to cover optimal control

problems with pure state constraints ([18]). Generalizations

of Proposition 3.1 to problems with mixed constraints were

obtained in [19] and [11]. It is worth mentioning that the

main features of UHI-type conditions are retained when

generalized to cover problems with mixed constraints and/or

with pure state constraints (see [11] and [18]). Of foremost

importance is the fact that they are also sufficient for opti-

mality when applied to normal linear convex problems with

mixed constraints and/or with pure state constraints.

IV. MIXED CONSTRAINTS

We now focus on optimal control problem with mixed

constraints in the form of (P ). Although the maximum

principle is not in general valid for (P ), there are classes

of problems for which some form of the maximum princi-

ple holds. Usually such are those with the data satisfying

regularity conditions on the mixed constraints. Derivation of

optimality conditions for problems with nonregular mixed

constraints remains a largely unexplored area (see [9] for

references on nonregular problems).

In the literature regularity assumptions imposed on the

mixed constraints vary. For smooth problems with data
continuous with respect to t necessary conditions for (P )
have previously been derived under the full rank assumption

that

det F (t)F (t)T �= 0 a.e. t ∈ [0, 1] (9)

where F is a matrix closely related to the derivative with

respect to the control variable of the functions defining the

mixed constraints. Condition (9) ensures that the row vectors

of matrix F are linearly independent and it is of interest since

it permits the association of (P ) with an auxiliary problem,

(Paux1) where the inequality constraint g(t, x(t), u(t)) ≤ 0
is replaced by equality constraints by considering

g
(
t, x(t), u(t)

)
+ �2(t) = 0

where � is a new control. Appealing to implicit function

theorems (Paux1) can further be associated with a new

problem (Paux2) without mixed constraints ((Paux2) being a

problem in the form of (S)). In this respect see, for example,

[6] and [10] where F is chosen to be

F (t) =
[ ∇ub(t, x̄(t), ū(t))

∇ugIa(t)(t, x̄(t), ū(t))

]
. (10)

When measurability of the data with respect to t is

assumed (a standard assumption for nonsmooth problems)

approaches similar to the one described above are possible

when the full rank condition (9) is replaced by an “uniform”

full rank condition of the form

det F (t)F (t)T > K a.e. t ∈ [0, 1], (11)

for some K > 0, and, instead of classical implicit function

theorems other implicit function theorems are used (see, for

example, [20] and [19]). We refer the reader to [19] for a

discussion about the “uniform” full rank condition (11) on

various choices of matrices for problem (P ).
To simplify the forthcoming discussion let us consider the

following hypothesis:

H∗ There exists K > 0 such that, for almost every

t ∈ [0, 1], det F (t)F (t)T > K where F is as

defined in (10).

Full rank assumptions like (9) or H∗ are of relevance since

necessary conditions for (P ) are such that the derivative with

respect to u of ḡi, for i /∈ Ia(t), does not take any part in

the determination of the multipliers.

In this paper we derive UHI-type conditions for (P ) under

the following alternative assumption:

HMF There exist constants K1 > 0, κi > 0 with i ∈
{1, . . . , mg}, L∞ functions h : [0, 1] −→ R

k, δ :
[0, 1] −→ R

mg , δ(t) = (δ1(t), . . . , δmg
(t)), such

that, for almost every t ∈ [0, 1]

(i) δi(t) ≥ κi for i ∈ Ia(t),

(ii) | h(t) |= 1,

(iii) ∇ub̄(t) ·h(t) = 0 and ∇uḡ(t) ·h(t) = −δ(t),

(iv) det∇ub̄(t)∇ub̄(t)T ≥ K1.

Assumption HMF is an “uniform” Mangasarian-

Fromowitz type condition (also known in the literature

as positive linear independence condition) and it is an

adaptation of condition (23) proposed in [21]. The term

“uniform” here is used to emphasize the fact that inequalities

are assumed to be bounded away from the origin, uniformly

in t.
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Assumption HMF above mainly differs from assumptions

previously considered in [9] since it only needs to be checked

along the optimal solution. It is also worth mentioning that

the requirement that

∇uḡi(t) · h(t) ≤ −κi < 0

(HMF–(i)) is merely imposed on the active constraints (i.e.,

for i ∈ Ia(t)). It is of special interest for problems for which

the set Ia(t) is known for almost every t ∈ [0, 1] à priori.

When the number of controls k of problem (P ) is strictly

greater than the number of equality constraints mb validation

of necessary conditions under HMF as opposed to H∗ is of

foremost relevance. Indeed when k > mb it is a simple

matter to see that H∗ implies HMF (see example (5.2)

below) while the opposite is not in general true. In particular,

necessary conditions under merely HMF broadens the scope

of application of optimality conditions in situations when

equality constraints are absence (mb = 0).

V. MAIN RESULTS

We impose the following additional hypotheses on (P ):
H4 [b, g](·, x, u) is measurable for each (x, u) and

t → g(t, x̄(t), ū(t)) is L∞. There exists L1 func-

tions Lb,g such that, for almost every t ∈ [0, 1],
[b, g](t, ·, ·) is continuously differentiable with Lip-

schitz constant Lb,g(t) on

(x̄(t), ū(t)) + εB.

There exists a constant Kb,g > 0 such that, for

almost every t ∈ [0, 1],∣∣∣∇x[b, g](t)
∣∣∣ +

∣∣∣∇u[b, g](t)
∣∣∣ ≤ Kb,g.

H5 There exists an increasing function θ̃ : R
+ → R

+,

θ̃(s) ↓ 0 as s ↓ 0, such that, for all (x′, u′), (x, u) ∈
(x̄(t), ū(t)) + εB and for almost every t ∈ [0, 1],

|∇x,u[b, g](t, x′, u′) −∇x,u[b, g](t, x, u)|
≤ θ̃

(
| (x′, u′) − (x, u) |

)
.

Our main result (Theorem 5.1 below) is not proved by

the traditional approach described in the previous section.

Nevertheless an implicit function theorem plays a crucial

role in its proof. Because the measurability with respect to t
prevents application of classical implicit function theorems

(see [6]) we use a sharpened variant of the Implicit Function

Theorem, an Uniform Implicit Function Theorem previously

obtained in [17], to a function defined in terms of b and g
(see next section). In this respect H4, H5 and HMF–(vi) are

essentials.

Hypotheses H4 and H5 mainly states that the derivatives of

b and g with respect to state and control must be uniformly

continuous on a tube around the optimal solution and be

bounded along the optimal solution.

We are now in position to state the main result of this

paper.

Theorem 5.1: Let (x̄, ū) be a weak local minimizer for

problem (P ). If, for some ε > 0, hypotheses H1, H2, H4,

H5 and HMF are satisfied and

H(t, x, p, q, r, u) := p ·f(t, x, u)+q ·b(t, x, u)+r ·g(t, x, u)

defines the Hamiltonian, then there exist functions p ∈ W 1,1,

q, r ∈ L1 and a scalar λ ≥ 0 such that

(i) ‖ p ‖L∞ +λ �= 0

(ii) (−ṗ(t), 0) ∈ co ∂x,uH(t, x̄(t), p(t), q(t), r(t), ū(t)),

(iii) r(t) · g(t, x̄(t), ū(t)) = 0 and r(t) ≤ 0,

(iv) (p(0),−p(1)) ∈ NC(x̄(0), x̄(1)) + λ ∂l(x̄(0), x̄(1)).

Furthermore, there exist integrable functions Bb and Bg such

that

|q(t)| ≤ Bb(t)|p(t)| for a.e. t ∈ [0, 1], (12)

|r(t)| ≤ Bg(t)|p(t)| for a.e. t ∈ [0, 1]. (13)

In situations when the number of controls k is equal to the

number of equality constraints mb and when the measure of

the set

{t ∈ [0, 1] : Ia(t) = ∅}
is zero (i.e., when inequality constraints are inactive almost

everywhere) the conclusions of Theorem 5.1 remain valid

when only HMF–(iv) is satisfied (see [19]).

Next we present an example in which H∗ is not verified

and yet HMF is and Theorem 5.1 holds.

Example 5.2: Consider the problem of minimizing x(1)
subject to ẋ(t) = u, 0 ≥ v2 − u, 0 ≥ u − v3 and x(0) = 0.

The minimizer is (0, 0, 0) and Ia(t) = {1, 2} for all t ∈
[0, 1]. We have

H(t, x, p, r1, r2, u, v) =
p · u + r1 · (v2 − u) + r2(u − v3).

For this problem the matrix (10) is

F (t) =
[ −1 0

1 0

]
.

It is a simple matter to see that Theorem 5.1 holds with, for

example, p(t) = −1, r1 = −1, r2 = 0 and λ = 1.

Although H∗ is not satisfied in this example hypothesis

HMF is with h(t) = [
√

2/2 − √
2/2]T and κ1 = κ2 =

−√
2/2. Since no equality constraints are present K1 is

ignored.

Hypothesis HMF is crucial for the validity of Theorem 5.1

as the following simple but nevertheless illustrative example

shows:

Example 5.3: Consider the problem of minimizing x(1)
subject to ẋ(t) = u, 0 ≥ x−v2 and x(0) = 0. The minimizer

is (0, 0, 0). Observe that HMF is not satisfied for this problem

since here we have 1 ∈ Ia(t) for all t ∈ [0, 1] and

F (t) = ∇u,v(x − v2)
∣∣
(x≡0,u≡0,v≡0)

= [0 0].

Applying the conditions of Theorem 5.1, we get

(−ṗ(t), 0, 0) = (r(t), p(t), 0)

269



and p(1) = −λ, which implies that p(t) = 0, r(t) = 0 and

λ = 0, contradicting the nontriviality condition (i).

Here both the full rank condition on F in the sense of (9)

and H∗ are not satisfied since F (t) = [0 0].
Theorem 5.1 coincides with the main results in [19] and

[11], where UHI-type conditions are validated for (P ) under

regular conditions on the mixed constraints in the vein of

hypothesis H∗. Since, when k > mb, the class of problems

to which Theorem 5.1 applies is larger than those to which

the results in [19] and [11] do, we conclude that Theorem

5.1 broadens the scope of necessary conditions.

VI. SKETCH OF THE PROOF

We define a sequence of optimization problems to which

Ekeland’s Variational Principle applies. This gives rise to

a sequence of standard optimal control problems satisfying

the conditions under which Proposition 3.1 is validated.

Taking limits and rewriting the necessary conditions thus

obtained we prove the theorem. In this last step of the proof

Hypothesis HMF plays a crucial role.

The equality and inequality constraints are incorporated

into the dynamics of the aforementioned sequence of optimal

control problems by different means. Equality constraints

are incorporated into the dynamics by appealing to an

Uniform Implicit Function proved in [17]. On the other hand

inequality constraints are included both into the dynamics

and the cost. In this respect the definition of a max function

and state and control augmentation techniques are essential.

We start the proof which breaks into steps. Let ε be as in

H1, H2, H4, H5 and HMF. Define the following matrices:

Γu(t) =
[ ∇ub̄(t)

∇uḡ(t)

]
, M =

[
0 I

]

where M ∈ Mmg×(mb+mg). Let β : [0, 1] → R
m be any

measurable function and set β̄ to be

β̄(t) = −g(t, x̄(t), ū(t)).

Step 1: We apply an Uniform Implicit Function proved in

[17] to a function

m
(
t, (ξ, u, β), ζ

)
:=(

b
(
t, x̄(t) + ξ, ū(t) + u + Γu(t)T ζ

)
g
(
t, x̄(t) + ξ, ū(t) + u + Γu(t)T ζ

)
+ β̄(t) + β + Mζ

)

in order to obtain an “uniform” implicit function d.

Observe that, for almost every t ∈ [0, 1],

m(t, (0, 0, 0), 0) = 0 and
∂m

∂ζ
(t, (0, 0, 0), 0) is invertible

with norm bounded away from 0. Thus Theorem 3.2 in

[17] asserts the existence of σ1 ∈ (0, ε), δ1 ∈ (0, ε) and an

implicit map

d : [0, 1] × σ1B × σ1B × σ1B −→ δ1B

such that d(·, ξ, u, β) is a measurable function for fixed

(ξ, u, β), the functions {d(t, ·, ·, ·)| t ∈ [0, 1]} are Lipschitz

continuous with common Lipschitz constant Kd > 0 and

d(t, ·, ·, ·) is continuously differentiable for fixed t ∈ [0, 1].

Step 2: Define the set

R+ = {r ∈ R
m : ri ≥ 0, i ∈ {1, . . . , m}} ,

a function G : [0, 1] × R
n × R

k × R
mg → R

mg as

G(t, x, u, β) = g
(
t, x, u+Γu(t)T d

(
t, x−x̄(t), u−ū(t)

)
, β)

)

and set

G+(t, x, u, β) =
max

{
0, G1(t, x, u, β), . . . , Gmg

(t, x, u, β)
}

.

Define also the function

f1(t, x, u, β) =
f
(
t, x, u + Γu(t)T d

(
t, x − x̄(t), u − ū(t)

)
, β − β̄(t))

)
.

Step 3: We define a sequence of optimization problems

and check that Ekeland’s Variational Principle applies to such

sequence of problems.

For a conveniente choice of σ ∈ (0, σ1) (for details see

[11]) set Bσ(t) = R+
⋂ {

β̄(t) + σB
}

. Set also

z̄(t) =
∫ t

0

G+(s, x̄(s), ū(s), β̄(s))ds.

Take W to be the set of all measurable functions (u, β)
and all vectors (a, b) ∈ R

n ×R
n such that, for almost every

t ∈ [0, 1], u(t) ∈ (
ū(t) + σB

)
, β(t) ∈ Bσ(t), (a, b) ∈ C

and for which there exist absolutely continuous functions x,

y and z such that

ẋ(t) = f1(t, x, u, β) a.e.

ẏ(t) = 0 a.e.

ż(t) = G+(t, x, u, β) a.e.

(x(t), y(t), z(t)) ∈ (x̄(t), x̄(1), z̄(t)) + σB a.e.

(x(0), y(0), z(0)) = (a, b, 0).

Let {εk}k∈N be a sequence of positive scalars such that

lim
k→∞

εk = 0. Define the function

Ψk(x, y, x′, y′, z) =
max

{
l(x, y) − l(x̄(0), x̄(1)) + ε2k, z + |x′ − y′|} .

To simplify the notation set E = (a, b) ∈ R
2n. Let

| E − E′ |=| a − a′ | + | b − b′ |
and

ν((u, β), (u′, β′)) =∫ 1

0

|u(t) − u′(t)| dt +
∫ 1

0

|β(t) − β′(t)| dt.

Define dW : W × W → R,

dW ((u, β, E), (u′, β′, E′)) =

ν((u, β), (u′, β′))+ | E − E′ | .

Consider the sequence of optimization problems

(Rk)
{

Minimize Jk(u, β, E)
subject to (u, β, E) ∈ W

where Jk(u, β, E) = Ψk(x(0), y(0), x(1), y(1), z(1)).
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Observe that W is nonempty since (ū, β̄, x̄(0), x̄(1)) ∈ W ,

dW defines a metric in W and, with respect to this metric,

the set W is a complete metric space and the function

(u, β, E) → Jk(u, β, E) is continuous on (W, dW ).
Setting Ē = (x̄(0), x̄(1)), we get, for all k ∈ N,

Jk(ū, β̄, Ē) = Ψk(x̄(0), x̄(1), x̄(1), x̄(1), z̄(1)) = ε2k.

It is a simple matter to see (ū, β̄, Ē) is an “ε2k−minimizer”

for (Rk).
Step 4: Rewriting the conclusions of Ekeland’s Theorem

in control theoretic terms we obtain a sequence of standard

optimal control problems.

Write (xk, yk, zk) the trajectory corresponding

to (uk, βk, Ek). For each k ∈ N, the process

(xk, yk, zk, w1 ≡ 0, w2 ≡ 0, uk, βk) solves the control

problem (Ck):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Ψk(x(0), y(0), x(1), y(1), z(1))
+εkπk(x(0), y(0), z(1), w1(1), w2(1))

subject to

ẋ(t) = f1(t, x, u, β)
ẏ(t) = 0,
ż(t) = G+(t, x, u, β),
ẇ1(t) = |u(t) − uk(t)|, ẇ2(t) = |β(t) − βk(t)|,
(x(t), y(t), z(t)) ∈ (x̄(t), x̄(1), z̄(t)) + σB,
(u(t), β(t)) ∈ (

ū(t) + σB
) × Bσ(t),

(x(0), y(0), z(0)) ∈ C × {0},
(w1(0), w2(0)) = (0, 0, 0)

where all the equalities and inclusions but the last two are

to be understood in an almost everywhere sense and

πk(x, y, z, w1, w2) =
|x − xk(0)| + |y − yk(0)| + |z(1) − zk(1)|

+w1(1) + w2(1).

Observe that for k sufficiently large, it can easily be shown

that Ψk(xk(0), yk, xk(1), yk, zk(1)) > 0.

Step 5: We apply Proposition 3.1 to the sequence of

standard optimal control problems obtained in the previous

step.

It asserts the existence of scalars ηk and rk, vectors

qk, ek ∈ R
n, integrable function ζk : [0, 1] → R

mg and

an absolutely continuous function pk ∈ W 1,1 such that:

(a) ηk + |pk(1)| = 1
(b) ηk ∈ [0, 1], | ek |= 1
(c) (−pk(1) − (1 − ηk)ek,−qk + (1 − ηk)ek,

−rk − (1 − ηk)) ∈ εk

(
B × B × B

)
,

(d) (pk(0), qk) ∈ NC(xk(0), yk)
+ηk∂ l(xk(0), yk(0)) + εk(B × B),

(e) ζk(t) ∈ co NBσ1(t)(βk(t))a.e.

(f) (−ṗk(t), 0, ζk(t)) ∈
co ∂ H̃(t, xk(t), pk(t), rk, uk(t), βk(t))
+εk

({0}×{0}×{0}×B×B×B×B
)

a.e.

where

H̃(t, x, p, r, u, β) =
p · f1(t, x, u, β) + r · G+(t, x, u, β).

Step 6 : We now consider εk → 0 and we take limits to

obtain necessary conditions for (P ).
In this step HMF is crucial to assert the non triviality

condition (i) in Theorem 5.1.
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